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APPROXIMATIONS AND SELECTIONS OF MULTIVALUED

MAPPINGS OF FINITE-DIMENSIONAL SPACES

N. BRODSKY, ALEX CHIGOGIDZE, AND A. KARASEV

Abstract. We prove extension-dimensional versions of finite dimensional
selection and approximation theorems. As applications, we obtain several
results on extension dimension.

1. Introduction and Preliminary Definitions

Finite-dimensional selection theorem of E. Michael is very useful in geometric
topology and it is one of central theorems in the theory of continuous selections
of multivalued mappings [22]. A stronger selection theorem is proved in [23]
and a technique of its proof shows an interesting interference between selections
and approximations of multivalued mappings. In particular, finite dimensional
approximation theorem was used in the proof of selection theorem. However,
approximation theorem itself is widely applicable in mathematics, not only in
topology (see a survey [18]).

There is a new approach in dimension theory exploiting a notion of extension
dimension [13],[14]. Let L be a CW-complex. A space X is said to have ex-
tension dimension ≤ [L] (notation: e-dimX ≤ [L]) if any mapping of its closed
subspace A ⊂ X into L admits an extension to the whole space X1. It is clear
that dimX ≤ n is equivalent to e-dimX ≤ [Sn].

The main purpose of this paper is to prove an extension-dimensional ver-
sions of finite dimensional selection and approximation theorems. Of course,
these versions have the original finite dimensional theorems as a partial cases.
And our proofs follow the ideas from the paper [23]. There is an extension di-
mensional approximation theorem for mappings of C-space [7]. We are mainly
interested in the separable and metrizable situation. In the meantime proofs of
our statements without significant complications remain valid in a more general
case of paracompact spaces and we state our results for the latter class of spaces.

One can develop homotopy and shape theories specifically designed to work
for at most [L]-dimensional spaces. Absolute extensors for at most [L]-dimensional
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spaces in a category of continuous maps are precisely [L]-soft mappings. And
compacta of trivial [L]-shape are precisely UV [L]-compacta [9]. One can define
(see [9, Theorem 2.8]) local [L]-contractibility in a standard way: a space X is
said to be locally [L]-contractible (notation: X ∈ LC [L]) if for any neighbour-
hood U of any point x ∈ X there exists a smaller neighbourhood V such that
the inclusion V →֒ U is [L]-homotopic to a constant map. We present a full
proof (see Theorem 4.1) of a Dugunji-type theorem for such spaces.

We have several other applications of our results. We characterize local [L]-
softness of a mapping in terms of local properties of the family of its fibers
(Theorem 7.1). This result was known for n-soft mappings [12]. Using idea
from [4] on extension of UV n-valued mappings, we prove Theorem 7.3 on ex-
tension of UV [L]-valued mappings. Also, we prove the following Theorem 7.4 on
factorization: if the superposition f ◦ g of mappings of Polish spaces is [L]-soft
and g is UV [L]-map, then f is [L]-soft. For n-soft maps factorization theorem
is proved in [5].

Another application is a version of Hurewicz theorem for extension dimen-
sion. There are several approaches to such a generalization of Hurewicz theo-
rem [15],[11],[19],[20].

Theorem 7.6. Let f : X → Y be a mapping of metric compacta where dimY <
∞. Suppose that e-dimY ≤ [M ] for some finite CW -complex M . If for some
locally finite countable CW -complex L we have e-dim(f−1(y)×Z) ≤ [L] for every
point y ∈ Y and any Polish space Z with e-dimZ ≤ [M ], then e-dimX ≤ [L].

The classical Hurewicz theorem for a mapping f : X → Y of metric compacta
with dimY ≤ m and dimf = sup{f−1(y) : y ∈ Y } ≤ k follows from our result
by letting M = Sm and L = Sk+m. Indeed, note that dim (f−1(y) × Z) ≤ k+m
for any point y ∈ Y and any Polish space Z with dimZ ≤ m. By our result,
e-dimX ≤ Sk+m, which means that dimX ≤ k +m as required.

Section 2 of this paper is devoted to the approximation theorem. The graph
of a multivalued mapping F : X → Y is the subset ΓF = {(x, y) ∈ X × Y : y ∈
F (x)} of the product X × Y . We say that a multivalued mapping F admits
approximations if every neighbourhood of the graph of F contain the graph of
a singlevalued continuous mapping.

Usually one constructs approximation as a composition of canonical mapping
into nerve of some covering and a mapping of this nerve, defining the mapping
of the nerve by induction on dimension of its skeleta. If the mapping is UV n-
valued and the domain space X has Lebesgue dimension n, then every point-
image has trivial shape relative to X and relative to a nerve of some covering
of X, which allows one to construct a mapping from the nerve. If extension
dimension e-dimX = [L] does not coincide with Lebesgue dimension of X, then
UV [L]-compactum does not have trivial shape relative to a nerve of fine covering
of X, and one can not construct a mapping from the nerve.
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Therefore, we have to define the approximation directly. For some fine cover-
ing Σ of X we consider the sets Σ(k) = {x ∈ X | ordΣx ≤ k + 1} and construct
an approximation extending it successively from Σ(k) to Σ(k+1). Here Σ(k) plays
a role of ”k-dimensional skeleton” of the cover Σ. For elements s0, s1, . . . , sn ∈ Σ
with non-empty intersection ∩n

i=0si we consider the set
⋃n

i=0 si \
⋃

i6=0,1,...,n si as
a closed ”simplex” with vertices s0, . . . , sn. Also, we understand the set ∩n

i=0si

as an interior of this simplex. These notions of ”skeleton” and ”simplex” of
a covering allows us to proceed the proof in a usual way — by induction on
”dimension” of ”skeleta”. Note that our proof gives better result even for UV n-
valued mappings: part (2) of Theorem 2.6 was known only for metrizable space
X [18].

Sections 3–6 are devoted to selection problem. The notion of filtration ap-
peared to be very useful in continuous selection theory (see [23], [6]) and we
state our selection theorem in terms of filtrations of multivalued mappings.

Definition 1.1. An increasing2 finite sequence of subspaces

Z0 ⊂ Z1 ⊂ · · · ⊂ Zn ⊂ Z

is called a filtration of space Z of length n. A sequence of multivalued mappings
{Fk : X → Y }n

k=0 is called a filtration of multivalued mapping F : X → Y if
{Fk(x)}

n
k=0 is a filtration of F (x) for any x ∈ X.

To construct a local selection we need our filtration of multivalued maps to be
complete and lower [L]-continuous. The notion of completeness for multivalued
mapping is introduced by E. Michael [21].

Definition 1.2. A multivalued mapping G : X → Y is called complete if all
sets {x} ×G(x) are closed with respect to some Gδ-set S ⊂ X × Y containing
the graph of this mapping.

We say that a filtration of multivalued mappings Gi : X → Y is complete if
every mapping Gi is complete.

In section 3 we introduce a notion of local property of multivalued mapping.
To have a local property, multivalued mapping should have all fibers satisfy-
ing this local property, and, moreover, the fibers should satisfy this property
uniformly. An important example of local property is local [L]-connectedness.

Definition 1.3. Let L be a CW -complex. A pair of spaces V ⊂ U is said
to be [L]-connected if for every paracompact space X of extension dimension
e-dimX ≤ [L] and for every closed subspace A ⊂ X any mapping of A into V
can be extended to a mapping of X into U .

We call a multivalued mapping lower [L]-continuous if it is locally [L]-connected:

2We consider only increasing filtrations indexed by a segment of the natural series starting
from zero.
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Definition 1.4. A multivalued mapping F : X → Y is called [L]-continuous at
a point (x, y) ∈ ΓF of its graph if for any neighbourhood Oy of the point y ∈ Y ,
there are a neighbourhood O′y of the point y and a neighbourhood Ox of the
point x ∈ X such that for all x′ ∈ Ox, the pair F (x′) ∩ O′y ⊂ F (x′) ∩ Oy is
[L]-connected.

A mapping which is [L]-continuous at all points of its graph is called lower
[L]-continuous. We say that a filtration of multivalued mappings is lower [L]-
continuous if every mapping of this filtration is lower [L]-continuous.

To construct a global selection we need our filtration of multivalued maps to
be fiberwise [L]-connected.

Definition 1.5. A filtration of multivalued mappings {Gi : X → Y }n
i=0 is said

to be fiberwise [L]-connected if for any point x ∈ X and any i < n the pair
Gi(x) ⊂ Gi+1(x) is [L]-connected.

Now we can state our selection theorem.

Theorem 6.4. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
Let X be a paracompact space of extension dimension e-dimX ≤ [L]. Suppose
that multivalued mapping F : X → Y into a complete metric space Y admits
a lower [L]-continuous, complete, and fiberwise [L]-connected n-filtration F0 ⊂
F1 ⊂ · · · ⊂ Fn ⊂ F . If f : A → Y is a continuous singlevalued selection of
F0 over a closed subspace A ⊂ X, then there exists a continuous singlevalued

selection f̃ : X → Y of the mapping F such that f̃ |A = f .

Let us recall some definitions and introduce our notations. We denote by
IntA the interior of the set A. For a cover ω of a space X and for a subset
A ⊆ X let St(A, ω) denote the star of the set A with respect to ω.

For a subset U of the product X × Y we denote by U(x) the subset prY (U ∩
{x}×Y ) of Y , where x is a point of X. For a multivalued mapping F : X → Y
we denote by F Γ(x) the subset {x} × F (x) of X × Y . A multivalued mapping
F : X → Y is said to be upper semicontinuous (shortly, u.s.c.) if its graph is
closed in the product X ×Y . We say that multivalued mapping is compact if it
is upper semicontinuous and compact-valued. A filtration consisting of compact
multivalued mappings is called compact.

A pair of subspaces K ⊂ K ′ of a space Z is called UV [L]-connected in Z if any
neighbourhood U of K ′ contains a neighbourhood V of K such that the pair
V ⊂ U is L-connected. A filtration {Fi : X → Y }n

i=0 of u.s.c. maps is called
UV [L]-connected n-filtration if for any point x ∈ X and any i < n the pair
Fi(x) ⊂ Fi+1(x) is UV [L]-connected in Y . We say that multivalued mapping F
is n-UV [L]-filtered if it contains an UV [L]-connected n-filtration.

A compact metric space K is called UV [L]-compactum if the pair K ⊂ K
is UV [L]-connected in any ANR-space. Theorem 4.7 shows that this property
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does not depend on embedding of K in Polish ANE([L])-space. A multivalued
mapping is called UV [L]-valued if it takes any point to UV [L]-compactum.

A mapping f : Y → X is said to be [L]-soft (resp. locally [L]-soft) if for any
paracompact space Z with e-dimZ ≤ [L], its closed subspace A ⊂ Z and any
mappings g : Z → X and g̃A : A → Y such that f ◦ g̃A = g|A there exists a
mapping g̃ : Z → Y (resp. g̃ : OA→ Y of some neighbourhood of A) such that
f ◦ g̃ = g (resp. f ◦ g̃ = g|OA). Finally let AE([L]) (resp. ANE([L])) denote
the class of spaces with [L]-soft (resp. locally [L]-soft) constant mappings.

2. Singlevalued Approximation Theorem

We introduced in section 1 the notions of ”skeleton” and ”simplex” of a
covering. For a covering Σ of X we denote by Σ(k) its k-dimensional skeleton
{x ∈ X | ordΣx ≤ k + 1}. For elements s0, s1, . . . , sn ∈ Σ with non-empty
intersection ∩n

i=0si we define a ”closed n-dimensional simplex”

[s0, s1, . . . , sn] =
n⋃

i=0

si \
⋃

i6=0,1,...,n

si

and its ”interior” 〈s0, s1, . . . , sn〉 = ∩n
i=0si ∩ Σ(n). It is easy to check that the

n-skeleton consists of n-simplices

Σ(n) =
⋃

{[si0 , si1, . . . , sin] | ∩n
k=0sik 6= ∅}

and that any ”simplex” consists of its ”boundary” and its ”interior”

[s0, s1, . . . , sn] =
n⋃

m=0

[s0, . . . , ŝm, . . . , sn] ∪ 〈s0, s1, . . . , sn〉.

Clearly, Σ(k) is closed in X and Σ(n) = X if the cover Σ has order n + 1. The
following property is important for our construction: the ”interiors” of distinct
k-dimensional ”simplices” are mutually disjoint and

Σ(k) =
⋃

{〈si0, si1, . . . , sin〉 | ∩
n
k=0sik 6= ∅} ∪ Σ(k−1) (†)

Suppose Z is any space and u is an open covering of Z. We shall denote
union of all elements of u by ∪u.

Further we will consider triples of the form (X,ω,G), where G is a multivalued
mapping of X to Y and ω ∈ covX.

Definition 2.1. For a pair of spaces X ′ ⊂ X a triple (X ′, ω′, G′) is said to be
[L]-connected refinement of a triple (X,ω,G) if for any W ′ ∈ ω′ there exists
W ∈ ω with St(W ′, ω′) ⊂ W such that the pair G′(St(W ′, ω′)) ⊂ G(W ) is
[L]-connected.

A sequence of triples {(Xk, ωk, Gk)}k≤n is said to be [L]-connected if for
each k < n the triple (Xk, ωk, Gk) is [L]-connected refinement of the triple
(Xk+1, ωk+1, Gk+1).
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Lemma 2.2. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Let
X0 ⊂ · · · ⊂ Xn+1 be a filtration of spaces and X be a paracompact subspace of
a space X0 such that e-dimX ≤ [L].

(1) If {(Xk, ωk, Gk)}k≤n is [L]-connected sequence of triples, then there exists
singlevalued continuous mapping f : X → Gn(Xn) such that f(x) ∈ Gn(St(x, ωn))
for each x ∈ X.

(2) Suppose that {(Xk, ωk, Gk)}k≤n+1 is [L]-connected sequence of triples. Let
A be a closed subset of X and g : A → G0(X0) be a singlevalued continuous
mapping such that g(x) ∈ G0(St(x, ω0)) for each x ∈ A. Then there exists
singlevalued continuous mapping f : X → Gn+1(Xn+1) extending g such that
f(x) ∈ Gn+1(St(x, ωn+1)) for each x ∈ X.

Proof. We shall prove the statement (2). The proof of (1) is similar.
Find an open locally finite covering Σ of X such that closures of elements of

Σ form strong star-refinement of ω0|X and order of Σ is ≤ n + 1.
Put f−1 = g. Let us construct a sequence of mappings {fk : Σ(k)

⋃
A →

Y }n
k=−1 such that fk extends fk−1 and

fk(x) ∈ Gk+1(St(x, ωk+1)) for each x ∈ Σ(k) (∗)

Then we can let f = fn since Σ(n) = X.
Suppose fk has been already constructed. Since (†) holds, it suffices to de-

fine fk+1 on the ”interior” 〈σ〉 of each ”simplex” [σ] = [s0, s1, . . . , sk+1]. Since
Σ is locally finite and the ”interiors” of ”closed k-dimensional simplices” are
mutually disjoint we can consider each simplex independently.

Since ω0 is a star refinement of ωk+1, there exists Vσ ∈ ωk+1 such that [σ] ⊂ Vσ

Since the triple (Xk+1, ωk+1, Gk+1) is [L]-connected refinement of the triple
(Xk+2, ωk+2, Gk+2), there exists Uσ ∈ ωk+2 such that the pairGk+1(St(Vσ, ωk+1)) ⊂
Gk+2(Uσ) is [L]-connected.

Let [σ]′ = [σ]
⋂

(A
⋃

Σ(k)). For any x ∈ [σ]′ we have x ∈ Vσ and the property
(∗) implies fk(x) ∈ Gk+1(St(x, ωk+1)) ⊂ Gk+1(St(Vσ, ωk+1)). Hence fk([σ]′) ⊂
Gk+1(St(Vσ, ωk+1)) and therefore fk can be extended over [σ] to a map fk : [σ] →
Gk+2(Uσ). We let fk+1|〈σ〉 = fk|〈σ〉.

Let us check property (∗). Since ωk+1 refines ωk+2, for all x ∈ Σ(k) we have
fk+1(x) = fk(x) ∈ Gk+1(St(x, ωk+1)) ⊂ Gk+2(St(x, ωk+2)). By (†), any point
x ∈ Σ(k+1)\Σ(k) is contained in some ”interior” 〈σ〉. Since 〈σ〉 ⊂ Uσ ∈ ωk+2, we
have fk+1(x) ∈ Gk+2(Uσ) ⊂ Gk+2(St(x, ωk+2)).

Definition 2.3. For a multivalued mapping F : X → Y an open neighbour-
hood U ⊂ X × Y of a fiber F Γ(x) is said to be F -stable with respect to x ∈ X
if there exists an open neighbourhood Ox of the point x and an open subset
Vx ⊂ Y such that ΓF |Ox

⊂ Ox × Vx ⊂ U .
The neighbourhood U of the graph is said to be F -stable if it is F -stable with

respect to every point in X.
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Definition 2.4. A multivalued mapping G : X → Y is said to be a stable
singular neighbourhood of F if for each x ∈ X there exist open neighbourhoods
Ox of x in X and Vx of F (x) in Y such that Vx ⊂

⋂
{G(x′) | x′ ∈ Ox}.

Lemma 2.5. Let X be a paracompact space and L be a CW -complex. Suppose
that {Fk}k≤n is a UV [L]-connected n-filtration consisting of multivalued map-
pings from X to Y . Let ωn be a covering of X and Gn be a singular stable
neighbourhood of Fn. Then for each k < n there exists an open covering ωk of
X and a stable singular neighbourhood Gk of mapping Fk such that the sequence
{(X,ωk, Gk)}k≤n is [L]-connected.

Proof. We shall construct ωk and Gk by reverse induction on k starting from
k = n− 1. Since all inductive steps are similar we shall show the constructions
only for k = n− 1.

Since Gn is stable, for each x ∈ X there exist open neighbourhoods O′
x of x

in X and V ′
x of Fn(x) in Y such that V ′

x ⊂
⋂
{Gn(x′) | x′ ∈ O′

x}. Since {Fk}
is UV [L]-filtration there exist open neighbourhoods Ox ⊂ O′

x of x and Vx of
Fn−1(x) such that Fn−1(Ox) ⊂ Vx and the pair Vx ⊂ V ′

x is [L]-connected. We
may assume that the covering {Ox}x∈X refines ωn.

Let u ∈ covX be a locally finite strong star-refinement of {Ox}x∈X . For
each U ∈ u find x(U) such that St(U, u) ⊂ Ox(U). We shall also use notations
VU = Vx(U) and OU = Ox(U).

For each x ∈ X we put Gn−1(x) =
⋂
{VU | x ∈ U}. Let ωn−1 be a strong

star-refinement of u.
Let us check that Gn−1 is a stable singular neighbourhood of Fn−1. Consider

any x ∈ X. Find open neighbourhood Ox of x which intersects only finitely
many elements of u. We may assume that Ox ⊂ Ux for some Ux ∈ u. Put
V x =

⋂
{VU | U ∩ Ox 6= ∅}. Since x ∈ Ox ⊂ Ux it follows by the choice of

OU that for all U such that U ∩ Ox 6= ∅ we have x ∈ OU . Hence, using the
fact Fn−1(OU) ⊂ VU we obtain Fn−1(x) ⊂ V x. Finally, we have

⋂
{G(x′) | x′ ∈

Ox} =
⋂
{
⋂
{VU | x′ ∈ U} | x′ ∈ Ox} = V x by the definition of V x.

Let us show that (X,ωn−1, Gn−1) is [L]–connected refinement of the triple
(X,ωn, Gn). Consider anyW ′ ∈ ωn−1. Find U ′ ∈ u such that St(W ′, ωn−1) ⊂ U ′.
There exists W ∈ ωn with OU ′ ⊂ W . Take x ∈ St(W ′, ωn−1). Then Gn−1(x) =⋂
{VU | x ∈ U} ⊂ VU ′ and the pair VU ′ ⊂ V ′

x(U ′) is [L]–connected. Finally,

observe that by the choice of {O′
x} and {V ′

x} we have V ′
x(U ′) ⊂

⋂
{Gn(x′) | x′ ∈

OU ′} ⊂ Gn(W ).

Theorem 2.6. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Let
X be a paracompact space of extension dimension e-dimX ≤ [L].

(1) If F : X → Y is a multivalued mapping which admits UV [L]-connected
n-filtration, then any F -stable neighbourhood of the graph ΓF contains a graph
of a singlevalued continuous mapping of X to Y .
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(2)Let A ⊂ X be a closed subspace. If F admits UV [L]-connected (n + 1)-
filtration F0 ⊆ F1 ⊆ · · · ⊆ Fn+1, then for any F -stable neighbourhood U of the
graph ΓF there exists F0-stable neighbourhood V of the graph ΓF0|A such that
every singlevalued continuous mapping g : A→ Y with Γg ⊂ V can be extended
to a singlevalued continuous mapping f : X → Y with Γf ⊂ U .

Proof. We shall prove statement (2). The proof of (1) is similar. Let U be
an arbitrary stable neighbourhood of the graph of F . Since U is stable, for
each x ∈ X there exist open neighbourhoods Ox of x and Vx of F (x) such that
ΓF |Ox

⊂ Ox × Vx ⊂ U . Let ωn+1 be a strong star refinement of {Ox}x∈X.
For each x ∈ X we let Gn+1(x) =

⋂
{U(x′) | x′ ∈ St(x, ωn+1)}. Let us check

that Gn+1 is a stable singular neighbourhood of Fn. Fix x ∈ X and consider
W ∈ ωn+1 which contains x. Then

⋂
{Gn+1(x

′) | x′ ∈W} =
⋂

{
⋂

{U(x′′) | x′′ ∈ St(x′, ωn+1)} | x′ ∈W}

⊃
⋂

{
⋂

{U(x′′) | x′′ ∈ St(W,ωn+1)} | x′ ∈W} ⊃ Vz ⊃ F (x)

where z ∈ X is chosen so that St(W,ωn+1) ⊂ Oz.
Using Lemma 2.5, construct an [L]-connected sequence {(X,ωk, Gk)}k≤n+1.

Observe that since G0 is stable singular neighbourhood of F0, the graph ΓG0

contains an open stable neighbourhood V of ΓF0
.

Suppose that g : A→ Y is a singlevalued continuous mapping such that graph
of g is contained in V . Then g(x) ∈ G0(x) for all x ∈ A. Hence we can apply
Lemma 2.2 and obtain singlevalued continuous mapping f : X → Y extending g
such that f(x) ∈ Gn+1(St(x, ωn+1)) for each x ∈ X. This fact and the definition
of Gn+1 imply that graph of f is contained in U .

Lemma 2.7. Let X be a subspace of a metric space M and Un be an open
neighbourhood of X in M . For a CW -complex L suppose that {Fk : X → Y }k≤n

is a UV [L]-connected n-filtration. Let ωn be a covering of Un and Gn : Un → Y be
a stable singular neighbourhood of Fn. Then there exists [L]-connected sequence
{(Uk, ωk, Gk)}k≤n such that Uk is an open neighbourhood of X in M and Gk is
a stable singular neighbourhood of Fk.

Proof. We shall construct Uk, ωk and Gk by reverse induction on k starting from
k = n− 1. Since all inductive steps are similar we shall show the constructions
only for k = n− 1.

Since Gn is stable, for each x ∈ X there exist open neighbourhoods O′
x of x

in Un and V ′
x of Fn(x) in Y such that V ′

x ⊂
⋂
{Gn(x

′) | x′ ∈ O′
x}. Since {Fk} is

UV [L]-filtration there exist open in M neighbourhood Ox ⊂ O′
x of x and open

neighbourhood Vx of Fn−1(x) such that Fn−1(Ox) ⊂ Vx and the pair Vx ⊂ V ′
x

is [L]-connected. We may assume that the collection {Ox}x∈X refines ωn. Put
Un−1 =

⋃
{Ox | x ∈ X}.
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Let u be a locally finite covering of Un−1 which is a strong star-refinement
of {Ox}x∈X . For each U ∈ u find x(U) such that St(U, u) ⊂ Ox(U). For any
x ∈ Un−1 we put Gn−1(x) =

⋂
{Vx(U) | x ∈ U}. Let ωn−1 be a strong star-

refinement of u. Then similarly to the proof of Lemma 2.5 we obtain that Gn−1

is a stable singular neighbourhood of Fn−1 and the triple (Un−1, ωn−1, Gn−1) is
[L]-connected refinement of the triple (Un, ωn, Gn)

Definition 2.8. A singlevalued continuous surjective mapping f : Y → X of
metric spaces is said to be approximately [L]-invertible if for any embedding of
f into the projection p : M × N → M of metric spaces where M ∈ ANE([L])
the following condition is satisfied:

for any neighbourhood W of Y in M ×N there exists open neighbourhood U
of X in M such that for any mapping g : Z → U of paracompact space Z with
e-dim(Z) ≤ [L] there exists a lifting g′ : Z →W of g such that pg′ = g.

Theorem 2.9. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Sup-
pose that for a continuous singlevalued surjective mapping of metric spaces f the
multivalued mapping F = f−1 admits a compact UV [L]-connected n-filtration.
Then f is approximately [L]-invertible.

Proof. Consider an embedding of f into the projection p : M×N → M of metric
spaces where M ∈ ANE([L]) and fix an arbitrary neighbourhood W of Y in
M × N . Let {Fi}

n
i=0 be a compact UV [L]–connected n-filtration of F = f−1.

Then the mapping F ′ = prN ◦F admits a compact UV [L]–connected n-filtration
{Fi = prN ◦ Fi}

n
i=0.

Since the mapping F ′
n is compact, W is a stable neighbourhood of the graph

ΓF ′

n
⊂M ×N .

For each x ∈ X find open neighbourhood Ox of x in M and open subset Vx

of N such that ΓF ′

n|Ox
⊂ Ox × Vx ⊂ W . Let Un =

⋃
{Ox | x ∈ X} and ωn ∈

covUn be a strong star refinement of {Ox}x∈X . We can define a stable singular
neighbourhood Gn of F ′

n letting, as before, Gn(x) =
⋂
{W (x′) | x′ ∈ St(x, ωn)}

for all x ∈ Un. By Lemma 2.7 we can find [L]-connected sequence of triples
{(Uk, ωk, Gk)}k≤n where Gk : Uk → N is a stable singular neighbourhood of F ′

k.
Put U = U0 and show that the pair (W,U) satisfies lifting property. Consider

an arbitrary mapping g : Z → U where Z is a paracompact space with e-dimZ ≤
[L]. We may assume that g is embedded into a projection p′ : M × E → M for
some Tychonov space E such that Z ⊂ M × E. For each k = 0, 1, . . . , n we
let U ′

k = (p′)−1Uk and define open in M × E covering ω′
k = (p′)−1ωk of U ′

k and
multivalued mapping G′

k : U ′
k → N letting G′

k(x) = Gk(p
′(x)) for all x ∈ U ′

k. It is
easily seen that the sequence {(U ′

k, ω
′
k, G

′
k)}k≤n is also [L]-connected. Hence we

can apply Lemma 2.2 to obtain a map h : Z → N such that h(z) ∈ G′
n(St(z, ω′

n))
for all z ∈ Z.
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Now we can define lifting map g′ on Z letting g′(z) = (g(z), h(z)). Clearly
pg′ = g. It is easel seen from the construction and definition of Gn that g′ maps
Z into W .

3. Local properties of multivalued mappings

We follow definitions and notations from [16].

Definition 3.1. An ordering α of the subsets of a space Y is proper provided:

(a) If WαV , then W ⊂ V ;
(b) If W ⊂ V , and V αR, then WαR;
(c) If WαV , and V ⊂ R, then WαR.

Further we will not mention the space on which the proper ordering is defined.

Definition 3.2. Let α be a proper ordering.

(a) A metric space Y is locally of type α if, whenever y ∈ Y and V is a
neighbourhood of y, then there a neighbourhood W of y such that WαV .

(b) A multivalued mapping F : X → Y of topological space X into metric
space Y is lower α-continuous if for any points x ∈ X and y ∈ F (x) and
for any neighbourhood V of y in Y there exist neighbourhoods W of y in
Y and U of x in X such that (W ∩ F (x′))α(V ∩ F (x′)) provided x′ ∈ U .

For example, if WαV means that W is contractible in V , then locally of type
α means locally contractible. Another topological property which arise in this
manner is LCn (where WαV means that every continuous mapping of the n-
sphere into W is homotopic to a constant mapping in V ). For the special case
n = −1 the property WαV means that V is non-empty, and lower α-continuity
is lower semicontinuity.

If WαV means that the pair W ⊂ V is [L]-connected, then locally of type α
means local absolute extensor in dimension [L]. And we call lower α-continuity
of multivalued mapping as lower [L]-continuity.

Lemma 3.3. Let F : X → Y be lower α-continuous multivalued mapping of
topological space X to metric space Y . Consider a point y ∈ F (x). Then for
any ε > 0 there exist δ > 0 and neighbourhoods Oy of the point y in Y and Ox

of the point x in X such that for any points x′ ∈ Ox and y′ ∈ F (x′) ∩ Oy we
have (O(y′, δ) ∩ F (x′))α(O(y′, ε) ∩ F (x′)).

Proof. Since the mapping F is lower α-continuous, there are positive δ < ε/4
and a neighbourhood Ox of the point x such that (O(y, 2δ)∩F (x′))α(O(y, ε/2)∩
F (x′)) for every point x′ ∈ Ox. Put Oy = O(y, δ). Then for every x′ ∈ Ox and
every y′ ∈ F (x′) ∩ Oy we have inclusions O(y′, δ) ⊂ O(y, 2δ) and O(y, ε/2) ⊂
O(y′, ε). Therefore, (O(y′, δ) ∩ F (x′))α(O(y′, ε) ∩ F (x′)).
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Lemma 3.4. Let F : X → Y be lower α-continuous multivalued mapping of
topological space X to metric space Y . Consider a compact subset K of the
fiber F (x). Then for any ε > 0 there exist δ > 0 and neighbourhoods OK of
compactum K in Y and Ox of the point x in X such that for any points x′ ∈ Ox

and y′ ∈ F (x′) ∩OK we have (O(y′, δ) ∩ F (x′))α(O(y′, ε) ∩ F (x′)).

Proof. For every point y ∈ K take a number δy > 0 and neighbourhoods Oy of
the point y and Oyx of the point x by Lemma 3.3. Choose a finite subcovering
{Oyi}

m
i=1 of the cover {Oy}y∈K of compactum K and consider the corresponding

numbers δ1, . . . , δm and neighbourhoods O1x, . . . , Omx of the point x. Clearly,
we can put

OK =

m⋃

i=1

Oyi, δ = min
1≤i≤m

δi, Ox =

m⋂

i=1

Oix.

The lemma is proved.

Lemma 3.5. Suppose that lower α-continuous multivalued mapping F : X →
Y of paracompact space X to metric space Y contains a compact submapping
H : X → Y . Then for any continuous positive function ε : X → R there exist
a continuous positive function δ : X → R and a neighbourhood U of the graph
ΓH such that for any points x ∈ X and y ∈ F (x) ∩ U(x) we have (O(y, δ(x)) ∩
F (x))α(O(y, ε(x))∩ F (x)).

Proof. Using Lemma 3.4, we can find for every point x ∈ X a number σ(x) and
open neighbourhoods Ox of the point x and OH(x) of the compactum H(x)
such that (O(y′, σ(x)) ∩ F (x′))α(O(y′, ε(x)/2) ∩ F (x′)) for any points x′ ∈ Ox
and y′ ∈ F (x′) ∩OH(x). Moreover, we may take a neighbourhood Ox to be so
small that H(Ox) is contained in OH(x) and supx′∈Oxε(x

′) < 2 · infx′∈Oxε(x
′).

Let us refine a locally finite cover ω = {Wλ}λ∈Λ into the cover {Ox}x∈X

and for every λ ∈ Λ take a point xλ such that Wλ is contained in Oxλ. Let
δ : X → R be a continuous positive function such that for every point x ∈ X we
have δ(x) ≤ min{σ(xλ) | x ∈ Wλ}. Put U = ∪λ∈ΛWλ × OH(xλ). Since H(Wλ)
is contained in OH(xλ) and the sets Wλ cover X, then U is a neighbourhood of
the graph ΓH .

Consider an arbitrary point {x} × {y} ∈ U ∩ ΓF . By the construction of U ,
there is a set Wλ containing x such that {x} × {y} ∈ Wλ × OH(xλ). Then
(O(y, σ(xλ)) ∩ F (x))α(O(y, ε(xλ)/2) ∩ F (x)). Therefore, since ε(x) > ε(xλ)/2
and δ(x) ≤ σ(xλ), we have (O(y, δ(x)) ∩ F (x))α(O(y, ε(x)) ∩ F (x)).

In what follows we are going to work with covers of the product X × Y of
paracompact space X and metric space Y . It will be convenient to work with
”rectangular” covers. And we consider covers of the form ω × ε where ω is a
covering of X and ε : X → R is a continuous positive function. Precisely, the
covering ω × ε consists of all products {W ×O(y, ε(x))| x ∈W ∈ ω, x ∈ X}.



12 N. Brodsky, A. Chigogidze, A. Karasev

Remark 3.6. A real-valued function ε : X → R is called locally positive if for
any point x, there exists a neighbourhood on which the infimum of the function
is positive. For any locally positive function ε(x) on a paracompact space, there
exists a positive continuous function which is less than this function. Indeed,
consider a partition of the unity {ϕα(x)} subordinated to a locally finite covering
{Wα} of this paracompact space where the function ε(x) is greater than some
positive number cα on each element Wα of this covering. Then the function∑

α cα · ϕα(x) is the desired continuous function.

The following lemma shows that if we have a graph ΓH ⊂ X×Y of a compact
multivalued mapping H : X → Y of paracompact space X to metric space Y ,
then we may consider only ”rectangular” covers of this graph of the form ω× ε.

Lemma 3.7. For any open cover γ of the graph ΓH ⊂ X × Y of a compact
multivalued mapping H : X → Y of paracompact space X to metric space Y
there exist an open cover ω ∈ covX and a continuous positive function ε : X →
R such that the cover ω × ε of the graph ΓH refines γ.

Proof. Consider a point x ∈ X. For every point {x}× {y} ∈ {x}×H(x) we fix
its open neighbourhood Oyx × Oy refining γ. Take a finite subcover {Oyi}

N
i=1

of the cover {Oy}y∈H(x) of the compactum H(x) and let 2λ(x) be its Lebesgue
number. We put

Ox = (

N⋂

i=1

Oyi
x) ∩ {x′ ∈ X | H(x′) ⊂ O(H(x), λ(x))}

Then for any points x′ ∈ Ox and y′ ∈ H(x′) the set Ox× O(y′, λ(x)) refines γ.
Consider an open locally finite cover ω ∈ covX refining the cover {Ox}x∈X . For
every W ∈ ω we fix an element OxW of the cover {Ox}x∈X such that W ⊂ OxW .
Since the cover ω is locally finite, the function ε′(x) = min

x∈W∈ω
λ(xW ) is locally

positive. Let ε be any positive continuous function which is less than ε′. Then
we define ω × ε = {W ×O(y, ε(x)) | x ∈W ∈ ω, y ∈ H(x) ⊂ Y }.

In what follows we shall construct for a given positive continuous function
δ : X → R an open covering ω ∈ covX such that the function δ vary within any
element of the covering ω less than by half (i.e. supx∈W δ(x) < 2 · infx∈W δ(x)).
The following lemma shows the reason for such construction.

Lemma 3.8. Suppose that a positive continuous function δ : X → R vary
within any element of the covering ω ∈ covX less than by half. Then for any
points p0 = {x0} × {y0} ∈ X × Y and p = {x} × {y} ∈ St(p0, ω × δ) the star
St(p0, ω × δ) is contained in the product St(x0, ω) ×O(y, 16 · δ(x)).

Proof. For any point x′ ∈ St(x0, ω) we have δ(x′) ≤ 2 · δ(x0) ≤ 4 · δ(x). Then
the distance between points y0 and y is less than 8 · δ(x). Clearly, every element
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of the cover ω × δ containing the point p0 lies in the set St(x0, ω) × O(y0, 8 ·
δ(x)). Therefore, the star St(p0, ω × δ) is contained in the product St(x0, ω) ×
O(y, dist(y, y0) + 8 · δ(x)). The lemma is proved.

Let a lower semicontinuous mapping Φ: X → Y contain a compact submap-
ping Ψ. Let us define the notion of starlike α-refinement, relative to a pair
(Ψ,Φ), of coverings of the form (ω × ε), where ω ∈ covX and ε is a positive
continuous function on X.

Definition 3.9. A covering (ω′ × ε′) is called starlike α-refined into a covering
ω × ε relative to a pair (Ψ,Φ) if for any point z ∈ St(ΓΨ, ω

′ × ε′) there exists
an element W × O(y, ε(x)) of the cover ω × ε containing the star St(z, ω′ × ε′)
and such that

(St(z, ω′ × ε′)(x′) ∩ Φ(x′))α(O(y, ε(x)) ∩ Φ(x′))

for any point x′ ∈ prX(St(z, ω′ × ε′)).

Lemma 3.10. Suppose that lower α-continuous multivalued mapping F : X →
Y of paracompact space X to metric space Y contains a compact submapping
H : X → Y . Then for any continuous positive function ε : X → R and any
open cover ω ∈ covX there exist a continuous positive function δ : X → R and
an open cover ω′ ∈ covX such that the cover ω′ × δ is starlike α-refined into a
covering ω × ε relative to a pair (H,F ).

Proof. By Lemma 3.5 there exist a neighbourhood U of the graph ΓH and con-
tinuous positive function σ : X → R such that 16σ < ε and for any points
x ∈ X and y ∈ F (x)∩U(x) we have (O(y, 16σ(x))∩F (x))α(O(y, ε(x))∩F (x)).
By Lemma 3.7 there is a covering ω′′ × ν of the graph ΓH such that the star
St(ΓH , ω

′′×ν) is contained in U . Define a continuous positive function δ : X → R

by the equality δ(x) = 1
16

min{σ(x), ν(x)}. Consider a covering ω′ ∈ covX which
is starlike refined into ω and ω′′ and such that the function ε vary within any
element of the covering ω′ less than by half.

Then for every point p0 = {x0}× {y0} ∈ St(ΓH , ω
′ × δ) the star St(p0, ω

′× δ)
is contained in U . Indeed, the star St(x0, ω

′) is contained in some element V
of the cover ω′′. Take a point p = {x} × {y} ∈ ΓH ∩ St(p0, ω

′ × δ). By the
construction of the cover ω′′ × ν the set V × O(y, ν(x)) is contained in U . By
Lemma 3.8 the star St(p0, ω

′ × δ) is contained in V ×O(y, 16δ(x)).
Consider an arbitrary point x′ ∈ St(x0, ω

′) and suppose that the intersection
of the set St(p0, ω

′ × δ)(x′) with the fiber F (x′) is not empty and contains a
point y′. Then this intersection is contained in O(y′, 16δ(x′)). Since the point
{x′}×{y′} lies in U , then (O(y′, 16σ(x′))∩F (x))α(O(y′, ε(x′))∩F (x′)). Fix an
element W of the cover ω containing the star St(x0, ω

′). Clearly, the element
W × O(y′, ε(x′)) of the cover ω × ε contains the star St(p0, ω

′ × δ) (we apply
Lemma 3.8) and the set {x′} × O(y′, ε(x′)).
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The set
st(A, ω) =

⋃
{U ∈ ω| A ⊂ U}

is the small star of a set A relative to a covering ω. The proof of the following
lemma is easy (actually, it is Lemma of Continuity of Star Trace from [23])

Lemma 3.11. Let ω be an open covering of a metric space Y , let F : X → Y
be a compact multivalued mapping, and let Φ: X → Y be complete lower α-
continuous mapping. Then the multivalued mapping G which assigns the set
Φ(x) ∩ st(F (x), ω) to the point x ∈ X is complete and lower α-continuous.

Proof. The multivalued mapping G′ which assigns the small star st(F (x), ω) to
a point x ∈ X has the open graph in the space X × Y . Indeed, for a point
{x} × {y} ∈ ΓG′ there is an element W ∈ ω containing the image F (x). Then
by the upper semicontinuity of F , for some neighbourhood Ox ⊂ X of the
point x, the image F (Ox) is contained in W . Then the set Ox×W is an open
neighbourhood of the point {x} × {y} in the graph ΓG′ .

Now the completeness and the lower α-continuity of mapping Φ imply these
properties for the mapping G = G′ ∩ Φ by the openness of the graph ΓG′ .

4. [L]-soft mappings

In this section we prove several important technical results about [L]-soft
mappings. In particular, these results allows us to show that UV [L]-property of
compactum does not depend on embedding of this compactum into ANE([L])-
space.

Theorem 4.1. Let L be a locally finite countable CW -complex such that [L] ≤
[Sn] for some n. Then for a Polish space Y property Y ∈ LC [L] implies Y ∈
ANE([L]).

Proof. By Proposition A.3, it suffices to check property Y ∈ ANE([L]) for
Polish spaces. Since any Polish space X with e-dimX ≤ [L] admits closed
embedding into Polish AE([L])-space of extension dimension ≤ [L] [8], we may
assume that X ∈ AE([L]).

Let A be a closed subspace of X and f : A → Y be a continuous mapping.
There is an open covering ω of X\A with the following property: (i) for any
point a ∈ A and any its neighbourhood Oa in X there exists a neighbourhood Va

of a in X such that for all W ∈ ω if W ∩Va 6= ∅ then U ⊂ Oa [3, Theorem 3.1.4].
Since dim(X\A) ≤ n there exists an open refinement u =

⋃n

k=0 uk of ω where
uk is a countable discrete system of open disjoint sets [17].

For each U0
i ∈ u0 choose ai ∈ A such that dist(ai, U

0
i ) ≤ sup{dist(x,A) |

x ∈ U0
i } and define a mapping f0 on W0 = ∪{U0

i | U0
i ∈ u0} ∪ A as follows:

f0|A = f |A and f0(U
0
i ) = f(ai). It is easily seen that f0 is continuous.

By induction on k = 1, . . . , n we shall find neighbourhoods Wk of A in⋃k

j=0{U
j
i | U j

i ∈ uj}
⋃
A and using fk−1 we shall extend f to fk : Wk → Y .
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Since u covers X\A the mapping fn extends f to the neighbourhood Wn of A
in X.

Suppose that fk−1 has been already constructed. Since Y ∈ LC [L], for each
a ∈ A there exists a neighbourhood Oa of a in X such that fk−1|Oa

is [L]-
homotopic to a constant map in Y . Applying to Oa property (i) of u find
neighbourhood Va ⊂ Oa. Put Vk =

⋃
{Va | a ∈ A} and Wk = ∪{Uk

i | Uk
i ⊂

Vk} ∪Wk−1. Observe that for all Uk
i ∈ uk we have: (ii) fk−1|Uk

i
∩Wk−1

is [L]-

homotopic to a constant map in Y provided Uk
i ⊂ Vk.

We shall define fk as an extension of fk−1 from the set Wk−1\(∪{U
k
i | Uk

i ⊂
Vk}). Since the system uk is disjoint, we can define fk independently on every
Uk

i ⊂ Vk. Consider an arbitrary Uk
i ∈ uk such that Uk

i ⊂ Vk. If Wk−1\U
k
i is

open in X, choose a point ai ∈ A such that dist(ai, U
k
i ) ≤ sup{dist(x,A) | x ∈

Uk
i } and define fk(U

k
i ) = f(ai). Otherwise let Gi be an open neighbourhood of

Wk−1\U
k
i in Wk−1 ∪ U

k
i such that Gi ∩ (Uk

i \Wk−1) = ∅. Let Fi = Gi ∩ U
k
i .

Observe that Uk
i ∩Wk−1 is ANE([L]) as an open subspace of AE([L])-space

X. Hence Cone(Uk
i ∩Wk−1) is AE([L]) and therefore inclusion of Fi into the

base of the cone can be extended to a map of Uk
i into this cone. By (ii) there

exists an extension of fk−1|Fi
to the set Uk

i . Let fk|Uk
i

be an extension of fk−1|Fi

such that diam(fk(U
k
i )) < 2 · inf{diam(g(Uk

i )) | g extends fk−1|Fi
}.

Since uk is discrete system it suffices to check continuity of fk at every point
a ∈ A. Fix ε > 0. Since Y ∈ LC [L] and fk−1 is continuous mapping there exists
neighbourhood Oa of a in X such that fk−1|Oa

is [L]-homotopic to a constant
map in ε/5-neighbourhood of f(a). Applying property (i) of u to Oa find
neighbourhood Va of a. Additionally, we may assume that Va = O(a, δ) for some
δ > 0 such that O(a, 3δ) ⊂ Oa. For all Uk

i ∈ uk such that Uk
i ⊂ Vk and Uk

i ∩Va 6=
∅ we have Uk

i ⊂ Oa by the choice of Va. Therefore construction of fk|Uk
i

and

choice of Oa imply diam(fk(U
k
i )) < 4

5
ε. If Wk−1\U

k
i is open in X then by the

construction we have f(Uk
i ) = f(ai) where ai ∈ Oa. Hence dist(f(Uk

i ), f(a)) <
ε/5 in this case. Otherwise fk|Uk

i
was obtained as an extension of fk−1 from

nonempty set Fi and it follows that dist(fk(U
k
i ), f(a)) < 4

5
ε+ 1

5
ε = ε. Therefore

dist(fk(Va), f(a)) < ε as required.

The following theorem shows an importance of the notion of lower [L]-continuity.
As an application of our selection theorem, we shall prove the converse state-
ment in section 7.

Theorem 4.2. Let L be a CW -complex. If a singlevalued continuous mapping
f : Y → X of metric spaces is locally [L]-soft, then the multivalued mapping
f−1 : X → Y is lower [L]-continuous. If the mapping f is [L]-soft, then every
fiber f−1(x) is AE([L]).

Proof. Suppose that the mapping f−1 : X → Y is not lower [L]-continuous at
the point {x} × {y} of its graph. Then there exist a positive ε and a sequence
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of mappings {gi : Zi → X, g̃i : Ai → Y }∞i=1, where Ai is a closed subset of
paracompact space Zi of extension dimension e-dimZi ≤ [L], such that f ◦ g̃i =
gi|Ai

, the images gi(Zi) converges to the point x, the images g̃i(Ai) converges to
the point y, and the mapping g̃i can not be extended to a mapping of Zi into
O(y, ε).

We consider a topological space Z formed by the discrete union of all spaces
Zi and a point {p} with the following topology: an open base at the point p
consists of unions of this point and all but finite number of spaces Zi. Clearly,
the space Z is paracompact and e-dimZ ≤ [L], while the set {p} ∪

⋃∞
i=1Ai is

closed in Z. Let g : Z → X be a mapping such that g|Zi
= gi and g(p) = x. Also,

let g̃ : A → Y be a mapping such that g|Ai
= g̃i and g̃(p) = y. These mappings

are continuous and f ◦ g̃ = g|A. It is easy to see that we can not extend the
mapping g̃ over neighbourhood of A in Z to a lifting of g with respect to f .
Therefore, f is not locally [L]-soft. The first part of our lemma is proved.

Let the mapping f : Y → X be [L]-soft. We consider a point x and a map-
ping h : A → f−1(x) of a closed subset A of some paracompact space Z with
e-dimZ ≤ [L]. Since f is [L]-soft, the constant mapping h′ : Z → {x} admits a

lifting h̃ : Z → f−1(x) extending h. Thus f−1(x) ∈ AE([L]).

Theorem 4.3. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Sup-
pose that F : X → Y is a lower [L]-continuous multivalued mapping of paracom-
pact space X to metric space Y . Let K be a compact subspace of a fiber F (x)
for some point x ∈ X. Then for any ε > 0 there exist δ > 0 and open neigh-
bourhood Ox of the point x such that for each x′ ∈ Ox, for any paracompact
space Z with e-dimX ≤ [L], for each closed subspace A of Z and for any map
f : (A,Z) → (O(K, δ)

⋂
F (x′), O(K, δ)) there exists g : Z → F (x′)

⋂
O(K, ε)

such that f |A = g|A and dist(f, g) < ε.

Proof. Consider ε > 0. Using Lemma 3.4 choose sequence {δ−1 < δ0 < δ1 <
· · · < δn < δn+1 = ε} of positive numbers and neighbourhoods {Oix}

n
i=0

of x such that for all i = −1, 0, 1, . . . , n and for any points x′ ∈ Oix and
y′ ∈ F (x′)

⋂
O(K, δi) the pair O(y′, δi)

⋂
F (x′) ⊂ O(y′, δi+1/10)

⋂
F (x′) is [L]-

connected. Let {O(pi, δ0/10) | i = 1, . . . , m} be a finite covering of compactum

K such that pi ∈ K for all i and choose δ such that O(K, δ) ⊂
m⋃

i=1

O(pi, δ0/10).

Let Ox =
n⋂

i=1

Oix.

Fix x′ ∈ Ox and consider f : Z → O(K, δ) such that f(A) ⊂ F (x′)
⋂
O(K, δ)

where Z has extension dimension e-dimZ ≤ [L]. Let v be an open covering
{Vp = f−1O(p, δ0/10) | p = p1, . . . , pm} of Z. Find an open locally finite
covering Σ of Z such that closures of elements of Σ form strong star-refinement
of v and order of Σ is ≤ n + 1. For each s ∈ Σ find p(s) ∈ {p1, . . . , pm}
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such that St(s,Σ) ⊂ Vp(s) ∈ v and pick ys ∈ O(p(s), δ0/10)
⋂
F (x′). Note

that f(s) ⊂ O(p(s), δ0/10). Letting g−1 = f |A we shall inductively construct a
sequence of mappings {gk : Σ(k) ∪ A → F (x′)}n

k=−1, where Σ(k) was defined in
the beginning of Section 2, such that gk extends gk−1 and

gk((Σ
(k) ∪A) ∩ s) ⊂ O(ys, δk+1/2) for each s ∈ Σ (∗)

Since Σ(n) = Z and δn+1 = ε, (∗) implies gn(Z) ⊂ O(K, δ0/10+ ε/2) ⊂ O(K, ε).
Moreover, gn is ε-close to f , since for any s ∈ Σ we have dist(f |s, gn|s) <
dist(f |s, p(s))+dist(p(s), ys)+dist(gn|s, y(s)) < δ0/10+δ0/10+ε/2 < ε. There-
fore, letting g = gn we shall obtain desired mapping.

Suppose that gk has been already constructed. It suffices to define gk+1 on the
”interior” 〈σ〉 of each ”simplex” [σ] = [s0, s1, . . . , sk+1]. Let [σ]′ = [σ]∩(Σ(k)∪A).

By property (∗) of gk we have dist(gk([σ]′), ys0
) < δk+1/2 +

k+1
max
i=1

{dist(ys0
, ysi

)}.

Further, since f(s) ⊂ O(p(s), δ0/10) for any S and s0 ∩ si 6= ∅, we have
dist(p(s0), p(si)) < 2δ0/10. Since ysi

∈ O(p(si), δ0/10), we therefore obtain
k+1
max
i=1

{dist(ys0
, ysi

)} ≤ dist(ys0
, p(s0)) + dist(p(s0), p(si)) + dist(p(si), ysi

) <

δ0/10 + 2δ0/10 + δ0/10 = 2δ0/5. Therefore

gk([σ]′) ⊂ O(ys0
, δk+1/2 + 2δ0/5)

⋂
F (x′) ⊂ O(ys0

, δk+1

⋂
F (x′)

By the choice of Ox and δk+2 the pair

O(ys0
, δk+1)

⋂
F (x′) ⊂ O(ys0

, δk+2/10)
⋂
F (x′)

is [L]-connected. Hence the map gk can be extended to a map gk+1 such that
gk+1([σ]) ⊂ O(ys0

, δk+2/10)
⋂
F (x′). Let us check the property (∗). For any

point x ∈ (Σ(k)∪A)∩si by the construction of gk+1 we have: dist(gk+1(x), ysi
) <

dist(gk+1(x), ys0
) + dist(ys0

, ysi
) ≤ δk+2/10 + 2(δ0/5) < δk+2/2, as required.

Corollary 4.4. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Let
Y be a metric space, B be an ANE([L])-subspace of Y and K be a compact
subspace of B. Then for any open neighbourhood U of K in Y and for any ε > 0
there exists a neighbourhood V ⊂ O(K, ε) of K with the following property: for
any paracompact space X with e-dimX ≤ [L], any closed subspace A of X and
for any map f : X → V with f(A) ⊂ B there exists a map g : X → U ∩B such
that g is ε-close to f and g|A = f |A.

Lemma 4.5. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Let
F : X → Y be lower [L]-continuous multivalued mapping of topological space
X to metric space Y . Suppose that a fiber F (x) contains compact UV [L]-pair
K ⊂ M . Then for any neighbourhood U of M in Y there exist neighbourhoods



18 N. Brodsky, A. Chigogidze, A. Karasev

V of K in Y and Ox of the point x in X such that for any point x′ ∈ Ox the
pair V ∩ F (x′) ⊂ U ∩ F (x′) is [L]-connected.

Proof. Embed Y into Banach space E and consider F as a mapping into E.
Fix ε > 0 and take a neighbourhood O(M, 3ε) of M in E. By Theorem 4.3
there exist δ < ε and a neighbourhood Ox of the point x such that for any point
x′ ∈ Ox, for any space Z of extension dimension e-dimZ ≤ [L] and its closed
subset A ⊂ Z, and for any mapping ψ : (A,Z) → (O(M, δ) ∩ F (x′), O(M, δ))
there exists a mapping ψ′ : Z → F (x′) such that ψ′|A = ψ|A and dist(ψ, ψ′) < ε.

Applying Homotopy Extension Theorem (see for example [3]) to E, we find a
number σ such that for any space Z, any closed subspace A of Z, and any two σ-
close maps f, g : A → O(K, σ) such that f has an extension f ′ : Z → O(M, δ),
it follows that g also has an extension g′ : Z → O(M, 2δ) which is δ-close to
f ′. Using the UV [L]-property of the pair K ⊂ M in F (x), we take a number
µ < σ such that the pair O(K,µ) ∩ F (x) ⊂ O(K, δ) ∩ F (x) is [L]-connected.
By Theorem 4.3 there exists ν < µ such that for any space A of extension
dimension e-dimA ≤ [L] and for any mapping ϕ : A → O(K, ν) there is a
mapping ϕ′ : A→ O(K,µ) ∩ F (x) with dist(ϕ, ϕ′) < µ. Put V = O(K, ν).

Consider a point x′ ∈ Ox, a space Z of extension dimension e-dimZ ≤ [L]
and its closed subspace A ⊂ Z. Now any mapping ϕ : A→ V ∩F (x′) is µ-close
to some mapping ϕ′ : A→ O(K,µ)∩F (x) which can be extended to a mapping
ϕ̃′ : Z → O(M, δ) ∩ F (x). Since ϕ|A and ϕ′|A are σ-close maps into O(K, σ),
ϕ can also be extended to a mapping ψ : Z → O(M, 2δ) which is δ-close to ϕ̃′.
Finally, there is another extension ψ′ : Z → O(M, 2δ+ε)∩F (x′) of the mapping
ϕ. Thus, the pair V ∩ F (x′) ⊂ O(M, 3ε) ∩ F (x′) is [L]-connected.

Lemma 4.6. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Con-
sider spaces K ⊂ M ⊂ Y ⊂ E, where K and M are compacta, Y and E are
metric ANE([L])-spaces. Then K ⊂ M is UV [L]-pair in Y if and only if it is
UV [L]-pair in E.

Proof. If K ⊂ M is UV [L]-pair in Y , consider a multivalued mapping F of the
unit interval I = [0, 1] defined as follows: F (0) = Y and F (x) = E for any
positive x ∈ I. Clearly, F is lower [L]-continuous. Now Lemma 4.5 implies the
UV [L]-property of the pair K ⊂ M in E.

Assume that K ⊂ M is UV [L]-pair in E. Take an open neighbourhood
U of M in Y and consider an open neighbourhood O(M, 2ε) in E such that
O(M, 2ε)∩ Y ⊂ U . By Corollary 4.4 there exists δ < ε such that for any space
Z of extension dimension e-dimZ ≤ [L] and its closed subset A ⊂ Z, and for any
mapping ψ : (A,Z) → (O(K, δ)∩Y,O(K, δ)) there exists a mapping ψ′ : Z → Y
such that ψ′|A = ψ|A and dist(ψ, ψ′) < ε. Using the UV [L]-property of the pair
K ⊂ M in E, we can find a neighbourhood V ′ of K in E. Put V = V ′ ∩ Y .
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Now any mapping ϕ : A → V of closed subset A of space Z of extension
dimension e-dimZ ≤ [L] can be extended to a mapping ψ : Z → O(K, δ). And
by the choice of δ there is an extension ψ′ : Z → O(M, 2ε) ∩ Y of the mapping
ϕ.

Theorem 4.7. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Sup-
pose that a compact pair K ⊂M is UV [L]-connected with respect to embedding in
some Polish ANE([L])-space B. Then this pair is UV [L]-connected with respect
to any embedding in any Polish ANE([L])-space.

Proof. There exists an embedding i : M → R
ω which can be extended to an

embedding of any Polish space containing M (see Theorem 2.3.17 in [10]).
If the pair K ⊂ M is UV [L]-connected in a Polish space B, then we can

extend i to an embedding of B in R
ω and the pair K ⊂ M is UV [L]-connected

in R
ω by Lemma 4.6.

Consider any Polish ANE([L])-space Y , containing M . Extending i to an
embedding of Y into R

ω, we obtain UV [L]-connectedness of the pair K ⊂M in
Y by Lemma 4.6.

5. Compact-valued selections

This section is devoted to the construction of compact-valued upper semicon-
tinuous selections for multivalued mappings.

Lemma 5.1. Let f : X → Y be a continuous singlevalued mapping of compact
metric spaces. Let Y1 ⊂ Y be a closed subset and X1 be its inverse image
X1 = f−1(Y1). If the mapping f |X1

: X1 → Y1 is approximately [L]-invertible
and the pair X1 ⊂ X is UV [L]-connected, then the pair Y1 ⊂ Y is also UV [L]-
connected.

Proof. Consider f as a submapping of the projection π : l2 × l2 → l2. Let U be
some neighbourhood of a compact space Y in l2. We must find a neighbourhood
V for Y1 such that the pair V ⊂ U is [L]-connected.

By the UV [L]-connectedness of the pair X1 ⊂ X, we fix an open neighbour-
hoodW of X1 such that the pairW ⊂ π−1(U) is [L]-connected. By approximate
[L]-invertibility of the mapping f |X1

there exists a neighbourhood V of Y1 such
that any mapping g : Z → V of the space Z of extension dimension e-dimZ ≤ [L]
admits a lifting map g̃ : Z → U .

Now if g : A → V is a mapping of closed subset A ⊂ Z where e-dimZ ≤ [L],
we take a lifting map g̃ : A → W and extend it to a mapping g′ : Z → π−1(U).
Define an extension of g as π ◦ g′.

By expZ is denoted the space of all compact subsets of a metric space Z
endowed with the Hausdorff metric.
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Definition 5.2. The exponential of a pair exp(A,B) is a subspace of expB
formed by compact sets K ⊂ B containing A. We define the UV [L]-exponential
of the pair (A,B) as follows:

UV [L]- exp(A,B) = {K ∈ expB | the pair A ⊂ K is UV [L]-connected}.

Lemma 5.3. For any pair (K,X) formed by a compact set K and a metric

space X, the set UV[L]- exp(K,X) is closed in exp(K,X).

Proof. Let a sequence of compact sets {Km}m≥1 from the UV[L]-exponential
of the pair (K,X) be convergent with respect to the Hausdorff metric to a
compact set K0. Consider a neighbourhood U of K0. There exists m ≥ 1 such
that Km ⊂ U . Now UV [L]-connectedness of the pair K ⊂ Km allows us to
find a neighbourhood V of the compact set K such that the pair V ⊂ U is
[L]-connected.

Definition 5.4. The fiberwise exponential of a multivalued mapping F : X →
Y is the mapping expF : X → exp Y which assigns expF (x) to a point x.

Lemma 5.5. The fiberwise exponential of a complete mapping is complete.

Proof. Since the exponential of an open set is open and the exponential of an
intersection coincides with the intersection of exponentials, the exponential of a
Gδ-set is a Gδ-set. Since the exponential of a closed set is closed, the exponential
of a fiber closed in a Gδ-set is closed in the exponential of a Gδ-set.

Lemma 5.6. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
Suppose that a metric space Z contains a compactum K and the pair K ⊂ Z is
[L]-connected. Then there exists a compactum K ′ ⊂ Z containing K such that
the pair K ⊂ K ′ is UV [L]-connected.

Proof. By proposition 2.23 in [9], there is a compactum X of extension di-
mension e-dimX ≤ [L] and a continuous mapping f of X onto K such that
every fiber f−1(y) is UV [L]–compactum. By Theorem 2.9, the mapping f is ap-
proximately [L]–invertible. There exists AE([L])-compactum X [L] containing
X such that e-dimX [L] = [L] [8]. It is easy to see from Lemma 4.7 that the pair
X ⊂ X [L] is UV [L]-connected.

Since the pair K ⊂ Z is [L]-connected, we can extend the mapping f to a

mapping f̃ : X [L] → Z. Put K ′ = f̃(X [L]). Then the pair K ⊂ K ′ is UV [L]-
connected by Lemma 5.1.

Definition 5.7. For a multivalued mapping Φ: X → Y and its compact submap-
ping Ψ we define fiberwise UV [L]-exponential of the pair UV [L]- exp(Ψ,Φ): X →
expY as a mapping assigning UV [L]- exp(Ψ(x),Φ(x)) to a point x ∈ X.
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Lemma 5.8. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
Suppose that a lower [L]-continuous mapping Φ: X → Y of paracompact space
X to metric space Y contains a compact submapping Ψ. Then the fiberwise
UV[L]-exponential of the pair UV[L]- exp(Ψ,Φ) is lower semicontinuous.

Proof. Denote F = UV[L]- exp(Ψ,Φ), and for a point x ∈ X fix a compact
set K ∈ F (x). Fix a positive number ε. By Lemma 4.5 there are number
δ < ε and neighbourhood O′

x of the point x such that the pair O(Ψ(x), δ) ∩
Φ(x′) ⊂ O(K, ε)∩Φ(x′) is [L]-connected for any point x′ ∈ O′

x. Since Φ is lower
semicontinuous and K is compact, there exists a neighbourhood O′′

x of the point
x such that O(y, ε/2) ∩ Φ(x′) 6= ∅ for any points y ∈ K and x′ ∈ O′′

x (apply
Lemma 3.4). Let Ox be a neighbourhood of x such that Ox ⊂ O′

x ∩ O′′
x and

Ψ(x′) ⊂ O(Ψ(x), δ) for every point x′ ∈ Ox.

Take any point x′ ∈ Ox. By Lemma 5.6 there exists a compactum K̃ ⊂
Φ(x′)∩O(K, ε) such that the pair Ψ(x′) ⊂ K̃ is UV [L]-connected, and therefore

K̃ ∈ F (x′). It remains to enlarge (if necessary) the compactum K̃ to obtain

a compactum K ′ with dist(K̃,K ′) < ε. By the choice of the neighbourhood
O′′

x there is a finite set of points P in Φ(x′) such that dist(K,P ) < ε. We put

K ′ = K̃ ∪ P .

Lemma 5.9. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
Let Φ: X → Y be a complete lower [L]-continuous mapping of a paracompact
space into a complete metric space containing a compact submapping Ψ such
that the pair Ψ ⊂ Φ is fiberwise [L]-connected. Then there exists a compact
submapping Ψ′ of the mapping Φ such that the pair Ψ(x) ⊂ Ψ′(x) is UV [L]-
connected for any x ∈ X.

Proof. Consider F = UV[L]- exp(Ψ,Φ). According to Lemma 5.6, the map-
ping F has nonempty fibers. By Lemma 5.8, F is lower semicontinuous. By
Lemma 5.3, F is fiberwise closed in exp(Ψ,Φ), and therefore, the completeness
of this mapping follows from the completeness of the latter, which was estab-
lished in Lemma 5.5. Then by the compact-valued selection theorem from [23],
the mapping F admits a compact selection F ′. Define a compact mapping
Ψ′ : X → Y by the equality Ψ′(x) =

⋃
K∈F ′(x)K. Since for any K ∈ F ′(x),

the pair Ψ(x) ⊂ K is UV [L]-connected, then the pair Ψ(x) ⊂ Ψ′(x) is also
UV [L]-connected.

Lemma 5.10. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
Then any [L]-connected lower [L]-continuous increasing n-filtration Φ = {Φk} of
complete mappings of a paracompact space to a complete metric space contains
a compact UV[L]-connected n-subfiltration Ψ = {Ψk}.
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Proof. The construction of filtration Ψ is performed by induction with the use
of Lemma 5.9. The initial step of induction consists in the construction of a
compact submapping Ψ0 ⊂ Φ0. This can be done by the use of the compact-
valued selection theorem from [23] since the initial term of the filtration Φ is

lower semicontinuous. If compact UV[L]-connected filtration {Ψm}m<k has been
constructed such that Ψm ⊂ Φm for m < k, then the pair Ψk−1 ⊂ Φk satisfies
the conditions of Lemma 5.9, and according to this lemma, we complete the
construction of the filtration.

The following lemma is a generalization of Lemma 4.5 and we will use it in
section 7.

Lemma 5.11. Let L be a CW -complex such that [L] ≤ [Sn] for some n. Let
F : X → Y be lower [L]-continuous multivalued mapping of paracompact space
X to metric space Y . For a closed subset A ⊂ X consider a compact submap-

pings H ⊂ H̃ : A → Y of the mapping F |A. If the pair H ⊂ H̃ is fiberwise
UV [L]-connected, then for any neighbourhood U of the graph ΓH̃ in the product
X × Y there exists a neighbourhood V of the graph ΓH in the product X × Y
such that the pair V(x)∩F (x) ⊂ U(x)∩F (x) is [L]-connected for every x from
some open neighbourhood of the set A.

Proof. By Lemma 4.5 we take for every point x ∈ A an open neighbourhood
Ox ⊂ X of the point x and an open neighbourhood Vx ⊂ Y of the set H(x) such
that the set H(Ox∩A) is contained in Vx and the pair Vx∩F (x′) ⊂ U(x′)∩F (x′)
is [L]-connected for every point x′ ∈ Ox. Fix a closed neighbourhood B of the
set A such that B ⊂ ∪x∈AOx. Let Ω1 = {ωλ}λ∈Λ be a locally finite open (in B)
cover of B refining the cover {Ox}x∈A. For every λ ∈ Λ we take a set Vλ = Vx

such that ωλ ⊂ Ox. Let Ω2 ∈ covB be a locally finite open cover starlike refining
Ω1. For x ∈ IntB we define

V(x) = ∩{Vλ | St(x,Ω2) ⊂ ωλ}.

Since the cover Ω1 is locally finite, the set V(x) is an intersection of finitely
many open sets, and, therefore, V(x) is open.

Since for every λ the pair Vλ ∩F (x) ⊂ U(x)∩F (x) is [L]-connected, then the
pair V(x) ∩ F (x) ⊂ U(x) ∩ F (x) is [L]-connected. Since the cover Ω2 is locally
finite, then for every point x ∈ IntB there is a neighbourhood Wx such that for
any point x′ ∈Wx we have St(x,Ω2) ⊂ St(x′,Ω2). Therefore, for every x′ ∈Wx

we have V(x) ⊂ V(x′). Thus, the set V is open.

Corollary 5.12. Let L be a CW -complex such that [L] ≤ [Sn] for some n.
Suppose that lower [L]-continuous multivalued mapping F : X → Y of paracom-
pact space X to metric space Y contains a singlevalued continuous selection
f : A → Y over the closed subset A ⊂ X. Then for any neighbourhood U
of the graph Γf in the product X × Y there exists a neighbourhood V of the
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graph Γf in the product X × Y such that for every point x ∈ prXV the pair
V(x) ∩ F (x) ⊂ U(x) ∩ F (x) is [L]-connected.

6. Selection theorems

The gauge of a multivalued mapping F : X → Y is defined as

cal(F ) = sup{diamF (x)| x ∈ X}.

Lemma 6.1. Let L be a finite CW -complex such that [L] ≤ [Sn] for some
n. Let X be a paracompact space of extension dimension e-dimX ≤ [L]. If a
complete lower [L]-continuous mapping Φ: X → Y into a complete metric space
Y contains an n-UV [L]-filtered compact submapping Ψ, then any neighbourhood
of the graph ΓΨ contains the graph of a compact n-UV [L]-filtered submapping Ψ′

of the mapping Φ whose gauge cal(Ψ′) does not exceed any given ε.

Proof. Given an arbitrary number ε > 0 and an open neighbourhood U of the
graph ΓΨ in the product X × Y , consider a covering ωn × εn of the graph ΓΨ

such that the star St(ΓΨ, ωn × εn) is contained in U (Lemma 3.7 is applied),
while the function εn(x) does not exceed ε/3.

For an [L]-continuous mapping Φ and for its compact submapping Ψ, applying
successively Lemma 3.10, we construct the coverings {ωk × εk}

n−1
k=0 such that

ωk × εk is starlike [L]-connectedly refined into ωk+1 × εk+1 for any k < n. By
Lemma 3.5 there is a neighbourhood V of the graph ΓΨ in the product X × Y
such that for any point {x} × {y} ∈ V, the star of this point relative to the
covering ω0 × ε0 intersects the fiber {x} × Φ(x).

By Theorem 2.6, there is a continuous singlevalued mapping ψ : X → Y
whose graph is contained in V. We fix an [L]-connected n-filtration {Gm} given
fiberwise by the equality Gm(x) = Φ(x) ∩ St({x} × ψ(x), ωm × εm)(x). Since
the projection of the star St({x} × ψ(x), ωn × εn) onto Y has the diameter
less than ε, then calGn < ε. By Lemma 3.11 the filtration {Gm} is complete
and lower [L]-continuous. Finally, Lemma 5.10 allows us to find a compact
UV [L]-connected n-subfiltration Ψ′ = {Ψ′

k}.

Theorem 6.2. Let L be a finite CW -complex such that [L] ≤ [Sn] for some
n. Let X be a paracompact space of extension dimension e-dimX ≤ [L]. If
a complete lower [L]-continuous multivalued mapping Φ of X into a complete
metric space Y contains an n-UV [L]-filtered compact submapping Ψ, then Φ
contains a singlevalued continuous selection s.

A selection s can be chosen in such a way that the graph of this selection is
contained in any given neighbourhood U of the graph ΓΨ in the product X × Y .

Proof. Let {Ψk}
n
k=0 be UV [L]-filtration of Ψ. Denote Ψn by Ψ0

n and take an
arbitrary neighbourhood U0 of the graph Ψ0

n. Consider a Gδ-subset G ⊂ X ×Y
such that all fibers of F are closed in G and fix open sets Gi ⊂ X × Y such
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that G = ∩∞
i=0Gi. By induction with the use of Lemma 6.1, we construct a

sequence of n-UV [L]-filtered mappings {Ψk
n}

∞
k=1 and of open neighbourhoods of

graphs of these mappings {Uk}
∞
k=1 such that for any k ≥ 1, the gauge calΨk

n

does not exceed 1
2k , while the graph Ψk

n together with its neighbourhood Uk

is in Uk−1 ∩ Gk−1. It is not difficult to choose the neighbourhood Uk of the
graph Ψk

n in such a way that the fibers Uk(x) have the diameter not more than
3 · calΨk

n = 3
2k .

Then for any m ≥ k ≥ 1 and for any point x ∈ X, Ψm
n (x) ⊂ O(Ψk

n(x),
3
2k );

this implies that {Ψk
n}

∞
k=1 is a Cauchy sequence. Since Y is complete, there

exists a limit s of this sequence. The mapping s is singlevalued by the condition
calΨk

n <
1
2k and is upper semicontinuous (and, therefore, is continuous) by the

upper semicontinuity of all the mappings Ψk
n. Clearly, for any x ∈ X the point

s(x) lies in G(x) and is a limit point of the set F (x). Since F (x) is closed in
G(x), then s(x) ∈ F (x), i.e. s is a selection of the mapping F .

Corollary 6.3. Let L be a finite CW -complex such that [L] ≤ [Sn] for some
n. Let X be a paracompact space of extension dimension e-dimX ≤ [L]. Let
a complete lower [L]-continuous multivalued mapping Φ of X into a complete
metric space Y contains an n-UV [L]-filtered compact submapping Ψ which is
singlevalued on some closed subset A ⊂ X. Then any neighbourhood U of the
graph ΓΨ in the product X × Y contains the graph of a singlevalued continuous
selection s of the mapping Φ which coincides with Ψ

∣∣
A

on the set A.

Proof. Apply Theorem 6.2 to the mapping F defined as follows:

F (x) =

{
Ψ(x), if x ∈ A

Φ(x), if x ∈ X \A.

Theorem 6.4. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
Let X be a paracompact space of extension dimension e-dimX ≤ [L]. Suppose
that multivalued mapping F : X → Y into a complete metric space Y admits
a lower [L]-continuous, complete, and fiberwise [L]-connected n-filtration F0 ⊂
F1 ⊂ · · · ⊂ Fn ⊂ F . If f : A → Y is a continuous singlevalued selection of
F0 over a closed subspace A ⊂ X, then there exists a continuous singlevalued

selection f̃ : X → Y of the mapping F such that f̃ |A = f .

Proof. For every i ≤ n define a multivalued mapping Φi : X → Y as follows:

Φi(x) =

{
f(x), if x ∈ A

Fi(x), if x ∈ X \ A.

Then Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φn is lower [L]-continuous, complete, and fiberwise
[L]-connected n-filtration. By Lemma 5.10 the mapping Φn contains a compact
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UV[L]-connected n-subfiltration. And application of Theorem 6.2 completes the
proof.

Theorem 6.5. Let L be a finite CW -complex such that [L] ≤ [Sn] for some
n. Let X be a paracompact space of extension dimension e-dimX ≤ [L]. Let
F : X → Y be a complete lower [L]-continuous multivalued mapping into a
complete metric space. Suppose that f : A → Y is a continuous singlevalued
selection of F over a closed subspace A ⊂ X. Then there exists a continuous
extension of f to a selection of the mapping F over some neighbourhood of the
set A.

Proof. Put Un = X × Y . Using Corollary 5.12 we find open neighbourhoods
U0 ⊂ U1 ⊂ · · · ⊂ Un of the graph Γf in X × Y such that for any x ∈ prXU0

the pair Ui(x) ∩ F (x) ⊂ Ui+1(x) ∩ F (x) is [L]-connected for every i < n. Let
OA be a closed neighbourhood of A contained in prXU0. For every i ≤ n
define a multivalued mapping Fi : OA → Y by equality Fi(x) = Ui(x) ∩ F (x).
Then F0 ⊂ F1 ⊂ · · · ⊂ Fn = F |OA is fiberwise [L]-connected n-filtration. As a
closed subset of X, the space OA is paracompact of extension dimension ≤ [L].
It is easy to see that every mapping Fi is lower [L]-continuous and complete.
Applying Theorem 6.4 we extend f to a selection of F over OA.

7. Applications of selection theorems

The following theorem is well-known for n-soft mappings [12].

Theorem 7.1. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
A singlevalued continuous mapping f : Y → X of Polish spaces is locally [L]-
soft if and only if the multivalued mapping f−1 : X → Y is lower [L]-continuous.
The mapping f is [L]-soft if and only if every fiber f−1(x) is AE([L]) and the
mapping f−1 is lower [L]-continuous.

Proof. The part ”only if” is proved in section 4 (Theorem 4.2).
For the ”if” part, consider a paracompact space Z with e-dimZ ≤ [L], its

closed subset A ⊂ Z, and continuous mappings g : Z → X and g′ : A → Y
such that g|A = f ◦ g′. Then the multivalued mapping F : Z → Y defined as
F = f−1 ◦ g is lower [L]-continuous and complete. By Theorem 6.5 a selection
g′ of F admits an extension g̃ on some open neighbourhood OA of the set A. If
every set f−1(x) is AE([L]), then filtration F ⊂ F ⊂ · · · ⊂ F is fiberwise [L]-
connected and by Theorem 6.4 we can assume that g̃ is defined on Z. Clearly,
g̃ is a lifting of g and theorem is proved.

Lemma 7.2. Let L be a finite CW -complex such that [L] ≤ [Sn] for some
n. Let F : X → Y be lower [L]-continuous complete multivalued mapping of a
separable metric space X with e-dimX ≤ [L] to Polish space Y . Suppose that
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Ψ: A → Y is u.s.c. UV [L]-valued submapping of F |A defined on closed subset
A ⊂ X. Then there exists u.s.c. UV [L]-valued submapping Ψ′ : OA → Y of
F |OA defined on some neighbourhood OA of A such that Ψ′|A = Ψ, and Ψ′|OA\A

is continuous and singlevalued.

Proof. Using Lemma 5.11, we can construct a sequence {Ui}
∞
i=1 of open in X×Y

neighbourhoods of the graph ΓΨ such that U0 = X × Y and for every i ≥ 0
the pair Ui+1(x) ∩ F (x) ⊂ Ui(x) ∩ F (x) is [L]-connected for all x from some
open neighbourhood OiA of the set A. We may assume that the set Ui is
contained in 1

2i+1 -neighbourhood of the graph ΓΨ (for metric spaces (X, ρX)
and (Y, ρY ) we equip the product X × Y with a metric ρ((x1, y1), (x2, y2)) =
max{ρX(x1, x2), ρY (y1, y2)}).

Take a sequence {Fk}
∞
k=1 of closed neighbourhoods of the set A such that

Fk ⊂ prX(Uk) ∩ Ok−1A and Fk+1 ⊂ Int(Fk) for every k ≥ 1. Put OA = Fn+1.
Define the maps {Φm : Fn \ A → Y }n

m=0 by the rule Φm(x) = Uk−m(x) ∩ F (x)
for all x ∈ Fk \ Fk+1. Using Theorem 6.4, we obtain a continuous singlevalued
selection f : OA\A→ Y of the map Φn. Let the map Ψ′ : OA→ Y be given by
Ψ on A and by f on OA\A. Since the graph Γf over the set Fk \A is contained
in Uk−n−1 (and, therefore, in 1

2k−n -neighbourhood of the graph ΓΨ), we see that
Ψ′ is upper semicontinuous.

Theorem 7.3. Let L be a finite CW -complex such that [L] ≤ [Sn] for some
n. Let Ψ: A → l2 be u.s.c. UV [L]-valued mapping of a closed subset A ⊂ X
of separable metric space X. Then there exists u.s.c. UV [L]-valued mapping
Ψ′ : X → l2 such that Ψ′|A = Ψ.

Proof. Consider proper continuous mapping f : Y → X of separable metric
spaces such that every fiber f−1(x) is UV [L]-compactum and e-dimY ≤ [L] (see
proposition 2.23 in [9]). Denote by A′ the set f−1(A) ⊂ Y . Using Lemma 7.2 we
can find u.s.c. UV [L]-valued extension F : Y → l2 of the mapping Ψ◦f : A′ → l2
which is singlevalued and continuous on Y \ A′. Let β be positive continuous
function on Y \ A′ such that β(y) = dist(f(y), A). Using propositions 4.7 and
4.8 from [1], we can change the mapping F on Y \ A′ in such a way that new
mapping F ′ : Y → l2 has the following properties:

(1) the restriction of F ′ to the fiber f−1(x) is an embedding for all x ∈ X \A;
(2) dist(F (y), F ′(y)) < β(y) for all y ∈ Y \ A′.

Upper semicontinuity of F ′ easily follows from (2). Let the map Ψ′ be given
by Ψ′(x) = F ′ ◦ f−1(x) for all x ∈ X \ A. ¿From (1) it follows that Ψ′(x) is
homeomorphic to UV [L]-compactum f−1(x) for all x ∈ X \ A. Clearly, Ψ′ is
upper semicontinuous.
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A proper continuous mapping with preimages of points being UV [L]-compacta
is called UV [L]-mapping. The following factorization theorem is known for n-soft
maps [5].

Theorem 7.4. Let L be a finite CW -complex such that [L] ≤ [Sn] for some n.
If the composition f ◦ g of mappings of Polish spaces is (locally) [L]-soft and g
is UV [L]-map, then f is (locally) [L]-soft.

Proof. Let g : Y → E and f : E → X be given maps. Consider a mapping
ϕ : Z → X of Polish space Z with e-dimZ ≤ [L] and a mapping ψ : A → E of
a closed subset A ⊂ Z such that f ◦ ψ = ϕ|A.

A multivalued mapping Φ = g−1 ◦ f−1 ◦ ϕ : Z → Y is complete and lower
[L]-continuous by Theorem 4.2. We have u.s.c. UV [L]-valued submapping Ψ =
g−1 ◦ ψ : A → Y of the map Φ. By Lemma 7.2 there is u.s.c. UV [L]-valued
submapping Ψ′ of Φ defined on some neighbourhoodOA of A such that Ψ′|A = Ψ
and Ψ′|OA\A is continuous and singlevalued. Clearly, if the map f ◦ g is [L]-soft,
we may assume OA = Z. Then the mapping ψ′ = g ◦ Ψ′ extending ψ is
singlevalued and continuous, and f ◦ ψ′ = ϕ|OA.

The following corollary was known for L = Sk (see [2, Propositions 2.1.1 and
2.1.2(ii)]).

Corollary 7.5. Let L be a finite CW -complex such that [L] ≤ [Sn] for some
n and g : X → Y be a UV [L]-map between Polish spaces. If X ∈ A(N)E([L]),
then Y ∈ A(N)E([L]).

Proof. Apply Theorem 7.4 to the composition f ◦ g, where f : Y → {pt} is a
constant map.

Theorem 7.6. Let f : X → Y be a mapping of metric compacta where dimY <
∞. Suppose that e-dimY ≤ [M ] for some finite CW -complex M . If for some
locally finite countable CW -complex L we have e-dim(f−1(y)×Z) ≤ [L] for every
point y ∈ Y and any Polish space Z with e-dimZ ≤ [M ], then e-dimX ≤ [L].

Proof. Suppose A ⊂ X is closed and g : A → L is a map. We are going to find
a continuous extension g̃ : X → L of g. Let K be the cone over L with a vertex
v. Denote W = {h ∈ C(X,K) | h|A = g} — a closed subspace of C(X,K). We
define a multivalued map F : Y → W as follows:

F (y) = {h ∈ C(X,K) | h(f−1(y)) ⊂ K \ {v}}.

Claim. F admits continuous singlevalued selection.
If ϕ : Y → W is a continuous selection for F , then the mapping h : X → K

defined by h(x) = ϕ(f(x))(x) is continuous. Since ϕ(f(x)) ∈ F (f(x)) for every
x ∈ X, we have h(X) ⊂ K \ {v}. Now if π : K \ {v} → L denotes the natural
retraction, then g̃ = π ◦ h : X → L is the desired continuous extension of h.
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Proof of the claim. Since K is Polish space, the space C(X,K) is also Polish
as well as its closed subspace W. Clearly, the graph of F is open in Y × W,
therefore F is complete. Lower [M ]-continuity of F easily follows from the facts
that the space W is locally contractible and F has open graph.

Let us prove that the inclusion F ⊂ F is fiberwise [M ]-connected. Fix a point
y ∈ Y and consider a mapping σ : B → F (y) of closed subspace B of a space Z
with e-dimZ ≤ [M ]. Since F (y) is Polish space, by Corollary A.2 we may assume
that Z is a Polish space. It defines a mapping s : B ×X → K by the formula
s({b} × {x}) = σ(b)(x). Extend s to a set Z × A letting s({z} × {a}) = g(a).
Clearly, s takes the set Z× f−1(y)∩ (Z×A∪B×X) into K \ {v} ∼= L× [0, 1).
Since e-dim(Z × f−1(y)) ≤ [L], we can extend s over the set Z × f−1(y) to
take it into K \ {v}. Finally extend s over Z ×X as a mapping into AE-space
K. Now define an extension σ′ : Z → F (y) of the mapping σ by the formula
σ′(z)(x) = s({z} × {x}).

To find a continuous selection of F we apply Theorem 6.4 to an n-filtration
F ⊂ F ⊂ · · · ⊂ F .

Appendix A.

Let L be a CW -complex. A pair of spaces X ⊂ Y is said to be [L]-connected
for Polish spaces if for every Polish space Z of extension dimension e-dimZ ≤ [L]
and for every closed subspace T ⊂ Z any mapping of T into X can be extended
to a mapping of Z into Y .

Proposition A.1. Let L be a countable locally finite CW -complex and X ⊆ Y
be a [L]-connected pair for Polish spaces in which X is a Polish space. Then for
every completely regular space Z of extension dimension e-dimZ ≤ [L] and for
every C-embedded subspace T ⊂ Z any mapping of T into X can be extended
to a mapping of Z into Y . In other words, X ⊆ Y is [L]-connected in the sense
of Definition 1.3.

Proof. Consider the Hewitt realcompactification υZ of the space Z. Note that
e-dimυZ ≤ [L] (see [8], [9, Theorem 5.1]). By [9, Theorem 5.2], the realcompact
space υZ can be represented as the limit space of a Polish spectrum SνZ =
{Zα, p

β
α, A} such that e-dimZα ≤ [L] for each α ∈ A.

Since T is C-embedded in Z it follows that clυZ T coincides with the He-
witt realcompactification υT of T . Next consider the inverse spectrum S ′ =
{clZα

pα(T ), qβ
α, A}, where qβ

α = pβ
α |clZα

pα(T ) for each α, β ∈ A with α ≤ β.
Since υT is closed in υZ it follows that limS ′ = υT . It is clear that υT is C-
embedded in υZ. This observation, combined with the fact that the spectrum S
is factorizing, guarantees that the spectrum S ′ is also factorizing. Now consider
a continuous mapping f : T → X. Since X is Polish there exists a continuous
extension f̃ : υT → X. Factorizability of the spectrum S ′ implies that we can
find an index α ∈ A and a continuous mapping fα : clZα

pα(T ) → X such that
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f̃ = fα◦pα |υT . Now recall that the pair X ⊆ Y is [L]-connected and that Zα is
a Polish space such that e-dimZα ≤ [L]. Consequently there exists a continuous
extension gα : Zα → Y of fα. Finally consider the composition pα ◦gα : υZ → Y
and let g = pα ◦ gα |Z . Straightforward verification shows that f = g |T .

Since every closed subspace of any normal space is C-embedded in it we
obtain the following statement.

Corollary A.2. Let X ⊆ Y be a [L]-connected pair of Polish spaces. Then for
every paracompact space Z of extension dimension e-dimZ ≤ [L] and for every
closed subspace T ⊂ Z any mapping of T into X can be extended to a mapping
of Z into Y .

The following statement also can be proved using the spectral technique as
presented in [10] (compare to the proof of Proposition A.1).

Proposition A.3. Let L be a countable locally finite CW -complex and X be a
Polish space. If X ∈ ANE([L]) for Polish spaces, then X ∈ ANE([L]).

References
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