
An Improved Construction of Deterministic

Omega-automaton using Derivatives

Roman R. Redziejowski

Giraf’s Research
roman.redz@swipnet.se

Abstract. In an earlier paper, the author used derivatives to construct a deterministic
automaton recognizing the language defined by an ω-regular expression. The construction
was related to a determinization method invented by Safra. This paper describes a new
construction, inspired by Piterman’s improvement to Safra’s method. It produces an au-
tomaton with fewer states. In addition, the presentation and proofs are simplified by going
via a nondeterministic automaton having derivatives as states.

1 Introduction

In 1964, Brzozowski [1] presented an elegant construction leading from a regular expression directly
to a deterministic automaton recognizing the language denoted by that expression. The construc-
tion, based on the notion of a derivative, has been recently re-examined and improved by Owens,
Reppy and Turon [2].

The notion of a derivative is easily extended to ω-languages. But, Brzozowski’s construction does
not work for ω-regular expressions: the automaton constructed from derivatives has, as a rule, too
few states.

In an earlier paper [5], the author used derivatives to construct a deterministic automaton recogniz-
ing the language defined by an ω-regular expression. While each state of Brzozowski’s automaton
corresponds to one derivative, the states in [5] are certain combinations of derivatives. They are
analogous to trees appearing in the determinization algorithm invented by Safra [6, 7]. Recently,
Piterman [3] improved the Safra’s method in a way that reduces the maximum possible number
of states from Safra’s (12)nn2n to 2nnn! . This paper exploits the Piterman’s idea to improve the
construction from [5].

It should be noted that, as in [5], we use here a new kind of acceptance condition for ω-automata.
All standard acceptance conditions (Büchi, Rabin, Muller, Streett) are defined in terms of visits
to states. Instead, we use here transitions that are (or are not) taken infinitely often. This makes
the construction simpler, and further reduces the number of states.

2 Omega-regular languages and their derivatives

We assume a finite alphabet Σ of letters. A sequence of letters from Σ is called a word (over Σ).
A word can be finite or infinite, meaning a finite or infinite sequence of letters. The sequence of
0 letters is called the empty word and is denoted by ε. The set of all words is denoted by Σ∞,
the set of all finite words by Σ∗, the set of all finite words other than ε by Σ+, and the set of all
infinite words by Σω. Any subset of Σ∞ is called a language.

CONCURRENCY, SPECIFICATION AND PROGRAMMING
M. Szczuka et al. (eds.): Proceedings of the international workshop CS&P 2011
September 28-30, Pułtusk, Poland, pp. 430-441

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357254124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Construction of Deterministic Omega-automaton using Derivatives 431

The derivative of a language X ⊆ Σ∞ with respect to a word w ∈ Σ∗, denoted by ∂wX , is the set
of words obtained by stripping the initial w from words in X starting with w:

∂wX = {z ∈ Σ∞ |wz ∈ X} .
(We follow here [2] in using the symbol ∂ for derivative.) Any finite initial portion of a word x ∈ Σ∞

is called a prefix of x. The set of all prefixes of words in a language X ⊆ Σ∞ is denoted by pref(X).
One can easily see that ∂wX �= ∅ if and only if w ∈ pref(X).

We use these operations on languages, and assume the reader to be familiar with their properties:

union X ∪ Y for X ⊆ Σ∞, Y ⊆ Σ∞ ,

product XY = {xy |x ∈ X, y ∈ Y } for X ⊆ Σ∗, Y ⊆ Σ∞ ,

star X∗ = ε ∪X ∪X2 ∪X3 ∪ . . . for X ⊆ Σ∗ ,

omega Xω = {x1x2x3 . . . |xi ∈ X for i ≥ 1} for X ⊆ Σ+ .

A regular language (over alphabet Σ) is any language constructed from elementary languages ∅,
{ε}, and {a} for a ∈ Σ by finitely many applications of star, product and union. We assume that
regular language is always given by an expression specifying this construction. Such expression
is referred to as a regular expression. Unless indicated otherwise by means of parentheses, the
operators in a regular expression are applied in this order: star, product, union. We customarily
omit braces around ε and a when it does not lead to an ambiguity.

An ω-regular language is any language of the form

n⋃

i=1

Xi Y
ω
i = X1 Y

ω
1 ∪X2 Y

ω
2 ∪ . . . ∪Xn Y

ω
n , (*)

where n ≥ 1, Xi is a regular language, and Yi is a nonempty regular language not containing ε, for
1 ≤ i ≤ n. Again, we assume that an ω-regular language is always given by an expression of the
form (*) or one that can be reduced to that form by means of known properties of the operations.
Such an expression is an ω-regular expression.

We shall need two helper functions: ν(X) = X ∩ {ε} and φ(X) = (∅ if X = ∅ or {ε} otherwise).
The first is used in the computation of derivatives, and the second to test emptiness of derivatives.
They can be computed for any ω-regular language by a recursive application of these rules:

ν(∅) = ν({a}) = ∅ ,

ν(ε) = ε ,

φ(ε) = φ(a) = ε ,

φ(∅) = ∅ ,

ν(X ∪ Y) = ν(X) ∪ ν(Y) ,

ν(XY) = ν(X)ν(Y) ,

φ(X ∪ Y) = φ(X) ∪ φ(Y) ,

φ(XY) = φ(X)φ(Y) ,

ν(X∗) = ε ,

ν(Xω) = ∅ .

φ(X∗) = ε ,

φ(Xω) = φ(X) .

Derivatives of an (ω-)regular language are obtained by a recursive application of these rules, where
a, b ∈ Σ, a �= b, w ∈ Σ∗:

∂εX = X ,

∂a∅ = ∂a{ε} = ∅ ,

∂a{a} = ε ,

∂a{b} = ∅ ,

∂a(X ∪ Y) = ∂aX ∪ ∂aY ,

∂a(XY) = (∂aX)Y ∪ ν(X)(∂aY) ,

∂aX
∗ = (∂aX)X∗ ,

∂aX
ω = (∂aX)Xω ,

∂waX = ∂a(∂wX) .

All these rules except one for Xω were obtained by Brzozowski in [1]; that for Xω is obtained in a
similar way. One can easily see that the derivative is always an (ω-)regular language. It has been

432 R. R. Redziejowski

shown in [1] that each regular language has only a finite number n of distinct derivatives, and all
of them are found among derivatives with respect to words not longer than n− 1.

This result is easily extended to ω-regular languages. Thus, all distinct derivatives of an ω-regular
language can be obtained by repeatedly applying the rule ∂(wa)X = ∂a(∂wX) to longer and longer
words w until no more distinct derivatives are found. However, the procedure yields ω-regular
expressions, and it is often not trivial to decide whether two expressions denote the same language.
As shown by Brzozowski, the procedure for a regular language will still end if we can recognize
equality using only the basic properties of union (idempotent, commutative, associative). This
result was extended to ω-regular languages in [4]. It means that we can always effectively obtain
expressions for all derivatives, although some of them may denote the same language. We can often
eliminate such duplicates using other known properties of the operations.

3 Automata

We define a finite-state automaton informally, as a machine that can assume a finite number of
distinct states. One state is identified as the initial state. The machine is started in the initial state
and reads an infinite word w ∈ Σω, letter by letter. Each letter causes a transition to another, or
possibly the same, state. This is usually represented by a graph where nodes represent the states
and directed edges represent the transitions, as shown in Fig. 1. Each transition is labeled by the
letter that causes it. The initial state is pointed to by an arrow. (The label a,b in the Figure is a
shorthand for two transitions labeled, respectively, a and b.)

S0 S1 S0 S1

(a) (b)

b /G a /G

a /R

b /R

a,b a/•

a

Fig. 1

The automaton is deterministic if all transitions from the same state have different labels, as is
the case in Fig. 1(a). Otherwise the automaton is nondeterministic, as is the case in Fig. 1(b).

The action of the automaton when it reads a word w is represented by a path with labels along
the path spelling out the word w. We refer to it as the run of the automaton on w. A deterministic
automaton has at most one run for a given word; a nondeterministic has usually many such runs.

We say that an automaton accepts a given word w ∈ Σω if it has an accepting run on w.

In this paper, we define an accepting run in terms of transitions used by that run. To identify
transitions, we place additional labels on them; in Fig. 1 they are shown following a slash. We can
imagine that whenever the automaton executes a transition, it emits the label identifying that
transition.

For example, the automaton (a) in Fig. 1 emits G (”green light”) when going from S1 back to S1

in response to input letter a, and R (”red light”) when going from S1 to S0 in response to letter b.
We may define in this case an accepting run to be one that emits G infinitely may times, and R
only finitely many times.

The automaton (b) in Fig. 1 emits • when going from S1 to S1 in response to a. In this case, we
may define an accepting run to be one that emits • infinitely many times.

Construction of Deterministic Omega-automaton using Derivatives 433

We say that an automaton recognizes a language X ⊆ Σω if it accepts exactly the words belonging
to X . One can easily see that the automaton (a) in Fig. 1 recognizes (a ∪ b)∗(aω ∪ bω) and the
automaton (b) recognizes (a ∪ b)∗aω .

4 Derivative automaton

Let X =
⋃n

i=1 PiQ
ω
i be any ω-regular language over Σ.

Let � be an arbitrary symbol not in Σ. Define X ′ =
⋃n

i=1 Pi(�Qi)
ω . This is an ω-regular language

over the alphabet Σ ∪ {�}.
Let D be a set of expressions for nonempty derivatives of X ′ including all derivatives with respect
to words over Σ ∪{�} that do not end with �. From the way the derivatives are computed, we have
all relations of the form D2 = ∂aD1 and D2 = ∂(� a)D1 for D1, D2 ∈ D and a ∈ Σ. Let D(X) be
an automaton defined as follows:

(D1) The states correspond to the elements of D. For D ∈ D, we use D interchangeably to mean
the expression D, the derivative represented by it, and the corresponding state of D(X).

(D2) For each pair D1, D2 ∈ D such that ∂aD1 = D2 for a ∈ Σ, there is a transition D1
a−→ D2.

(D3) For each pairD1, D2 ∈ D such that ∂(� a)D1 = D2 for a ∈ Σ, there is a transitionD1
a/•−→ D2.

(D4) The initial state is D0 = ∂εX
′ = X ′.

(D5) An accepting run is one that emits • infinitely many times.

The automaton D(X) is in the following referred to as the derivative automaton for X .

As an example, consider X = (a ∪ b)∗(aω ∪ (ab)ω). We have X ′ = (a ∪ b)∗((�a)ω ∪ (�ab)ω).
The nonempty derivatives with respect to words not ending with �, and the relations between
them are:

D0 = ∂εX
′ = X ′;

D1 = ∂� aX
′ = (�a)ω ∪ b (�ab)ω ;

D2 = ∂� abX
′ = (�ab)ω ;

D3 = ∂� a� aX
′ = (�a)ω ;

D4 = ∂� ab� aX
′ = b (�ab)ω .

D0 = ∂aD0 = ∂bD0;

D1 = ∂� aD0;

D2 = ∂bD1 = ∂bD4;

D3 = ∂� aD1;

D4 = ∂� aD2.

The derivative automaton for X is shown in Fig. 2.

D0 D1 D2 D4

D3

a/• b a/•
b

a/•
a,b

a/•

Fig. 2

434 R. R. Redziejowski

For a path in D(X), define its label to be the sequence of input letters along the path. Define its
extended label to be the same sequence, with � inserted before each letter that emits • .

Lemma 1. Let v be a word over Σ ∪ {�} not ending with �.
(a) If there exists a path with extended label v from state D1 to state D2 of D(X) then D2 = ∂vD1.
(b) If ∂vD1 �=∅, there exists a path with extended label v from state D1 of D(X) to state D2 = ∂vD1.

Proof. By induction on the length of v using (2) and (3) in the definition of D.
�

Proposition 1. The derivative automaton D(X) accepts word w ∈ Σω if and only if w ∈ X.

Proof. (1) Suppose w ∈ X , that is, w ∈ PkQ
ω
k for some k. We have thus w = pq1q2q3 . . . where

p ∈ Pk and qi ∈ Qk for i ≥ 1. Let v = p � q1 � q2 � q3 Let m ≥ 1; denote vm = p � q1 . . . � qm.
The derivative ∂vm(Pk(�Qk)

ω) is nonempty; because Pk(�Qk)
ω ⊆ X ′, so is the derivative ∂vmX ′ =

∂vmD0. By Lemma 1b, exists a path from D0 to Dm = ∂vmD0 with extended label vm. Let
vm+1 = vm � qm+1. The derivative ∂qm+1Dm = ∂vm+1X

′ is nonempty for the same reason as ∂vmX ′.
So, by Lemma 1b exists a path from Dm to Dm+1 = ∂vm+1Dm with extended label qm+1. It is a
continuation of the path to Dm and its label. By repeating this step, we obtain an infinite path
from D0 with extended label v, and non-extended label w. Each letter in that path that follows �
emits • . It is thus an accepting run for w.

(2) Suppose there is an accepting run for w – a path from D0 with label w. Let v be the extended
label of this path. It contains infinitely many occurrences of �, so v = u1 � u2 � u3 For some
m ≥ 1, let vm = u1 � u2 � . . . � um � a, where a is the first letter of um+1. Word vm is the extended
label of a path that leads from D0 to some state Dm. By Lemma 1a, Dm = ∂vmD0 = ∂vmX ′. As
Dm is included among states of D, this derivative is nonempty, so vm ∈ pref(X ′). It means that
there exists at least one k, 1 ≥ k ≥ n, such that vm ∈ pref(Pk(�Qk)

ω). Let Km be the set of all such
k. As this set is nonempty for all m ≥ 1, one value k must appear in all Km for m ≥ 1. Let now k
be such value, so for every m ≥ 1, vm = u1 � u2 � . . . � um � a is a prefix of some word in Pk(�Qk)

ω.
This is only possible if u1 ∈ Pk and ui ∈ Qk for i > 1. Hence, w = u1u2u3 . . . ∈ PkQ

ω
k ⊆ X .
�

5 The run DAG

The possible runs of D(X) on a given word can be represented by a directed acyclic graph (DAG)
like this in Fig. 3. Its edges represent transitions, with • marking the transitions that emit • .
The graph in Fig. 3 shows all possible runs of the automaton from Fig. 2 on the infinite word
w = aaabab For example, if D(X) reads letter a in state D0 it may either go back to D0

without emitting •, or go to D1 and emit • .
Denote by G(X,w) the run DAG of D(X) for a word w ∈ Σω. One can easily see that the
automaton accepts w if an only if G(X,w) contains a path marked with infinitely many • . In the
following, we call it a live path.

We need a way to decide if G(X,w) contains a live path. To do this, you cannot just go down
from the root and choose an edge marked with • whenever available. It may lead to a dead end
such as D3 on level 4, while a more careful choice would allow you to continue indefinitely. The
problem of detecting a live path in a graph is discussed in some detail in Section 5 of [5]. We adopt
the method used there that consists of enclosing the nodes on each level of G(X,w) in pairs of
numbered brackets. As it is inconvenient to insert those pairs in the actual graph, we do it on a
copy of each level, as shown on the right in Fig. 3. The procedure consists thus of annotating the
levels of DAG as shown in the Figure.

Construction of Deterministic Omega-automaton using Derivatives 435

D0

D0

D0

D0

D0

D0

D0

D1

D1

D1

D2

D1

D2

D3

D3

D4

•

•

•

•

•

•

•

•

a

a

a

b

a

b

level 1

2

3

4

5

6

7

{
1
D0 }

1

{
1
D0 {

2
D1 }

2
}
1

{
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1

{
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1

{
1
D0 {

2
D2 }

2
}
1

{
1
D0 {

3
D1 }

3
{
2
D4 }

2
}
1

{
1
D0 {

2
D2 }

2
}
1

⇒ G2

⇒ G2

⇒ R2

⇒ G2

⇒ R3

Fig. 3

The general idea is that a pair of brackets encloses descendants of some common ancestor. Addi-
tional nested brackets enclose the nodes that have been reached via a path marked with one or
more • . When all inner nodes have brackets around them, we remove these brackets and signal a
”green event” for the outer pair. Such green events are indicated by ⇒ G2 in the Figure.

If the same pair of brackets has a green event infinitely often, we have a live path. The problem
is to identify ”the same pair”. We use for this purpose the numbers on the brackets. As the
numbers should not grow indefinitely, they have to be reused after the enclosed node does not have
descendants, such as D3 on level 4. This is a ”red event” for the pair, indicating that its number
will be used in the future for entirely different pair. Such a red event is indicated here by ⇒ R2.

The idea of green events has been borrowed from the determinization algorithm invented by Safra
[6,7]. The algorithm keeps track of possible paths in an automaton with the help of tree structures
where nodes are sets of states. These trees are analogous to our level annotations.

Safra’s algorithm has been recently improved by Piterman [3]. The improvement concerns the
situation where several paths reach the same state. Each path has its own history; we have to
choose one of them in such a way that we do not miss a possible live path. In order to make this
choice, Safra keeps nodes in his trees ordered according to ”age”; in [5], the nodes are kept in a
left-to-right order. Piterman eliminates the order by numbering the nodes. We follow the idea by
exploiting numbers on the brackets. This requires some renumbering as we proceed down the DAG,
but, by ignoring the order, it significantly reduces the number of distinct annotations.

436 R. R. Redziejowski

6 Annotating the run DAG

To describe the exact procedure for annotating the run DAG and prove facts about it, we shall
need some additional terminology.

For a node Di in a bracket structure, we define its nesting pattern as the sequence of numbers on
the brackets containing it, from outside in. As an example, in the structure

{
1
D0 {

4
D1 }

4
{
3
{
5
D2 }

5
}
3
{
2
{
6
D3 }

6
}
2
}
1

the nesting pattern of D1 is (1 - 4), that of D2 is (1 - 3 - 5), and that of D3 is (1 - 2 - 6).

We compare nesting patterns according to the first different position. Thus, (1 - 2 - 6) is lower than
(1 - 3 - 5). An empty position is considered higher than any number, so (1 - 2 - 6) is lower than (1 - 2).

We say that a node, or a pair of brackets, resides in a pair B of brackets to mean that B is the
nearest enclosing pair. Thus, in the above example, both D0 and the pair numbered 3 reside in the
pair numbered 1.

6.1 The Algorithm A

Annotate level 1 with {
1
D0 }

1
.

For l > 1, copy the part of the annotation between, and including, the brackets numbered 1 from
level l − 1 to level l and transform it as follows:

(A1) Replace each Di by:

∂aDi { ∂(� a)Di } if ∂aDi �= ∅ and ∂(� a)Di �= ∅,

{ ∂(� a)Di } if ∂aDi = ∅ and ∂(� a)Di �= ∅,

∂aDi if ∂aDi �= ∅ and ∂(� a)Di = ∅,

empty string if ∂aDi = ∅ and ∂(� a)Di = ∅,

where a is the input letter. Each time assign the lowest unused number to the brackets.

(A2) If a node appears more than once, remove all its occurrences except the one with lowest
nesting pattern. If more than one have identical lowest pattern, choose one of them.

(A3) Remove all pairs of brackets that do not contain any nodes.
Set r to the lowest number on the removed pair, or to n+ 1 if there were none, where n is
the number of states of D(X).

(A4) Call a pair of brackets ”green” if all states inside it are enclosed in additional nested brackets.
Remove all brackets (but not nodes) inside each green pair.
Set g to the lowest number on the green pair, or to n+ 1 if there were none.

(A5) For pair numbered m, define rem(m) to be the number of pairs removed in step (A3) that
had number lower than m. Change the number of each pair from m to m− rem(m).

(A6) If g < r, append ⇒ G g on the right. If r ≤ g and r �= n+ 1, append ⇒ R r.

Construction of Deterministic Omega-automaton using Derivatives 437

6.2 Example

We illustrate the steps (A1)–(A6) by applying them to the annotation appearing on levels 3 and 4
of Fig. 3. Note that after (A1) for input a, we have two occurrences of D3, with nesting patterns
(1 - 3 - 5) and (1 - 2 - 6), respectively. The latter is retained as having the lower nesting pattern.

step level 3: input a level 4: input b

{
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1

{
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1

(A1) {
1
D0 {

4
D1 }

4
{
3
{
5
D3 }

5
}
3
{
2
{
6
D3 }

6
}
2
}
1

{
1
D0 {

3
D2 }

3
{
2
}
2
}
1

(A2) {
1
D0 {

4
D1 }

4
{
3
{
5
}
5
}
3
{
2
{
6
D3 }

6
}
2
}
1

{
1
D0 {

3
D2 }

3
{
2
}
2
}
1

(A3) {
1
D0 {

4
D1 }

4
{
2
{
6
D3 }

6
}
2
}
1

r = 3 {
1
D0 {

3
D2 }

3
}
1

r = 2

(A4) {
1
D0 {

4
D1 }

4
{
2
D3 }

2
}
1

g = 2 {
1
D0 {

3
D2 }

3
}
1

g = 6

(A5) {
1

D0 {
3

D1 }
3

{
2

D3 }
2

}
1

{
1

D0 {
2

D2 }
2

}
1

(A6) ⇒ G2 ⇒ R2

6.3 Analysis

One can easily see that (A1)–(A2) produce a correct image of nodes on level l with brackets from
level l−1 carried down to enclose descendants of the contained nodes, and with additional brackets
around nodes reached by marked edges.

Lemma 2. The annotation for each level l ≥ 1 has the following properties:

(P1) Each pair of brackets has at least one node residing in it.

(P2) There are at most n pairs of brackets, where n is the number of nodes of D(X).

(P3) The brackets are numbered with consecutive numbers 1, . . .m, where m is the number of
bracket pairs.

(P4) Inner brackets have numbers higher than enclosing brackets.

Proof. The Proposition is obviously true for level 1. Suppose it is true for level l ≥ 1. We show
that (P1)–(P4) remain true for level l + 1.

(P1) Empty pairs of brackets created by (A1) and (A2) are removed by (A3). No nodes reside in
a pair that became green after (A1). But, (A4) removes all its inner brackets so that all contained
nodes reside in that pair.

(P2) is an immediate consequence of (P1) and the fact that (A2) removes all duplicate nodes.

(P3) This is the obvious result of (A5).

(P4) New brackets are added in (A1). Each added pair obtains the lowest unused number. Because
of this and (P3), this number is higher than that on the enclosing brackets. Renumbering in (A5)
cannot change this: suppose brackets numbered m1 enclose brackets numbered m2 > m1. If (A3)
removed k empty pairs of brackets with numbers lower than m1, both m1 and m2 are reduced by
k. If (A3) removed k pairs with numbers between m1 and m2, m2 is reduced by k. But, k must be
less than m2 −m1 − 1, so m2 > m1 remains true. Removing pairs with numbers higher than m2

leaves m1 and m2 unchanged.
�

438 R. R. Redziejowski

Proposition 2. G(X,w) contains a live path if and only if there exists g such that ⇒ G g appears
on infinitely many levels, while ⇒ R r for each r ≤ g appears only on finitely many levels.

Proof. (1) Suppose ⇒ G g appears on infinitely many levels. That means a pair of brackets with
number g becomes green infinitely often. Suppose further that no ⇒ R r with r ≤ g appears
after some level l0. It means that the pair numbered g is neither removed nor renumbered in the
subsequent levels. Let l1 be the first level after l0 where the pair g becomes green. Step (A4)
removed all brackets nested with it. Step (A1) adds a pair of brackets around each node reached
by a marked edge.

Thus, on level l1 + 1 any node inside the pair g enclosed in additional brackets has been reached
from level l1 by a marked edge. Any node on level l1 + 2 that is enclosed in additional brackets
inside the pair g had either such brackets already on level l1 + 1, or has been reached from that
level by a marked edge. In any case, the node has been reached from level l1 by a marked path. In
general, any node on a subsequent level enclosed in additional brackets inside the pair g has been
reached from level l1 by a marked path.

The pair g becomes green again at some level l2 when all nodes inside it are enclosed in additional
brackets. Let l1, l2, l3, . . . be the consecutive levels where the pair g became green. The above
reasoning applies to all these levels: each node within the pair g on level li for i > 1 is reached by
a marked path from some node on level li−1.

For each node on level li with i > 1 select one marked path leading to it from a node on level
li−1. In addition, select one path from level 1 to each node on level l1. The selected paths form
an infinite tree with finite branching and root on level 1. By König’s lemma, there exists in this
tree an infinite path from the root. For each i ≥ 1, each part of the path between levels li and li−1

contains at least one marked edge. It is thus a live path.

(2) Suppose G(X,w) contains a live path p. Each level of the DAG contains a node belonging to
p. We denote it generically by Dp (it is, in general, different for different levels).

Suppose the pair number 1 becomes green infinitely often. That means ⇒ G1 appears infinitely
often and ⇒ R1 not at all: pair 1 is not becoming empty, and all pairs removed by (A3) have
numbers greater than 1. The condition stated by the Theorem is satisfied.

Suppose now that pair 1 is no more turning green after some level l1. Each time p reaches the next
level via a marked edge, a new pair of brackets is added around Dp. The first such pair resides
in the pair 1; let its number be m1. As pair 1 does not turn green any more, the pair m1 is not
removed. Two things may happen:

(a) A pair with number m < m1 becomes empty and is deleted by (A3). As the result, m1 is
reduced by (A5).

(b) The annotation contains other occurrences of Dp, such as D′
p or D′′

p below:

{
1
· · · {

m1

· · ·Dp · · · }
m1

· · · {
m
· · ·D′

p · · · }
m
· · ·D′′

p · · · }
1
.

If the other occurrence resides in pair 1, such as D′′
p above, it is removed by (A2) because the

nesting pattern (1) is higher than (1 -m1 - . . .).
If the other occurrence does not reside in pair 1, it must be within some pair of brackets
that resides in pair 1. If it is within the pair m1, either this occurrence or the original one is
removed by (A2), and we are left with Dp in the pair m1.
If the other occurrence, such as D′

p above, is within another pair with some number m, we
have two possibilities:

Construction of Deterministic Omega-automaton using Derivatives 439

– If m > m1, the occurrence is removed by (A2) because the nesting pattern (1 -m - . . .) is
higher than (1 -m1 - . . .), and we are left with Dp in the pair m1.

– If m < m1, the original occurrence is removed by (A2) because the nesting pattern (1 -
m1 - . . .) is higher than (1 -m - . . .), and we are left with Dp in a different pair residing
in pair 1, with a lower number.

As the number on the brackets cannot be lowered indefinitely, (a) and (b) can only happen finitely
many times, and do not occur any more after some level l2. At any level l > l2, Dp is enclosed in
a pair residing in pair 1, with a number m′

1 ≤ m1 that does not change.

Suppose the pair m′
1 becomes green infinitely often. That means ⇒ Gm′

1 appears infinitely often.
As neither the pair m′

1, nor any pair numbered m < m′
1 become empty, ⇒ R r with r ≤ m1′ does

not appear after level l2. The stated condition is satisfied.

Suppose now that the pair m′
1 is turning green for the last time at some level l3. Each time p

reaches the next level via a marked edge, a new pair of brackets is added around Dp. The first
such pair resides in the pair m′

1; let its number be m2. As the pair m′
1 no longer turns green, the

pair m2 is not removed, but may be renumbered by (A5) or replaced by a pair with lower number
by (A2). As before, no renumbering occurs after some level l4, with m2 possibly reduced to m′

2.
As before, either the pair m′

2 is turning green infinitely often, or another pair of brackets residing
in pair m′

2 is added around Dp.

This step can be repeated, adding each time a new pair of brackets around Dp. However, according
to (P2), the number of brackets cannot grow without a bound, so the process must end with some
pair m′

i turning green infinitely often after no ⇒ R r with r ≤ m′
i appear any more.
�

7 Towards a deterministic automaton

According to Proposition 2, we can decide whether G(X,w) contains a live path by annotating it
according to Algorithm A.

In fact, we do not need to construct D(X) and G(X,w); we can use Algorithm A to directly
compute the annotations. Moreover, we can construct an automaton that will emit the outputs Gg
and Rr appearing in the annotations while reading the word w.

Define the ”state” to be the part of the annotation between, and including, the brackets numbered 1.
Define the ”output” to be the part to the right of ⇒, if any. At each level, the next state and the
output are determined by the state at that level and the next letter of w.

The number of different states is finite. As a consequence of (A2) the state cannot contain more
than n nodes and, according to (P2), it cannot contain more than n bracket pairs, where n is the
number of nodes of D(X).

The number of states being finite, we can use (A1)–(A6) to compute once for all the next state
and output for each state and input letter.

The exact construction of the automaton for an expression X is given below.

440 R. R. Redziejowski

7.1 The construction

Let X =
⋃n

i=1 PiQ
ω
i be a given ω-regular expression over alphabet Σ. Define X ′ =

⋃n
i=1 Pi(�Qi)

ω,
where � is a new letter not in Σ. Compute all recognizably distinct expressions for derivatives of X ′

with respect to words not ending with �. Using the property φ defined in Section 2, identify and
discard those denoting ∅. Denote the set of the remaining expressions by D. Denote the elements
of D by D0, . . . , Dn. Find all relations Di = ∂aDj and Di = ∂(a �)Dj for Di, Dj ∈ D, a ∈ Σ.

Define the automaton A(X) as follows.

(1) The states of the automaton are sequences consisting of symbols D0, . . . , Dn and numbered
brackets. To obtain all states, start with the initial state defined by (2), and apply (3) to
construct states reached after 1, 2, 3, etc., letters until no new states are obtained.
Note that the order of Di’s does not matter when comparing states. Two states are identical
if they contain the same Di’s with the same nesting patterns.

(2) The initial state is {
1
∂εX

′ }
1
.

(3) Transitions: for a state s and an input letter a ∈ Σ, apply (A1)–(A6) to s. The part of the
result between, and including, the brackets numbered 1 is the next state. The output is to the
right of ⇒ (if any).

(4) Acceptance condition: a word w ∈ Σω is accepted by A(X) if and only if there exists g such
that the automaton applied to w emits Gg infinitely many times, and emits any Rr with r ≤ g
only finitely many times.

Proposition 3. The automaton A(X) recognizes the language X.

Proof. One can easily see that the states and the outputs of A(X) when it reads a word w are
exactly the annotations produced by Algorithm A for G(X,w). According to Proposition 2, A(X)
accepts w if and only if G(X,w) contains a live path, and G(X,w) contains a live path if an only
if D(X) accepts w. According to Proposition 1, D(X) accepts w if and only if w ∈ X .
�

7.2 Example

The states and transitions for X = (a ∪ b)∗(aω ∪ (ab)ω) are shown below.

state next state for a next state for b

A = {
1
D0 }

1
B = {

1
D0 {

2
D1 }

2
}
1

A = {
1
D0 }

1

B = {
1
D0 {

2
D1 }

2
}
1

C = {
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1
⇒ G2 D = {

1
D0 {

2
D2 }

2
}
1

C = {
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1

C = {
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1
⇒ G2 D = {

1
D0 {

2
D2 }

2
}
1
⇒ R2

D = {
1
D0 {

2
D2 }

2
}
1

E = {
1
D0 {

3
D1 }

3
{
2
D4 }

2
}
1
⇒ G2 A = {

1
D0 }

1
⇒ R2

E = {
1
D0 {

3
D1 }

3
{
2
D4 }

2
}
1

C = {
1
D0 {

3
D1 }

3
{
2
D3 }

2
}
1
⇒ R2 D = {

1
D0 {

2
D2 }

2
}
1
⇒ R3

The resulting automaton A(X) is shown in Fig. 4. It accepts the input word if it emits G2 infinitely
often after it stopped emitting R2.

Construction of Deterministic Omega-automaton using Derivatives 441

A B C

D E

b

a a/G2

a/G2

a/G2

b/R3

b/
R
2b/R

2 b a/R2

Fig. 4

8 Comments

By eliminating the ordering of nodes, the described construction gives fewer states than one in
[5], but their number is still exponential. The construction and proofs have been simplified by
introducing the derivative automaton and the run DAG.

The annotations used as states of A(X) are essentially isomorphic with the Piterman’s trees
obtained for the derivative automaton D(X). The author believes that annotating the run DAG
with bracket structures instead of constructing Piterman’s trees makes the process simpler to define
and visualize: the bracket structures are easier to represent in print than trees.

The acceptance condition in terms of ”green” and ”red” outputs can be converted to parity condi-
tion similar to that in [3]. Replace the output Gg by 2g and Rr by 2r− 1; a run is then accepting
if and only if the lowest number emitted infinitely often is even.

Estimating the number of states in the same way as in [3] gives nn(n − 1) ! as the upper bound.
It is lower than that in [3] by the factor of 2n due to acceptance condition in terms of transitions
rather than states.

According to the above result, the maximum possible number of states of A(X) for D(X) with 5
states is 55(5 − 1) ! = 75000. Is the fact that we obtained A(X) with only 5 states just a lucky
coincidence, or is there something about the derivative automaton that can be used to lower the
upper bound?

References

1. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4) (1964) 481–494
2. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. Journal of Functional

Programming 19(2) (2009) 173–190
3. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata.

Logical Methods in Computer Science 3(3) (2007)
4. Redziejowski, R.R.: The theory of general events and its application to parallel programming. Technical

paper TP 18.220, IBM Nordic Laboratory, Lidingö, Sweden (1972)
5. Redziejowski, R.R.: Construction of a deterministic ω-automaton using derivatives. Informatique

Théorique et Applications 33 (1999) 133–158
6. Safra, S.: On the complexity of ω-automata. In: Proc. 29th Annual Symposium on Foundations of

Computer Science, IEEE (1988) 319–327
7. Safra, S.: Complexity of automata on infinite objects. Master’s thesis, Weizmann Institute of Science,

Rehovot, Israel (1989)

