
Concept-based Short Text Classification and Ranking∗

Fang Wang †,#1 Zhongyuan Wang ‡,#2 Zhoujun Li †3 Ji-Rong Wen ‡4

†State Key Laboratory of
Software Development Environment
Beihang University, Beijing, China

‡School of Information
Renmin University of China

Beijing, China

#Microsoft Research
Beijing, China

3lizj@buaa.edu.cn
1wangfang0325@cse.buaa.edu.cn

2zhy.wang@microsoft.com 4jirong.wen@gmail.com

ABSTRACT
Most existing approaches for text classification represent texts as
vectors of words, namely “Bag-of-Words.” This text representa-
tion results in a very high dimensionality of feature space and fre-
quently suffers from surface mismatching. Short texts make these
issues even more serious, due to their shortness and sparsity. In
this paper, we propose using “Bag-of-Concepts” in short text repre-
sentation, aiming to avoid the surface mismatching and handle the
synonym and polysemy problem. Based on “Bag-of-Concepts,” a
novel framework is proposed for lightweight short text classifica-
tion applications. By leveraging a large taxonomy knowledgebase,
it learns a concept model for each category, and conceptualizes a
short text to a set of relevant concepts. A concept-based similarity
mechanism is presented to classify the given short text to the most
similar category. One advantage of this mechanism is that it facili-
tates short text ranking after classification, which is needed in many
applications, such as query or ad recommendation. We demonstrate
the usage of our proposed framework through a real online applica-
tion: Channel-based Query Recommendation. Experiments show
that our framework can map queries to channels with a high de-
gree of precision (avg. precision = 90.3%), which is critical for
recommendation applications.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern Recogni-
tion]: Design Methodology—Classifier design and evaluation

General Terms
Algorithms, Experimentation

Keywords
Short Text Classification; Query Recommendation; MSN Channel;
Taxonomy Knowledge
∗This work was done when the first author was an intern in Mi-
crosoft Research Asia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ... $15.00.
http://dx.doi.org/10.1145/2661829.2662067.

1. INTRODUCTION
The explosive growth of information makes people feel over-

whelmed when browsing for information online. Fortunately, many
information technologies have been invented to help. Text Classifi-
cation is one of the key techniques for organizing online informa-
tion. It has been widely used in News Categorization, Opinion Min-
ing and Spam filtering. Before performing any classification task,
text representation is one of the most fundamental tasks [1]. Most
well-known techniques [28, 19, 20, 8, 26] represent texts as vectors
of terms (words or phrases), namely “Bag-of-Words” (BoW).

However, BoW simply looks at the surface word forms and ig-
nores all semantic or conceptual information in the text. Poor per-
formance of BoW is unavoidable in Short Text Classification (STC),
because short texts (e.g., search queries, tweets, or Facebook status)
are sparse, noisy, and ambiguous. The drawback of surface-based
similarity is even more serious in short texts, since two short texts
with similar meanings do not necessarily share many words. Most
existing work tries to expand the short text by leveraging search
engines [31, 11, 37] or external knowledge bases [33, 25, 27] (e.g.,
ODP, WordNet, and Wikipedia), which needs a time-consuming
collection for these expansions. Besides, these expansions are still
weak in semantics.

“Bag-of-Words” limits text classification in many applications,
especially in short texts or other lightweight online applications that
require faster training and new words adaption. As an alternative,
we propose representing the short text from a higher perspective of
concepts, rather than directly using terms that appear in the text.
The notion of “Bag-of-Concepts” is first proposed by Sahlgren, et
al. [29]. But the concepts in their paper are some synonym sets
or latent dimensions of “Bag-of-Words,” not the hyponymy in se-
mantics. Other work defines concepts as units of knowledge, such
as entities in WordNet [18] or Wikipedia [14]. For instance, agri-
culture, agricultural sector and agricultural can be represented by
Agriculture. Indeed, these concepts can handle problems with syn-
onymy. However, they are still specific representations with lim-
ited contribution to semantic similarity. For example, “Jeep” and
“Honda” are not synonymy, but they are very similar because they
belong to the same concept Car.

In this paper, we define a concept as a set or class of entities
or “things” within a domain1, such that words belonging to sim-
ilar classes get similar representations. For instance, “Jeep” and
“Honda” can be represented by Car. These generic concepts can
benefit short text classification. For example, although the two
short texts “Beyonce named People’s most beautiful woman” and
“Lady Gaga Responds to Concert Band” share no common words,

1http://www.cs.man.ac.uk/ stevensr/onto/node3.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357254533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

they are likely to be the same class of Music, since “Lady Gaga”
and “Beyonce” can be represented by the same concept Singer,
which is highly related to Music.

There are two advantages of this “Bag-of-Concepts” (BoC):

1. Replace surface matching with semantic similarity: BoC mea-
sures the similarity between short texts from the higher con-
cept level, rather than surface level, which can avoid surface
mismatch to some extend.

2. Tolerance with new terms: New term arises always but the
concept does not. Once the concepts of a category are cap-
tured, BoC can handle new words as long as the concept of
the word is pre-processed. From this sense, BoC has stronger
adaptability in word changing.

We propose a novel framework based on “Bag-of-Concepts”
for lightweight short-text oriented classification applications (Boc-
STC). Specifically, given the training texts per class, BocSTC first
constructs a concept model for each class, namely “Bag-of-Concepts”
for each class. During this construction, a large taxonomy knowl-
edgebase is needed to convert terms to concepts. Then, given a
short text to be classified, the framework needs to understand its
content and associate the short text with the relevant concepts (here
we call this operation Conceptualization [35]). Based on the con-
ceptual expression, we propose a concept-based similarity mech-
anism for short text classification and ranking. The framework is
suitable for many online lightweight applications, such as query-
related applications (e.g., query recommendation) and Ads classi-
fication and ranking.

We demonstrate the usage of BocSTC through a real online ap-
plication: Channel-based Query Recommendation. Major Internet
portals as MSN and Yahoo! provide diverse channels to facilitate
users to browse news by categories. Fig. 1 shows a screenshot for
channels on the MSN website.

Figure 1: Screenshot for MSN channels

Channel-based Query Recommendation aims to provide the hottest
search queries for users when they browse the channels. These
queries are recently issued by other people. Given a channel, it will
recommend highly related queries, taking into account the query di-
versity and interestingness. Fig.2 shows a screenshot of the Channel-
based Query Recommendation. There are two key tasks in this ap-
plication:

1. Mapping query to channel: Two challenging issues exist in
this task: 1) Unlike traditional categories, channels tend to
be more general and the content in channels are changing
fast along with constantly updated hot news. 2) Queries are
very short and difficult to classify using a traditional classi-
fier based on BoW.

Recommended queries

Figure 2: Query recommendation for Channel Living

2. Query ranking: For queries to be recommended, how to mea-
sure the relatedness of queries and diversify the recommen-
dations are key issues. Further more, the requirement of
quick response for online systems requests the ranking al-
gorithm should be lightweight and practical.

BocSTC represents channels and queries as vectors of concepts,
which can simplify the above issues to a large extent. Compared
with traditional text classification methods (e.g., SVM), fewer texts
are needed for building the concept model for each channel. This
saves us much time for manually labeling large numbers of train-
ing data and makes it possible to update the learnt model quickly.
“Bag-of-Concepts” also makes the learnt models tolerance with
word changing. For query ranking, BocSTC measures the semantic
similarity between the query and channel, which can avoid surface
mismatching. Regarding the concepts as subtopics, it is able to di-
versify the recommendations directly from the subtopic level, with-
out extra query clustering process. Comprehensive experiments are
designed to prove its high quality of query recommendations. The
techniques we describe in this paper is in production for query rec-
ommendation.

The main contributions of this paper are as follows:

• We propose using “Bag-of-Concepts” as a replacement of
“Bag-of-Words” in short text representation. This enables
us to compute short text similarities at the semantic level of
concepts.

• Based on “Bag-of-Concepts,” we propose a novel framework
for short text classification (BocSTC). Our framework is much
more applicable for online lightweight applications, because:
i) “Bag-of-Concepts” enables it to adapt term mismatching
and word changing; ii) It is a fast learner, since fewer train-
ing datasets are required to learn the concept models.

• We demonstrate the usage of BocSTC through a real lightweight
application: Channel-based Query Recommendation. Exper-
iments show that our framework can map queries to channels
with high precision (avg. precision = 90.3%). This is very
critical for recommendation application.

The rest of the paper is organized as follows. Section 2 briefly
introduces the knowledgebase we use for concept model genera-
tion. Section 3 first gives the whole picture of BocSTC and then
describes its main modules in detail. Section 4 demonstrates the
usage of BocSTC in Channel-based Query Recommendation. Ex-
periments are presented and analyzed in Section 5. We discuss
related work in Section 6 and conclude in Section 7.

2. PRELIMINARIES
In this section, we describe a large knowledgebase that we use

to transform “Bag-of-Words” to “Bag-of-Concepts.” We also in-
troduce two useful functions to better capture concept information
from the knowledgebase, namely Typicality and Concept Cluster.

2.1 Knowledgebase
We can learn the concepts of words by leveraging existing large-

scale knowledgebases, such as Wikipedia, Yago [36] and Probase [40].
We will take Probase as a running example in this paper. Definitely,
our techniques can be applied to other knowledgebases. Probase
is a probabilistic semantic network that contains millions of con-
cepts. It is rich enough to cover a large proportion of concepts
about worldly facts. Terms in Probase are connected by a variety
of relationships. Here, we focus on the Is-A relationship (although
other relationships such as AttributeOf [21] are also important to
conceptualization). The version of Probase 2 we use contains al-
most 2.7 million concepts and 4.5 million Is-A relationships. For
example, “robin” is-a bird, and “penguin” is-a bird.

The concepts in Probase are fine-grained, which can increase the
capacity to distinguish between close classes. For example, given
“Angelina Jolie,” Probase will return many fine-grained concepts
such as actress, Hollywood star and movie star. For “Beyonce,”
it returns pop star, famous singer and musician. Other knowledge
bases do not have such a huge fine-grained concept space. Most of
the time, they can map both of “Angelina Jolie” and ‘Beyonce” to
celebrity. But celebrity is too general to discriminate between the
two close classes -“Movie” and “Music.”

2.2 Typicality
For mapping instances to the concept space, we use a probabilis-

tic way to measure the Is-A relations, called Typicality. For exam-
ple, given an instance e, which has Is-A relationship with concept
c, Typicality P (c|e) is given by Eq. 1, reflecting how typical of c is
among all concepts that contain instance e.

P (c|e) = n(e, c)

n(e)
, P (e|c) = n(e, c)

n(c)
(1)

where n(e, c) denotes the co-occur frequency of e and c. n(e) and
n(c) are the frequencies of e and c occur during their extraction.
Similarly, P (e|c) can measure how typical or popular e is when
given c. In our framework, we leverage the Typicality to select
typical concepts for instances in concept model construction.

2.3 Concept Cluster
Among the large amount of concepts in Probase, many concepts

are similar to each other, such as “country” and “nation,” “music
star” and “pop star,” etc. We use Concept Clusters to gather similar
concepts together, by using a k-Medoids clustering algorithm pro-
posed by Li et al. [22]. One concept cluster can represent one sense
or a general topic, recognized with its center concept. For example,
for the cluster centered around country, most of its members are
highly related to country, such as nation, asian country, develop-
ing country, region etc. In this paper, we use the concept cluster in
multiple-ways including sense detection in short texts and subtopic
representation in the targeted categories.

3. THE FRAMEWORK
In this section, we present the novel framework (BocSTC) for

lightweight short-text oriented classification applications (Fig. 3).
It consists of two components: offline learning and online classifi-
cation.

The offline component aims to learn a concept model with good
distinguishing power for each target class. Specifically, given the
training data for a class i, it first extracts entities from the text, then
generates concept candidates by mapping each entity to a concept
2Probase data is publicly available at
http://probase.msra.cn/dataset.aspx

OfflineOffline OnlineOnline

Original Short text:

justin bieber graduates

…

Knowledge

base

Conceptualiztion

Concept

Vector

Entity Extraction

Candidates Generation

Classification & Ranking

Model LearningModel Learning

Concept Weighting

Model Model Ndel Modd dModel i

Concept ModelConcept Model

Class 1 Class NsasClass i

Training

Data

<Music , Score>

Figure 3: The framework of concept-based short-text classifi-
cation and ranking

set. A large taxonomy knowledgebase is exploited for the map-
ping. A more challenging task is to select representative concepts.
The selected concepts should not be too general or too specific for
representing class i. We propose weighting the candidates with
the combination of entity idf value, concept idf value and typi-
cal probabilistic p(c|e), and filter concepts with low weight score.
This ranking mechanism is also able to reduce the noise caused by
entity-concept mapping. More details are given in subsection 3.1.

At runtime, when a short text is coming, we need to first under-
stand its main topics by leveraging conceptualization. This enables
us to translate the short text to “Bag-of-Concepts,” so as to classify
it in the same concept level as the concept models.

However, entity disambiguation is a major challenge to accu-
rate conceptualization. Subsection 3.2 shows the details of con-
ceptualization with disambiguation. Based on “Bag-of-Concepts,”
we propose a similarity-based mechanism to classify short texts.
One advantage of this approach is that we can rank the short texts
within a class directly using the similarity score, which is conve-
nient for many applications with classification and ranking require-
ment, such as ads recommendation. Subsection 3.3 explains this
approach in detail.

Finally, the ranked results are returned with similarity scores.

3.1 Concept Model Learning
Given training data Dl = {di, i = 1, 2, .., N} for the class CLl,

we learn its concept model by leveraging the large knowledgebase
Probase. The learnt concept model is represented as a concept vec-
tor CMl = (⟨c1, w1⟩, ..., ⟨ci, wi⟩, ..., ⟨cK , wK⟩), i = 1, 2, ...,K,
where wi denotes the weight of concept ci in class CLl. The
weight could reflect the representative strength of concepts within
a class. Specifically, this process is divided into three subtasks: En-
tity Recognition, Candidates Generation and Concept Weighting.

3.1.1 Entity Recognition
To gain concept expression, we first need to detect the entities in

the text so as to access concepts through entities. During the recog-
nition, documents are first split to sentences, and then Backward
Maximum Matching is used to detect the entities from each sen-
tence. The version of Probase we use contains about 8.26 million
instances (e.g., “Beyonce,” “Lady Gaga,” and “Barack Obama”).
Thus, we use all instances in Probase as the matching dictionary.

Stemming is also performed to assist in the matching process. After
recognition, the extracted entities are merged together and weighted
by idf based on different classes. Those with low idf value are re-
moved, because low idf reflects that these entities have low class
distinguishing ability.

3.1.2 Candidates Generation
We generate concept candidates from all the extracted entities

by leveraging the large amount of Is-A relations in Probase. Given
entity ej , we select its top Nt concepts ranked by the Typicality
P (c|e) (Eq. 1), as its typical concepts. The Nt is usually in the
order of tens (in this paper Nt = 20). We merge all the typical con-
cepts as the primary candidate set, and then clean it in the following
two ways:

(1) removing stop concepts3, which tend to be too general to rep-
resent a class, such as item and event;

(2) computing the idf value for each concept in the class level, and
removing concepts with low idf value.

Although we remove many non-representative concepts, the noise
concepts still exist because simply selecting the top Nt concepts is
incapable of processing ambiguous entities. For example, given en-
tity “python” in class Technique, our mapping method will result in
its top Nt concepts list including animal, which is a noise to class
Technique. We leave this problem to the next subtask.

3.1.3 Concept Weighting
In this subtask, we weight the candidates to measure their repre-

sentative strengths for each class. Specifically, for each candidate
ck, we aggregate the weights of votes to it from all its entities in
CLl, as its weight in CLl. Meanwhile, the idf value of ck and the
typicality P (ck|ej) is also considered, as Eq. 2 shows:

w(ck, CLl) =
∑

ej∈CLl

P (ck|ej)× idf(ej)× idf(ck) (2)

According to the weights, we rank the candidate concepts. The
noise concepts brought by the Candidates Generation, tend to have
low ranking scores, since there are few supporting entities for them
in CLl. Thus, concepts with low weights are removed. Finally, we
get the concept model CMl for the class CLl.

3.2 Short Text Conceptualization
Short Text Conceptualization aims to abstract a set of most rep-

resentative concepts that can best describe the short text [35, 39].
To avoid over abstracting, specific entities are preferred during en-
tity recognition from the short text. Therefore, we first detect all
possible entities and then remove those contained by others. For
example, given the short text “windows phone app,” the recognized
entity set will be {“windows phone,” “phone app”}, while “win-
dows,” “phone,” and “app” are removed. The entity set is then used
to conceptualize the short text.

Given the entity list Esti = {ej , j = 1, 2, ...,M} for a short
text sti, we conceptualize them by leveraging the tens of millions
of concept-instance pairs in Probase. Song, et al. [35] estimate the
probability of concepts using a naive Bayes model. However, they
do not refer to entity disambiguation, which is a key issue affecting
the conceptualization accuracy. A typical example is to understand
the short text “apple ipad”, where “apple” has two senses, namely
3Stop concepts generally have many diverse instances and tend to
be in the high level of concept hierarchy. These concepts are al-
ready pre-recognized with these two rules.

a famous Company and a kind of Fruit. In this paper, we use the
context “ipad” to assist mapping “apple” to Company. We observe
that the context has the ability to disambiguate a vague term. For
example, when “china” and “jordan” occur together, “jordan” tends
to be a Country, while when it appears with “nike,” it is more likely
to be a“brand,” because a vague term tends to have the same sense
with its near context. Formally, we conceptualize the short text sti
in the following two steps:

Sense Detection: This step aims to detect different senses for
each entity in Esti , so as to determine whether the entity is am-
biguous. Probase provides concept clusters to gather similar con-
cepts within a same sense. Thus, we detect the senses of entity
ej directly using the concept clusters of its typical concepts. De-
note Cej = {ck, k = 1, 2, ..., Nt} is ej’s typical concept list and
CClej = {cclm,m = 1, 2, ...} is ej’s concept cluster set. We
estimate the ambiguity of ej by its entropy of concept cluster dis-
tribution (Eq. 3).

H(ej) = −
∑

cclm∈CClej

P (cclm|ej)× log2P (cclm|ej) (3)

where P (cclm|ej) denotes the probability of ej belonging to clus-
ter cclm, which is estimated by aggravating the typicality scores
for all its concepts belonging to cclm. An entity with high entropy
value tends to have high uncertainty of cluster distribution.

Disambiguation: Given the entity list Esti and the identified
vague entities, we disambiguate vague entity by leveraging its un-
ambiguous context entities. Denote the vague entity as evi , and
unambiguous entity euj . For each cluster of evi , we re-weight them
with Eq. 4

P
′
(cclm|evi) =

∑
ccln∈CCleu

j
,euj ∈Esti

P (cclm|evi)P (ccln|euj)CS(cclm, ccln) (4)

whereCS(cclm, ccln) denotes the concept cluster similarity, cal-
culated with Eq. 5.

CS(cclm, ccln) =
1

|cclm|
∑

ck∈cclm

Maxcj∈ccln

|Eck ∩ Ecj |
|Eck ∪ Ecj |

(5)

where Eck is the entity list including typical entities that belong
to concept ck. We reserve the ccl∗evi that has the most probability
as evi ’s sense. For unambiguous entities, we choose their domi-
nant clusters marked as ccl∗euj . Then we merge all clusters extracted

from all entities in Esti as {
∪M

j ccl∗ej}. Each concept cluster ccl∗ej
is represented as a concept vector marked as Cj , where each com-
ponent is a Probase concept valued with P (c|ej), so that each short
text is conceptualized in the same concept space as the concept
models.

3.3 Classification and Ranking
In this subsection, we describe the similarity-based mechanism

to classify the given short text sti and rank the items assigned to a
class CLl.

3.3.1 Classification
The intuition of classification is simple: classify the short sti to

the class CLl that is most similar with sti based on the same con-
cept space. Given the concept model CMl for class CLl, and sti’s
concept expression Csti = {Cj , j = 1, 2, ...,M}, we measure the
similarity between sti and CLl with Eq. 6.

Sim(sti, CLl) =
∑
Cj

∑
ck∈Cj∧ck∈CMl

P (ck|ej)× w(ck, CLl)

(6)

We select CL∗
l (Eq. 7) that has the maximum similarity with sti as

the classification result. The max similarity score is assigned to sti
as its weight in CL∗

l .

CL∗
l = argmax

CLl∈CL
Sim(sti, CLl) (7)

A possible adjustment to this method is that one can define a
threshold for each class to further refine the classification. For ap-
plications with high accuracy requirement, it is necessary to filter
out the items with low maximum similarity score.

3.3.2 Ranking
Apart from classification, many applications require ranking their

items in the meanwhile, such as channel-based query recommen-
dation, advertisement matching for some topics, etc. Our concept-
based classification framework has advantages for ranking classifi-
cation results in a class. Specifically, two ranking mechanisms are
proposed to meet with two typical ranking requirements: Ranking
by Similarity and Ranking with Diversity.

Ranking by Similarity: This is the most common way to rank
items. For example, in an ads matching problem, search engines
rank bid keywords by their similarities to the user query. In our
framework, as each short text sti assigned to CLl has a similarity
score, we can rank them directly by their scores in descending or-
der. Based on the simple ranking mechanism, items with more typi-
cal concepts of CLl tend to have higher ranked positions. Based on
concept level similarity, term mismatching can be tackled to some
extant.

Ranking with Diversity: Diversity is an important feature for
recommending related applications, which affects the User Expe-
rience directly. Most existing approaches [12, 23, 16] diversify
the recommendations based on different aspects or subtopics of the
recommended target. Generally, a clustering or other subtopic min-
ing process is needed to generate different aspects. While in our
framework, this step is no longer needed because we can directly
gain class aspects by leveraging Probase concept clusters. This
makes our framework more adaptive to real-time ranking applica-
tions. Regarding the concept clusters as subtopics of the class, we
can diversify the short texts by subtopic Proportionality proposed
by Dang et al [12].

4. CHANNEL-BASED QUERY RECOMMEN-
DATION

In this section, we demonstrate the usage of BocSTC through a
real application: Channel-based Query Recommendation.

This online application aims to anticipate user search needs when
browsing different channels, by recommending the hottest and highly
related queries for a given channel. There are three difficulties in
this application: i) the recommended target (Channel) is “short,”
lack of training data or any user preference logs; ii) a need to
understand the short text (user query); iii) requiring both classifi-
cation and ranking (how to identify which channel the query be-
longs to and how to rank the recommendations with diversity).
These difficulties also indicate the application scenarios of our pro-
posed framework. The following three subsections describe how
we tackle these issues using BocSTC.

4.1 Channel Preference Generation
The recommended target - channel tends to be a general cate-

gory, such as Living, Money, or Entertainment. Unlike traditional
recommendation system, we have no log data as query click data or
user reading preferences (article click data) in the given channel. It
is not practical to label the training samples artificially. Moreover,

the content in the channels is changing fast along with constantly
updated hot news. This puts forward a higher requirement of adapt-
ing word changing. A more promising way is to seize the core
topics hidden behind the surface words appeared in the channel.

BocSTC tries to capture the typical concepts from the hot news
crawled from pages listed in each channel. We just need to process
the titles to get typical concepts, since the article title can reflect
the main topics of the article. This saves us much time to process a
large amount of long texts, so as to enable the learnt concept models
to adapt quick updating. Table 1 gives some typical examples of
the learnt concept model. It shows the learnt typical concepts in
different concept clusters (topics) for Channel Music.

Table 1: The Learnt Concept Model for “Channel Music”
Typical concepts of different topics
Singer: Song: Instrument:

performer good song musical instrument
pop star classic song electronic instrument
pop artist hip-hop song string instrument

Music: Band: Musician:
music style rock band guitarist
musical genre metal band guitar player
musical form pop band pianist

4.2 Query Conceptualization
In order to map the query to an appropriate channel, we first need

to know what the query is talking about, namely understanding the
search intent of the user issued the query.

Understanding query intent is one of the most basic components
of information retrieval systems [10], which has been studied ex-
tensively in recent years. Most existing approaches utilize machine
learning techniques to predict the user’s intent. However, it often
needs to enrich query features through search engines [31, 11] or
utilize log data (i.e., query log and search-click-through log) [4,
24] as unlabeled data for training a query classifier. For map-
ping queries to appropriate channels, these methods are not desir-
able. First, enriching a query through search engines is too time-
consuming for a real-time online application. Second, there are
not sufficient training samples for training a query classifier using
traditional statistic machine learning methods. Manual labeling is
unpractical in this application.

With very little human effort, BocSTC captures query topics
from the concept level, by leveraging the short text conceptualiza-
tion module mentioned in subsection 3.2. Query conceptualization
infers typical concepts from a set of instances detected from the
query text, so as to map the query to an appropriate channel in
the same concept space as the learnt concept models. During this
process, we also consider the entity disambiguation by using its
context entities in the query. Table 2 shows some examples of our
query conceptualization.

Table 2: Examples of Query Conceptualization
Query Detected Entity: typical Concepts

apple engineer apple: company, corporation, firm
engineer: professional, expert, occupation

the temptations temptation: artist, popular artist, entertainer
george clooney george clooney: celebrity, movie star, actor
dated lucy liu lucy liu: celebrity, star, asian actress

4.3 Query Recommendation for Channels
In this subsection, we describe the usage of our Classification

and Ranking module customized for channel-based query recom-
mendation.

After the former two steps, both of the channels and candidate
queries to be recommended are represented as “Bag-of-Concepts.”
Based on the same concept space, we first classify query candidates
with the similarity-based method mentioned in subsection 3.3.1.
We then recommend queries with the diversity ranking method pro-
posed in subsection 3.3.2. The queries classified to the channel
are first ranked by their similarity scores, and then the top N (i.e.,
N = 100) queries are reserved for diversity recommendation. This
is done to filter non-typical queries classified to the channel, so as
to improve the quality of the recommendation.

We use the proportionality-base algorithm PM-2 [12] to diver-
sify the recommendations, where the concept clusters are used as
the channel aspects. PM-2 considers a result list most diverse, with
respect to some set of topics related to the recommended target,
when the number of queries it provides on each topic is propor-
tional to the topic’s popularity. Given the list R of the top N queries
in channel CLl, the seat number Ns(we generally set Ns to 5, 10 or
20) and the topic list CCLl = {ccli, i = 1, 2, ...M} in the chan-
nel. It first selects a topic with the most quotient and then assigns a
relevant query to the selected topic ccl∗i . It iterates these two steps
until all the seats are sold out. In the second step, it considers other
topics as well (Eq. 8).

q∗ = argmax
qj∈R

{λqt[i∗]×P (qj |ccl∗i)+(1−λ)
∑
i̸=i∗

qt[i]×P (qj |ccli)}

(8)
Where qt[i] denotes the quotient of the topic i and P (qj |ccli) de-
notes the probability that the query qj belongs to cluster ccli. λ is
a parameter for tuning the weight between ccl∗i and other topics.

PM-2 focuses more on the diversity of the topic level, while the
surface word level is neglected, which also has a significant impact
on the user experience. For example, given the former recommen-
dation “elton john worries lady gaga,” recommending “elton john
lady gaga health” will damage the user experience. In this paper,
to avoid repeating recommendations, we introduce a word distance
factor when assigning a query to ccl∗i (Eq. 9)

q∗ = argmax
qj∈R

{ScorePM -2 × Distance(qj)} (9)

Where we abbreviate ScorePM -2 to the original PM-2 score in
Eq. 8 due to the space limitation. Distance(qj) denotes the mini-
mum word distance of qj to the selected queries that already have
a seat(Eq. 10).

Distance(qj) = argmin
qi∈S

′
{1−

|Wqi ∩Wqj |
|Wqi ∪Wqj |

} (10)

Where S
′

is the set of queries that already have a seat and Wqi

denotes the word set of qi.

5. EXPERIMENTS
In this section, we evaluate the performance of BocSTC on the

real application - Channel-based query recommendation. The ex-
periments are divided into two evaluation parts: Query Classifica-
tion and Result Diversity. We first introduce the datasets and then
present experimental results to assess the effectiveness of our pro-
posed BocSTC.

5.1 DataSet
Four commonly used channels are selected as our targeted chan-

nels: Money, Movie, Music and TV. Note that the last three ones
are somewhat similar to each other. We select them with the aim
of testing the classification performance of similar categories. We

now introduce the real-world training and test datasets used in our
experiment.

Training dataset: Given the hot news crawled from pages listed
in each channel, we randomly select 6,000 items for each channel,
as Tab. 3 shows. We then extract the title and body text from each
article. The titles are used as training data for BocSTC. The body
texts together with the titles are used for training other baseline
models. From this angle, we can see that much fewer texts are
needed in BocSTC.

Table 3: Training Set Constitution
Channel # Articles # Sample
Money 180,610 6,000
Movie 6,360 6,000
Music 7,623 6,000

TV 12,888 6,000

Test dataset: We use the real queries from a Bing query flow
over the course of 5 hours as the source of our test dataset. To alle-
viate the burden of manual annotation, we first filter these queries
with a pre-trained classifier, then annotate the pre-classified queries
manually. We obtain 841 labeled queries, from which, 200 are
selected randomly for verification and 600 for testing, as Tab. 4
shows. Note that a query may belong to multiple channels.

Table 4: Test Set Constitution
Channel # Queries # Verification # Test
Money 194 50 144
Movie 206 50 152
Music 234 50 152

TV 207 50 152
Total # 841 200 600

Unlike articles in the training dataset, queries are generally very
short. To gather more information about the short queries for base-
line methods, we expand queries by leveraging popular search en-
gines. According to Dou Shen, et al. [33], we use the snippets of
the top 40 returned pages to represent it. We remove stop-words
and perform stemming for all the data. Some statistical numbers
from the training and test data are listed in Tab. 5.

Table 5: Length of Experimental Data (# of unigrams)
Data Type Max Min Ave.

Query 9 2 2.93
Article Title 27 2 8.58

Article 225 68 109.2
Expanded Query 432 101 245.05

5.2 Query Classification Performance
In this subsection, we present the query classification perfor-

mance of our model on each channel.

5.2.1 Experimental Setup
In order to demonstrate the effectiveness of BocSTC, we com-

pare it with the following methods:

(1) A naive entity-based method (Entity_ESA). Many Wikipedia-
based work [15, 41] has been devoted to measuring semantic
relatedness. To handle the surface mismatch in the word level,
we leverage the state-of-the-art relatedness method - ESA [15]
to map the query to the its most similar channel. To better cap-
ture the meaning words, we parse the test queries and channel
titles in the training dataset to entities with the same method
in section 3.1.1. We compute the semantic similarity between

query Qi and channel CLl by Eq 11.

Sim(Qi, CLl) =
∑

ei∈Qi

∑
ej∈CLl

ESA(ei, ej)× idf(ej)

(11)
To simplify the computing, we select the top 500 entities (ranked
by idf) for each channel as their representative entities. The
channel that has the maximum similarity with Qi is regarded
the classification result. One can see that the Entity_ESA is
similar with our BocSTC. The main difference is that we use
“Bag-of-Concepts” rather “Bag-of-Entity” in BocSTC.

(2) Vector Space Model (VSM) [30]: VSM is an algebraic model
for representing text documents as vectors of terms, which is
commonly used in relevance rankings. Here we use it as a basic
method for mapping queries to channels. A straightforward
approach is to leverage query snippets by VSM. We denote the
expanded query as Qe, the target channel as CH and the article
in each channel as D respectively. For each article Dj , we can
compute its similarity with the query Qe

i based on their word
vectors. After that, the channel CH∗, to which the most similar
article D∗ belongs, is regarded as the classification result.

D∗ = argmax
Dj

{Similarity(Qe
i , Dj)} & D∗ ∈ CH∗ (12)

(3) Language Model (LM) [34]: It is used in a similar way as VSM
- selecting the rank 1 “result.” The probability of a query Qi

being “generated” by a document Dj is denoted by P (Dj |Qi),
which from Bayes’ formula is given by

P (Dj |Qi) ∝ P (Qi|Dj)p(Dj) (13)

where p(Qi|Dj) is the query likelihood given the document
Dj and P (Dj) is the prior belief that Dj is revelent to any
query. In most existing work, p(Dj) is assumed to be uniform,
so it does not affect the ranking. By using a unigram model,
Eq.13 can be reformulated as follows:

P (Dj |Qi) ∝ P (Qi|Dj) = Πn
k=1P (qk|Dj) (14)

where qk is the kth term of query Qi. By using LM, we first
select the article D∗ that is most possible to generate Qi, and
take D∗’s channel as the classification result CH∗. That is:

D∗ = argmax
Dj

{P (Qi|Dj)} & D∗ ∈ CH∗ (15)

In this paper, we build two language models: one is for the
article level and the other for channel level, marked as LMd

and LMch respectively. Considering the model level, in query
expression, we use the original query Q in LMd and the ex-
panded version Qe in LMch.

(4) Support Vector Machine (SVM) [8]: SVM is a kind of statisti-
cal classifier, used as a base classifier for query categorization
in the KDDCUP 2005 winning solution. In this paper, Lib-
SVM [6] is used to train a SVM classifier based on our training
dataset.

Among the baseline methods, in VSM, Cosine is used as the
similarity measurement and the normalized TF is used for the di-
mension value. In estimating p(Dj |Qi) for LM, we use the Dirich-
let smoothing method proposed by C. Zhai [42]. There is a Dirich-
let Prior µ to be set. After turning, we set µ to 500 for LMd and
2000 for LMch. In training the SVM classifier, we verify the clas-
sifier with the query verification dataset. Also, the normalized TF
is used as the value on each dimension.

5.2.2 Performance Evaluation
In this evaluation, the Precision, Recall, F -value are em-

ployed as the performance metrics to evaluate the quality of Query
Classification. The F -value is the harmonic mean of precision
and recall. F1 is commonly used when the precision and recall
are evenly weighted. While in the case of emphasizing precision,
F0.5 is used. We use both of them for better evaluation.

Experimental results of the baseline methods on the real query
test dataset are respectively plotted in Fig. 4. For the four metrics,
the vertical axis represents the average score of the four channels.
From this figure, we draw the following observations:

(1) BocSTC performs much better than other baselines in terms
of precision, nearly 10 percentage points (9.73%) higher than
the runner-up - LMch. Although its Recall is less than satisfac-
tory, it gets the highest F0.5 (80%+). This is acceptable in the
lightweight application - called Recommendation Queries for
Channels in Portal Websites, which pays much more attention
to the precision.

(2) Specifically, the methods LMch, SVM and V SM use the ex-
panded query expression, while LMd does not. We can see
that the performance of LMch is significantly better than LMd.
This suggests query expansion plays an important role. How-
ever, query expansion is infeasible for online applications that
require efficient timeliness. But our BocSTC’s result are com-
parable to LMch without query expansion. This demonstrates
the significance of our proposed lightweight classifier by ex-
ploiting explicit concepts.

(3) Entity_ESA also attracts our attention because it gets the worst
results. This is not surprising since it is a very simple distance
model even though ESA is used for computing the similarity.
However, it shows the power of “Bag-of-Concepts” from an-
other angle. In fact, the classification part in BocSTC is also a
simple distance model. But by using the BoC in replacement
of BoW, it performs the the best in this task.

BocSTC LM_ch SVM VSM_cosine LM_d Entity_ESA

Avg. Precision 0.90 0.81 0.79 0.67 0.61 0.61

Avg. Recall 0.58 0.61 0.67 0.59 0.54 0.59

Avg. F1-Score 0.66 0.66 0.69 0.59 0.53 0.60

Avg. F0.5-Score 0.81 0.73 0.74 0.63 0.56 0.60

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
v

a
lu

a
ti

o
n

 S
c
o

r
e

Figure 4: Performance on query classification

Figure. 5 shows the detailed precision performance of these
methods on each channel. We can see that our BocSTC has a signif-
icant advantage in three channels except for the “Movie” channel.
The best performance in this channel goes to LMch, higher than
our model by nearly 20%. This forces us to investigate the result of
“Movie Channel” in detail.

We look up the test data and compare it with our predicted ones,
listed in Tab. 6. We can see that nearly half of the queries in
the Movie channel are not assigned to any channel label (73/152),
which greatly reduces the recall. We believe this is because the
entity coverage in Probase is still limited. Since many queries in
this channel contain movie titles, such as “Journey 2 The Myste-
rious Island.” New film names come out continually. It is barely
covered by the knowledgebase in time. However, this can be easily
resolved by named entity extraction techniques.

BocSTC LM_ch SVM VSM_cosine LM_d Entity_ESA

Movie 0.71 0.91 0.84 0.81 0.72 0.56

Money 0.97 0.95 0.54 0.57 0.52 0.74

Music 0.97 0.90 0.88 0.73 0.68 0.58

TV 0.96 0.46 0.92 0.56 0.51 0.55

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is
io
n

Figure 5: Precision performance on each channel

As can be seen from Tab. 6(b), queries in the Music channel
make a lot trouble for accurately predicting Movie queries. This is
because the two channels are similar to each other. In fact, most of
the stars have a variety of careers (e.g., actor, singer, host or pro-
ducer), such as “Beyonce” of America and “Zhao Wei” of China.
However, we can make up for this kind of mistake by leveraging
the ranking score given by BocSTC.

Table 6: Performance Analysis on “Movie Channel”
(a) Real Queries

Predicted to # Query
Movie 64

TV 9
Music 5
Money 1

No Label 73
In total 152

(b) Predicted Queries
Belong to # Query

Movie 64
TV 13

Music 55
Money 0
In total 132

5.3 Recommendation Evaluation
In this subsection, we evaluate the performance of BocSTC in

terms of recommendation interestingness.

5.3.1 Experimental Setup
For each channel, the input of our query ranking module is the

queries with scores assigned by classification module in BocSTC.
In order to demonstrate the effectiveness of the proposed ranking
method (section 4.3), we compare it with following methods:

• LMch: We rank the queries for each channel with their LM
score, to see the diversity performance of the LMch model.

• SVM: In this method, each query has a probability of its chan-
nel. We leverage this value to rank the queries with same
purpose with LMch.

• BocSTC-Original: We use the original query list ranked by
similarity as a baseline to see the performance of our diver-
sity recommendation.

• BocSTC-PM2 [12]: This is the key method in our diversity
module. Given the original query list, the PM-2 is used to
diversify the queries by subtopic proportionality.

In this evaluation, we set the seat number Ns to 20, namely rec-
ommending 20 queries for each channel. For each of the baselines,
we select the top 20 queries as a result list to be labeled. Then, we
manually annotate these lists with the following guidelines:

• Unrelated: the query is irrelevant to the Channel.

• Related but Uninteresting: the query is relevant to the chan-
nel, but it’s uninteresting or repeated in the content men-
tioned in previous recommendations.

• Related and Interesting: the query is relevant to the channel
and it would raise interest in the topics covered by the query.

5.3.2 Performance Evaluation
We use nDCG as the evaluation metric. Since we do not know

the ideal DCG in our datasets, we set it to the highest score, which
is computed with the Eq. 16:

iDCG@k = relideal +

k∑
i=2

relideal
log2 i

(16)

where relideal is the ideal label, which is 2 in this evaluation. Fig. 6
shows the experimental results, where our refined version of PM-2
is marked as BocSTC-PM2+, which combines term diversity with
subtopic diversity.

LM_ch LibSVM
BocSTC-

Original

BocSTC-

PM2

BocSTC-

PM2+

Channel Money 0.552 0.457 0.389 0.473 0.483

Channel TV 0.191 0.557 0.565 0.682 0.707

Channel Music 0.534 0.580 0.651 0.700 0.729

Channel Movie 0.524 0.493 0.795 0.941 0.970

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n
D
C
G

Figure 6: Diversity performance on each channel
From this figure, we draw the following observations:

(1) By using PM-2, the diversity performance of query recommen-
dation is greatly improved in all the four channels (Movie↑
14.6%, Music↑ 4.9%, TV↑ 11.7% and Money↑ 8.4%). The
BocSTC-PM2+ wins, with the average nDCG further ↑ 2.3%.
This demonstrates the significance of our refined diversity method.

(2) Our diversity method is a significant improvement over LMch

and SVM, with the average nDCG up more than 10%. But
in Money channel, the LMch performs better. However, the
highest score is only 55.2%. After checking the queries in
this channel, we found that the top ranked queries did not in-
terest our annotators, partially because most candidate queries
share the same topic-“Bank,” which makes the recommenda-
tion monotonous. Another reason is again the Probase entity
coverage. For example, “property brothers” is not contained in
Probase, and it is parsed into “property” and “brothers” instead.
This makes it most likely to be related to “Money.”

5.3.3 Anecdotal Evidence
We present example queries recommended by BocSTC, LMch

and SVM in Tab. 7.
From the examples of SVM, we can see that directly ranking by

classification scores can hardly perform well in diversity recom-
mendation. For instance, in the Movie channel, “jonny depp” is
ranked higher than “depp movie awards” (it is not ranked in the top
5), but the latter seems to be more interesting because it provides
extra information. This cannot be handled by traditional text clas-
sifiers. As for LMch, although its top ranked queries are related
to the channels, their topics are relatively monotonous. For exam-
ple, in the Music channel, “music youtube,” “chris brown music,”
and “beyonce music” appear in the top 5 at the same time. This is
detrimental to the user experience.

The queries recommended by BocSTC are more interesting, es-
pecially in the Movie channel and the Music channel, because they
cover most subtopics of their channels. In other words, queries re-
flecting more topics are more likely to be interesting. It also takes

Table 7: Top 5 recommendations for each channel
Channel BocSTC LMch SVM

Movie

tom hanks rita wilson bosom buddies 2012 mtv movie awards red carpet dark night rises
lindsay lohan as elizabeth taylor depp movie awards jonny depp

christian bale gets choked up film composer morricone prometheus review
emma watson 2012 prometheus review titanic movie

george clooney dated lucy liu watch men in black 3 avengers trailer

Music

elton john worries lady gaga donna summer funeral carly simon
the temptations music youtube donna summer funeral

madonna nazi image chris brown music elton john worries lady gaga
sara lownds dylan and bob dylan mtv music videos paul simon

faith hill tim mcgraw married for 15 years beyonce music elton john lady gaga health

TV

today show recipes yolanda adams morning show secret life of the american teenager
teen mom sentenced yard crashers american horror story season 2

news channel 8 world trade center canceled shows 2012
mtv music videos workaholics season 3 make it or break it
master chef 2012 words with friends cheats master chef 2012

Money

comercia web banking national grid online bill pay ally financial gmac
neighbors credit union stock market plunge astoria federal savings

tn unemployment union first market bank central bank
morgan stanley clientserv small business marketing chargeback it

chase credit cards bad company commerce bank online

word distance into consideration, so as to avoid repeating queries
in different subtopics but with similar words.

6. RELATED WORK
Techniques proposed in this paper are mainly related to short text

classification and query recommendation.

6.1 Short Text Classification
Short text classification delivers short texts (e.g., queries, tweets

and comments) to some pre-defined categories based on content
analysis. Most existing approaches are mainly based on feature ex-
panding. Generally, there exists two expanding directions. One is
to obtain extra context information through search engines [31, 11,
37]. The expanded short texts are regarded as long texts and can be
classified with long text classification approaches [32]. But this ex-
pansion is not an ideal solution for some online applications, since
it is very time consuming and heavily dependent on search engine
quality. The other one is to expand features by leveraging large ex-
ternal knowledgebases such as Wikipedia and WordNet [33, 25, 17,
27]. These methods discover a set of explicit or implicit topics and
then connect the short text through these topics. Using pre-defined
topics or taxonomy relaxes the dependence on search engines. But
its adaptability can be an issue since the pre-defined topics may not
be available for certain applications [7], and the topic granularity is
hard to be defined.

6.2 Query Recommendation
Query recommendation (QR) is a common tool used by search

engines to assist users in searching or browsing information. When
generating query recommendations for a user, a natural approach is
to leverage the user search session (the user’s most recently submit-
ted queries) [43], the clicked documents [9] or other log data [3].
Techniques for QR based on these context information have been
studied extensively [38, 13, 2].

However, not all the scenarios of QR have such a sufficient con-
text information, such as the application we mentioned in this paper
- Recommending Queries to Channels. When there is a lack of user
preference or any other query logs for a given target, existing ap-
proaches are powerless in recommending high related queries to the

targeted object. Bordino et al. [5] try to suggest interesting queries
to users when they’re reading an article. Similarly, they don’t have
any user preference. But the long text of the viewed article can
be leveraged to recognize the core entities the user is interested in.
But for a channel, the preference can not be obtained from one ar-
ticle. In this case, we propose learning the topical preference of
the targeted channel from its content, and map a given query to an
appropriate channel from the topic level. From this perspective,
our work seems to be similar to the issue of Query Classification
(QC) [33]. However, QC only assigns a query a category. It does
not refer to rank these queries after the classification.

7. CONCLUSION
In this paper, we propose a novel framework for short text clas-

sification and ranking applications. Compared with existing ap-
proaches for short text classification, our framework has two advan-
tages: i) It measures the semantic similarities between short texts
from the angle of concepts, so as to avoid surface mismatch. ii)
Fewer training data are needed to learn the concept model per class,
since few terms together are able to reflect one concept. These ad-
vantages make it suitable for online lightweight applications that
need to deal with short texts with requirements of fast learning and
word changing adaption. We demonstrate the usage of our pro-
posed framework through a real online application: Channel-based
Query Recommendation. The experimental results show that our
method can significantly improve classification precision by 9.73%
and also perform well on diversity recommendation.

There is also much future work. For example, we can further im-
prove it by exploiting the similarities between concepts. Besides,
the classifier/ranking in current framework is actually a simple dis-
tance model. It will be very interesting to incorporate powerful ma-
chine learning techniques on top of the “Bag-of-Concepts” vectors
to improve the discrimination effectiveness.

8. ACKNOWLEDGMENTS
This work was supported by NSFC (Grand Nos. 61170189,

61370126, 61202239), the Research Fund for the Doctoral Pro-
gram of Higher Education (Grand No. 20111102130003), the Fund

of the State Key Laboratory of Software Development Environment
(Grand No. SKLSDE-2013ZX-19), and Microsoft Research Asia
Fund (Grand No. FY14-RES-OPP-105). This work was partially
supported by the National Key Basic Research Program (973 Pro-
gram) of China under grant No. 2014CB340403 and the National
Natural Science Foundation of China under grant No. M13210007.

9. REFERENCES
[1] C. C. Aggarwal and C. Zhai. Mining text data. Springer,

2012.
[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, and

A. Gionis. An optimization framework for query
recommendation. In WSDM, pages 161–170. ACM, 2010.

[3] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines. In
EDBT, pages 588–596. Springer, 2005.

[4] S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis,
A. Chowdhury, and A. Kolcz. Improving automatic query
classification via semi-supervised learning. In ICDM, 2005.

[5] I. Bordino, G. De Francisci Morales, I. Weber, and
F. Bonchi. From machu_picchu to rafting the urubamba
river: anticipating information needs via the entity-query
graph. In WSDM, pages 275–284. ACM, 2013.

[6] C.-C. Chang and C.-J. Lin. Libsvm: a library for support
vector machines. TIST, 2(3):27, 2011.

[7] M. Chen, X. Jin, and D. Shen. Short text classification
improved by learning multi-granularity topics. In IJCAI,
pages 1776–1781. AAAI Press, 2011.

[8] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[9] N. Craswell and M. Szummer. Random walks on the click
graph. In SIGIR, pages 239–246. ACM, 2007.

[10] W. B. Croft, M. Bendersky, H. Li, and G. Xu. Query
representation and understanding workshop. In SIGIR
Forum, volume 44, pages 48–53, 2010.

[11] H. K. Dai, L. Zhao, Z. Nie, J.-R. Wen, L. Wang, and Y. Li.
Detecting online commercial intention (oci). In WWW, 2006.

[12] V. Dang and W. B. Croft. Diversity by proportionality: an
election-based approach to search result diversification. In
SIGIR, pages 65–74. ACM, 2012.

[13] H. Feild and J. Allan. Task-aware query recommendation. In
SIGIR, pages 83–92. ACM, 2013.

[14] E. Gabrilovich and S. Markovitch. Overcoming the
brittleness bottleneck using wikipedia: Enhancing text
categorization with encyclopedic knowledge. In AAAI, 2006.

[15] E. Gabrilovich and S. Markovitch. Computing semantic
relatedness using wikipedia-based explicit semantic analysis.
In IJCAI, volume 7, pages 1606–1611, 2007.

[16] J. He, V. Hollink, and A. de Vries. Combining implicit and
explicit topic representations for result diversification. In
SIGIR, pages 851–860. ACM, 2012.

[17] X. Hu, N. Sun, C. Zhang, and T.-S. Chua. Exploiting internal
and external semantics for the clustering of short texts using
world knowledge. In CIKM, pages 919–928. ACM, 2009.

[18] L. Huang. Concept-based text clustering. PhD thesis, The
University of Waikato, 2011.

[19] A. Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. NIPS,
14:841, 2002.

[20] Y.-H. Kim, S.-Y. Hahn, and B.-T. Zhang. Text filtering by
boosting naive bayes classifiers. In SIGIR, 2000.

[21] T. Lee, Z. Wang, H. Wang, and S.-w. Hwang. Attribute
extraction and scoring: A probabilistic approach. In ICDE,
pages 194–205. IEEE, 2013.

[22] P. Li, H. Wang, K. Q. Zhu, Z. Wang, and X. Wu. Computing
term similarity by large probabilistic isa knowledge. In
CIKM, pages 1401–1410. ACM, 2013.

[23] R. Li, B. Kao, B. Bi, R. Cheng, and E. Lo. Dqr: a
probabilistic approach to diversified query recommendation.
In CIKM, pages 16–25. ACM, 2012.

[24] X. Li, Y.-Y. Wang, and A. Acero. Learning query intent from
regularized click graphs. In SIGIR, 2008.

[25] Y. Li, D. McLean, Z. A. Bandar, J. D. O’shea, and
K. Crockett. Sentence similarity based on semantic nets and
corpus statistics. TKDE, 18(8):1138–1150, 2006.

[26] H. T. Ng, W. B. Goh, and K. L. Low. Feature selection,
perceptron learning, and a usability case study for text
categorization. In SIGIR. ACM, 1997.

[27] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning to
classify short and sparse text & web with hidden topics from
large-scale data collections. In WWW, 2008.

[28] J. R. Quinlan. Induction of decision trees. Machine learning,
pages 81–106, 1986.

[29] M. Sahlgren and R. Cöster. Using bag-of-concepts to
improve the performance of support vector machines in text
categorization. In COLING, page 487. ACL, 2004.

[30] G. Salton, A. Wong, and C.-S. Yang. A vector space model
for automatic indexing. Communications of the ACM, 1975.

[31] D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin, and
Q. Yang. Q2c@ust: our winning solution to query
classification in kddcup 2005. SIGKDD, 7(2):100–110, 2005.

[32] D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin, and
Q. Yang. Query enrichment for web-query classification.
TOIS, 24(3):320–352, 2006.

[33] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building bridges
for web query classification. In SIGIR, 2006.

[34] F. Song and W. B. Croft. A general language model for
information retrieval. In CIKM, pages 316–321. ACM, 1999.

[35] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short text
conceptualization using a probabilistic knowledgebase. In
IJCAI, pages 2330–2336. AAAI Press, 2011.

[36] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, pages 697–706. ACM, 2007.

[37] A. Sun. Short text classification using very few words. In
SIGIR, pages 1145–1146. ACM, 2012.

[38] I. Szpektor, A. Gionis, and Y. Maarek. Improving
recommendation for long-tail queries via templates. In
WWW, pages 47–56. ACM, 2011.

[39] Z. Wang, H. Wang, and Z. Hu. Head, modifier, and constraint
detection in short texts. In ICDE, pages 280–291, 2014.

[40] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD,
pages 481–492. ACM, 2012.

[41] E. Yeh, D. Ramage, C. D. Manning, E. Agirre, and A. Soroa.
Wikiwalk: random walks on wikipedia for semantic
relatedness. In ACL Workshop, pages 41–49. ACL, 2009.

[42] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
SIGIR, pages 334–342. ACM, 2001.

[43] Z. Zhang and O. Nasraoui. Mining search engine query logs
for query recommendation. In WWW, pages 1039–1040,
2006.

