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Abstract 
A new numerical method is introduced and investigated for the hypersingular integral equations 
defined in Banach spaces. The hypersingular integral equations belong to a wider class of singular  
integral equations having much more stronger singularities.The proposed approximation method is 
an extension beyond  the quadrature method. Beyond the above, an error estimates theory is 
proposed and investigated for the hypersingular integral equations by proving some new theorems. 
Finally, the inequalities valid between the exact solutions of the hypersingular integral equations 
and the corresponding approximate solutions, are proposed and proved.  
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1. Introduction 

The hypersingular integral equations consist to a wider class of singular integral equations. In 
particular the  kernel of such integral equations has a stronger singularity as compared to the finite-
part singular integral equations. Consequently, there is very big interest for the numerical  
evaluation of the hypersingular integral equations, as closed form solutions are not possible to be 
determined.  

J. Hadamard [1], [2] was the first scientist who introduced the concept of finite - part integrals, 
and L. Schwartz [3] studied very basic properties of them. Some years later, H.R. Kutt [4] proposed 
some algorithms for the numerical evaluation of the finite-part singular integrals and studied the 
difference between a finite - part integral and a "generalized principal value integral".  

On the contrary, M.A. Golberg [5] investigated the convergence of several numerical methods 
for the solution of finite-part integrals. He proposed a method, which was an extension beyond the 
Galerkin and collocation methods [6]. Furthermore, A.C. Kaya and F. Erdogan [7], [8] introduced 
and investigated several problems of elasticity and fracture mechanics, which are reduced to the 
solution of finite-part singular integral equations.  

In addition, by E.G. Ladopoulos [9] - [15] were proposed several numerical  methods for the 
solution of the finite-part singular integral equations of the first and the second kind. He further 
applied this type of singular integral equations to the solution of very important problems of 
elasticity, fracture mechanics and aerodynamics. Also, E.G. Ladopoulos, V.A. Zisis and D. 
Kravvaritis [16], [17] used functional analysis for the solution of finite-part singular integral 
equations. So, they studied such type of singular integral equations defined in general  Hilbert 
spaces and Lp spaces and applied them to several crack problems. 

By the current research are introduced and investigated the hypersingular integral equations, 
which have stronger singularity in comparison to the finite-part singular integral equations. The 
hypersingular integral equations belong therefore to a wider class of integral equations with kernels 
of very strong singularities.  

A numerical method is proposed for the solution of the hypersingular integral equations,  
defined in Banach spaces. The proposed approximation method is an extension beyond the 
quadrature method. 
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Beyond the above, an error estimates theory is investigated for the  hypersingular integral 
equations, by proving the corresponding theorem. So, the inequalities which are valid between the 
exact solutions of the hypersingular integral equations and the  corresponding approximate 
solutions, are investigated and  proved.  

Generally, the hypersingular integral equations are used for the solution of several important 
problems of engineering mechanics, and especially in the theories of elasticity, fracture mechanics, 
fluid mechanics and aerodynamics.  

 
2. Approximation Methods for Hypersingular Integral Equations 
 
Definition 2.1 

 
An equation of the following form is called hypersingular integral equation: 
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where  u(x)  is the unknown function and  f(t)  is a known function such as  f(t) ∈ C∞[α,b]. 
 
Theorem 2.1 

 
 Let the hypersingular integral equation (2.1) and suppose that following conditions are 

satisfied:   
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where the functions  ω1"(x), ω2"(x)  are Hölder - continuous with  exponent  ε>o.  

  
Then the hypersingular integral equation (2.1) is approximated by the quadrature formula: 

 

          dx
tx

tu
tR

n

i

x

x j

i
j

i

i

∑ ∫
−

=

+

−
=

1

0

1
)(

)( λ                                    (2.3) 

 
and its error function  ∆(tj)  satisfies the estimate: 
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in which  h =
n

ab −
,  D  a constant and jδ  the distance of the point  tj  from the boundary of the 

segment [α, b].  
 
Proof 
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The hypersingular integral in the left hand side of (2.1) is understood in its principal value 
sense: [5], [15] 
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 For the numerical evaluation of the integral  I(t),  then the following  points are used:  
 

                     xi = a+ih,    i = 0, 1,..., n  and   tj=a + (j+1/2)h,   j = 0,1,...n-1 
 

where  h = 
n

ab −
 and the quadrature formula (2.3) is applied.  

 
In addition, consider the point  tj  be  at the distance δj from the boundary of the segment  [a, b],  

where  δj ≥ 5h.  
 

If  ∆(tj)  is the error function, then it is valid: 
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where the set  Nh  consists of segments  s i= [xi,xi+1]. 
 

Furthermore, consider the following equality to be valid: 
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Since the set  Nh  is symmetric with respect to  tj, then follows:  Γ1 = Γ2 = 0. 
     

The following formulas hold: 
 
                     u(x)-u(ti) - u'(tj) (x-ti) = u"(zij) (zi-tj) (x-ti)=aij        (2.8) 
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where  x∈ [xi, xi+1],  ti∈ [xi, xi+1]  and  zij ∈ [zi, tj] 
 

On the contrary, since u(x) satisfies condition (2.2), then the following inequality is valid: 
 

           ⏐u"(zij)⏐ ≤ Dδj
(λ-5)/2         (2.9)  

 
from which follows: 
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 By the same way by applying (2.2), then follows inequality:  
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with:  g1(x) = k1(x-a)(λ-1)/2

  g2(x) = k1'(b-x)(λ-1)/2             (2.13) 
  d1(x) = k2(x-a)(λ+1)/2+ω1(x) 
  d2(x) = k2' (b-x)(λ+1)/2+ω2(x)     
 

 In addition, following inequality holds for the functions gs(x): 
 
                       |gs(x)-gs(ti)| ≤ Dh,        for x∈si                                (2.14) 
and consequently: 
    ∆1'' ≤ D1h/δj

(λ+1)/2         (2.15) 
 

  By denoting further by  Ω1  the set of segments  si∈[a, b]  which are on the left from point  tj  
and by  Ω2  the set of such segments which are on the right from  tj,  then follows: 

 
 

 11



E.G. Ladopoulos 
 

                   211

21

)()()()(
' ZZdx

tx

tgxg
dx

tx

tgxg

i ii i
s s j

iss

s s j

iss +=
−

−
+

−

−
≤∆ ∑∫∑∫

Ω∈Ω∈
λλ               (2.16) 

 
On the other hand, by applying the generalized mean-value theorem one has: 
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in which  m  is the number of segments that belong to Ω1,  mh>δj/2-h  and  0<ξi<1.  
    

Thus inequality (2.17) reduces to: 
 
     Z1≤ D1h/δj

(λ+1)/2                       (2.18) 
 

By the same way can be proved a similar inequality for Z2. Hence,  from inequalities (2.15) and 
(2.18) follows: 
 
     ∆1≤ D1h/δj

(λ-1)/2                       (2.19) 
 
and the estimate (2.4) was proved.  
 
 
3. Hypersingular Integral Equations Error Estimates Analysis 
 
Theorem 3.1. 
 

Consider the hypersingular integral equation (2.1) where f(t)∈C∞[a,b], with an approximate 
solution  uh(ti)  given by the system:  
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 Then the values u(tk) of an exact solution to (2.1) and the values  uh(tk) of the approximate 

solution obtained from (3.1) satisfy the  following inequalities: 
 

 
           ⏐u(tk) - uh(tk)⏐≤ Dh(λ-1)/2       ,  1<λ<2 
           ⏐u(tk) - uh(tk)⏐≤ Dh⏐lnh⏐2 ,   λ=2                        (3.2) 
           ⏐u(tk) - uh(tk)⏐≤ Dh(3-λ)/2        ,   2<λ<3 
 

for  k = 0,1,..., n-1,  where  h = 
n

ab −
 and  D  a constant.  
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Proof 
 

Let the system of equations : 
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In addition (3.6) reduces to the following equation: 
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and the solutions  xk(φ)  and  gk(φ)  are related by the following formula: 
 
                   xk(φ) = - gk(φ)hλ-1               (3.13) 
 

   Furthermore, in order to study the properties of the function Hn(φ) consider the set of 
segments [π/(16n), π/(8n)], n = 1,2... which  forms  a  covering  of  the  half - open  interval  
(0, π/8]. By choosing an  arbitrary  x ∈ (0, π/8], then there exists a minimal number N so that  x∈ 
[π/(16N), π/(8N)]. 
 

   For  π/(16N) ≤φ ≤π/(8Ν)  and  Ν ≤ l ≤ 2Ν  the inequality sin2(lφ/2)>δ>0 is obtained, from 
which follows: 
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   By choosing  D>0  not depending on  N,  then from (3.14) follows that inequality: 
 

 
     H(φ) > D(φ)λ-1                    (3.15) 
holds for  0 ≤φ ≤π/8.  

 14



E.G. Ladopoulos 
 

 
   Similarly following inequality: 

 
     H(φ) > D(2π-φ)λ-1       (3.16) 
holds for  15π/8 ≤ φ ≤ 2π. 
 

   In addition, consider  Hn(φ) = a0 + .  Because of  (3.16),  inequality  H)cos(
1

ϕll

l

a
n

∑
=

n(φ) - 

Hn(0) > D φλ-1  holds for  π/(16n) ≤ φ ≤ π/8. 
 

   From the inequality Hn(0) ≥ D1  follows that there exists a constant 

B

λλ −−
∞

+=

+≥∑ 1
2

1

)1(nD
n

l
l

0 > 0 not depending on  n  and  for which the inequality  Hn(0) ≥ B0 φλ-1  holds for 0 ≤ φ ≤ π/(16n).  
 
 
   Thus by setting  B0 *= min (B0 /2, D )  one has: 
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By  E ( )1•  and  E ( )2•  we denote the linear spaces E having the norms 1•  and 2• , 
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From (3.17) and (3.19) follows: 
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In order to calculate the Fourier coefficients x(φ)  of the  functions x(φ), 1)( 1 =ϕx , one has : 
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and thus ⎪xl⎪ satisfy estimates which are similar to (3.20). 
    

So, the Fourier coefficients xkl of the functions xχ(φ) which are solutions of the problem  (3.10),   
xk (φ) = gk (φ) hλ-1  satisfy following inequalities : 
 
                  ⎪xkl⎪≤ Dhλ-1          , 1<λ <2 
                                           ⎪xkl⎪≤ Dh ⎪lnh⎪   ,  λ = 2                     (3.22) 
                  ⎪xkl⎪≤ Dh             ,  2<λ <3 
 

   As xkl belong to the kth row of the inverse matrix, then equations (3.22) denote estimates for 
the elements of the inverse matrix for (3.1).  

 
   Finally from eqs (2.4) and (3.22) we obtain :  
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Also, the proof for λ = 2 and 2 <λ <3 is done by the same way and thus Theorem was proved. 
 
4. Conclusions 

A new approximation method has been proposed and investigated for the numerical evaluation 
of the hypersingular integral equations defined in Banach spaces. The hypersingular integral 
equations constist of a very special class of singular integral equations having kernels with very 
strong singularities, as compared to the finite-part singular integral equations. 

The numerical method which was used is an extension beyond the quadrature method. So, it 
was proved that the quadrature method is a suitable approximation method for the numerical 
solution of the hypersingular integral equations. Same method has been successfully used in the 
past for the numerical evaluation of the non-linear singular integral equations [18] - [28].  

Furthermore, an error estimates theory was proposed for the hypersingular integral equations, 
by proving the suitable theorems. So, it was shown that same inequalities are valid between the 
exact solutions of the hypersingular integral equations and the corresponding numerical solutions.  
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Finally, the hypersingular integral equations are very important for the solution of basic 
problems of engineering mechanics and mathematical physics, like example problems of elasticity, 
fracture mechanics, fluid mechanics and aerodynamics. There is therefore a big interest for further 
research on the numerical evaluation of the hypersingular integral equations.  
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