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Abstract

Using the concept of an approximate strong subdifferential of a vec-
tor valued convex mapping, we provide approximate strong subdifferen-
tial formula of a composed convex operator. An application to a vector
minimization problem is also given.
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1 Introduction

This paper has been motivated by the important recent contribution by El
Maghri [2] to the theory of approximate subdifferential calculus of convex vec-
tor mappings. This theory play a crucial role in approximation theory and turn
out to be very useful in the study of approximate solution of vector optimiza-
tion problems. By using the concept of approximate efficient subdifferentials,
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El Maghri developed under some constraint qualification an exact rule for the
approximate Pareto subdifferential (resp. approximate proper subdifferential)
of the composition of two convex vectors mappings taking values in finite or in-
finite dimensional preordered spaces. The approach used in this work is based
essentially on the use of scalarization process and the regular subdifferentia-
bility. This paper motivates the following question: can we state the same
formula of composition for approximate strong subdifferential? This issue has
not been discussed by the author. To our knowledge, it seems that this issue
has not been explored previously except the scalar case (see for instance [3])
and an earlier contribution due to Théra [5], by establishing the approximate
strong subdifferential of composed convex mapping g ◦ h where g and h are
convex and affine mappings respectively.
The present paper is devoted to calculus of the approximate strong subdif-
ferential of the convex operator f + g ◦ h when f, g and h are vector valued
convex mappings and g is nondecreasing. As application, we characterize the
approximate strong solution of a convex cone-constrained vector minimization
problem.

2 Notations, definitions and preliminaries

In this section we introduce the basic concepts and presents necessary pre-
liminaries used in what follows. Let X, Y and Z be topological real vector
spaces and Y+ ⊂ Y be a nonempty convex cone (i.e. sY+ + tY+ ⊂ Y+ for all
s, t ≥ 0) introducing a partial order in Y defined by: for any y1, y2 ∈ Y

y1 ≤Y y2 ⇐⇒ y2 − y1 ∈ Y+.

Let Z+ ⊂ Z be a nonempty convex cone. The partial order introduced in Z is
defined similarly. We add an artificial maximal element +∞ to Y (resp. to Z)
where +∞ /∈ Y. We set y ≤Y +∞ for all y ∈ Y ∪ {+∞}, λ.(+∞) = +∞ for
all λ > 0 and also we adopt the convention 0.(+∞) = 0. The effective domain
of a vector valued mapping h : X −→ Y ∪ {+∞} is defined by

dom h := {x ∈ X : h(x) ∈ Y}.

By Epi h, we denote the epigraph of the mapping h defined by

Epi h := {(x, y) ∈ X × Y : h(x) ≤Y y}.

We say that h : X −→ Y ∪ {+∞} is proper if dom h = ∅. Since convexity
plays an important role in the following investigations, let us recall the concept
of cone-convex mappings.
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Definition 2.1 The mapping h : X −→ Y ∪{+∞} is said to be Y+−convex
if for every λ ∈ [0, 1] and x1, x2 ∈ X

h(λx1 + (1 − λ)x2) ≤Y λh(x1) + (1 − λ)h(x2).

Definition 2.2 A mapping g : Y −→ Z ∪ {+∞} is said to be (Y+, Z+)-
nondecreasing, if for each y1, y2 ∈ Y

y1 ≤Y y2 =⇒ g(y1) ≤Z g(y2).

The composed vector mapping g ◦ h : X −→ Z ∪ {+∞} is defined by

(g ◦ h)(x) :=

⎧⎨
⎩

g(h(x)) if x ∈ dom h

+∞, otherwise

and its effective domain is therefore given by

dom (g ◦ h) = h−1(dom g) ∩ dom h.

It is easy to see that if g is (Y+, Z+)-nondecreasing and Z+-convex and h is
Y+-convex then g ◦ h is Z+-convex.

On says that the cone Z+ is normal if there exists a neighborhood basis
of the origin in Z such that

[u, v] := {y ∈ Z : u ≤Z y ≤Z v} ⊂ V if u, v ∈ V.

For properties of normal cones we refer to [4] where it is proved that most
classical ordered topological vector spaces are normal.

We shall denote by L(X, Y ) the linear space of continuous linear map-
pings from X into Y. Following Théra [5] we recall the definitions of the approx-
imate strong subgradient and approximate strong subdifferential of a vector
valued mapping.

Definition 2.3 Let h : X −→ Y ∪{+∞} be a convex mapping and ε ∈ Y+.
An element T ∈ L(X, Y ) is called an ε−strong subgradient of the mapping
h : X −→ Y ∪ {+∞} at x̄ ∈ dom h if

T (x − x̄) − ε ≤Y h(x) − h(x̄), ∀x ∈ X.

The set of all ε−strong subgradients of the mapping h at x̄ ∈ dom h denoted
by ∂s

εh(x̄) is called ε−strong subdifferential of h. We set ∂s
εh(x̄) = ∅ whenever

x̄ /∈ dom h.
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3 Approximate strong subdifferential of com-

posed convex operator

In this section, we attempt to deal with the question raised in the intro-
duction. As mentioned above, Théra established the approximate strong sub-
differential of the composed convex operator g ◦ h where g and h are convex
and affine mappings respectively. Our goal is to extend this formula to the
case of f + g ◦ h when f, g and h are vector valued convex mappings and g is
nondecreasing.

By L+(Y, Z) we shall denote the cone of all mappings T ∈ L(Y, Z) satis-
fying T (y) ∈ Z+ for all y ∈ Y+. Such mappings are called positive continuous
linear mappings. For preserving the convexity of the composed mapping T ◦h
when h : X −→ Y ∪ {+∞} is Y+-convex and T ∈ L(Y, Z), we will need that
the linear operator T satisfy the condition T ∈ L+(Y, Z) which means that T
is (Y+, Z+)-nondecreasing. Throughout this paper the cone Z+ is assumed to
be closed.

Before stating the main result of this section, we need the following
result

Lemma 3.1 Let g : Y −→ Z∪{+∞} be Z+-convex and (Y+, Z+)-nondecreasing
mapping. Then we have for any ȳ ∈ Y and ε ∈ Z+

∂s
εg(ȳ) ⊂ L+(Y, Z).

Proof. Suppose that ∂s
εg(ȳ) = ∅ and then we have

T ∈ ∂s
εg(ȳ) ⇐⇒ T (y − ȳ) − ε ≤Z g(y) − g(ȳ), ∀y ∈ Y (2.1)

By taking y ∈ Y+ and substituting in (2.1) y by ȳ − ny for all n ∈ N∗, we
obtain

−nT (y) − ε ≤Z g(ȳ − ny) − g(ȳ), ∀y ∈ Y and ∀n ∈ N∗

Since ȳ − ny ≤Y ȳ and that g is (Y+, Z+)-nondecreasing, it follows that g(ȳ −
ny) ≤Z g(ȳ) for any y ∈ Y+ and hence we obtain T (y) + ε

n
∈ Z+. Passing now

to the limit n −→ +∞ and as Z+ is closed, it follows that T (y) ∈ Z+ for any
y ∈ Y+ which yields that T ∈ L+(Y, Z). �

Remark 3.1 It follows immediately from above lemma that if h : X −→
Y ∪ {+∞} is Y+-convex and g : Y −→ Z ∪ {+∞} is Z+-convex and (Y+, Z+)-
nondecreasing, then for any T ∈ ∂s

εg(ȳ), the mapping T ◦ h is Z+convex.
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The approach that we will use for getting our main result is based essentially
on the use of the calculus rule of the approximate strong subdifferential of the
sum of two convex vector mappings. This rule was established by Théra [5]
in the setting of normal order-complete vector topological space. We shall say
that (Z, Z+) is order-complete if for every nonempty subset A of Z, such that
A is order bounded from below in Z, inf A exits in Z.

Theorem 3.2 [5] Let X be a Hausdordff locally convex vector space and let
(Z, Z+) be a normal order-complete Hausdorff locally convex space. Suppose
g1 : X −→ Z ∪ {+∞} and g2 : X −→ Z ∪ {+∞} are Z+-convex mappings
such that g1 is finite and continuous at some point a ∈ domg2. Then, for any
x ∈ X and for any ε ∈ Z+

∂s
ε(g1 + g2)(x) =

⊔
ε1+ε2=ε
ε1,ε2∈Z+

{∂s
ε1

g1(x) + ∂s
ε2

g2(x)}.

Let f : X −→ Z ∪ {+∞} , g : Y −→ Z ∪ {+∞} and h : X −→ Y ∪ {+∞}
be proper mappings. Let us consider the following auxiliary mappings

F : X × Y −→ Z ∪ {+∞}
(x, y) −→ F (x, y) := f(x) + δEpih(x, y)

and
G : X × Y −→ Z ∪ {+∞}

(x, y) −→ G(x, y) := g(y)

where δEpih : X × Y −→ Z ∪ {+∞} stands for the indicator mapping defined
for any (x, y) ∈ X × Y by

δEpih(x, y) :=

⎧⎨
⎩

0 if (x, y) ∈ Epih

+∞, otherwise.

Let us note that the vector indicator mapping appears to posses properties
like the scalar one. When g : Y −→ Z ∪ {+∞} is (Y+, Z+)−nondecreasing,
one has for any (x, y) ∈ X × Y

(f + g ◦ h)(x) ≤Z f(x) + g(y) + δEpih(x, y),

and since the vector space (Z, Z+) is order complete, it follows that for any
x ∈ X

(f + g ◦ h)(x) = inf
y∈Y

{f(x) + g(y) + δEpih(x, y)}
= inf

y∈Y
{F (x, y) + G(x, y)}.

For any x̄ ∈ dom h and by setting ȳ := h(x̄), we have obviously

T ∈ ∂s
ε(f + g ◦ h)(x̄) ⇐⇒ (T, 0) ∈ ∂s

ε(F + G)(x̄, ȳ) (2.2)
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and hence the study of the formula ∂s
ε(f + g ◦ h) reduces to that of the ε-

subdifferential ∂s
ε(F + G). For this, we establish the relationship between the

ε- subdifferentials of F and G and the ε- subdifferentials of f and g.

Lemma 3.3 Assume that g : Y −→ Z ∪ {+∞} be (Y+, Z+)-nondecreasing
and let x̄ ∈ dom f ∩ h−1(dom g) ∩ dom h, ȳ := h(x̄) and ε1, ε2 ∈ Z+. Then i)
and ii) are equivalents
i) (T,−K) ∈ ∂s

ε1
F (x̄, ȳ) and (0, K) ∈ ∂s

ε2
G(x̄, ȳ)

ii) K ∈ ∂s
ε2

g(ȳ) and T ∈ ∂s
ε1

(f + K ◦ h)(x̄).

Proof. Suppose at first that i) holds. It is easy to see that

K ∈ ∂s
ε2

g(ȳ) ⇐⇒ (0, K) ∈ ∂s
ε2

G(x̄, ȳ).

As (T,−K) ∈ ∂s
ε1

F (x̄, ȳ) we have for any x ∈ X and y ∈ Y

T (x − x̄) − K(y − ȳ) − ε1 ≤Z f(x) + δEpih(x, y) − f(x̄) − δEpih(x̄, ȳ). (2.3)

By taking for any y ∈ Y+ in (2.3), x = x̄ and ȳ + ny in place of y (n ∈ N∗ is
arbitrary) , we get

Ky +
ε1

n
∈ Z+, ∀y ∈ Y+ and ∀n ∈ N∗.

Passing now to the limit n −→ +∞ and since Z+ is closed, we finally obtain
K(y) ∈ Z+ for any y ∈ Y+ i.e. K ∈ L+(Y, Z). So, K ◦h is Z+−convex. Taking
now y := h(x) for any x ∈ dom h in (2.3), we have

T (x − x̄) − ε1 ≤Z f(x) + (K ◦ h)(x) − f(x̄) − (K ◦ h)(x̄), ∀x ∈ X

and hence T ∈ ∂s
ε1

(f + K ◦ h)(x̄).
Conversely, let T ∈ ∂s

ε1
(f + K ◦ h)(x̄) and K ∈ ∂s

ε2
g(ȳ), then for any

x ∈ dom h, one has

T (x − x̄) − ε1 ≤Z f(x) + (K ◦ h)(x) − f(x̄) − (K ◦ h)(x̄)

and since K ∈ ∂s
ε2

g(ȳ) ⊂ L+(Y, Z), we obtain for any (x, y) ∈ Epih

T (x − x̄) − ε1 ≤Z f(x) + K(y) − f(x̄) − K(ȳ).

Therefore for any (x, y) ∈ X × Y we have

T (x − x̄) − K(y − ȳ) − ε1 ≤Z f(x) + δEpi h(x, y) − f(x̄) − δEpi h(x̄, ȳ)

and then
(T,−K) ∈ ∂s

ε1
F (x̄, ȳ)

which completes the proof. �
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Remark 3.2 It is obvious to see that if there exists some point a ∈ dom f ∩
dom h such that g is finite and continuous at point h(a) ∈ Z then G is finite
and continuous at point (a, h(a)) ∈ dom F.

Now we can state the main result of the paper

Theorem 3.4 Let f : X −→ Z ∪ {+∞} be proper Z+-convex, g : Y −→
Z ∪ {+∞} be proper Z+-convex and (Y+, Z+)-nondecreasing and h : X −→
Y ∪{+∞} be proper Y+-convex. If there exists some point a ∈ dom f ∩ dom h
such that g is finite and continuous at point h(a) ∈ Z then

∂s
ε(f + g ◦ h)(x̄) =

⊔
ε1+ε2=ε
ε1,ε2∈Z+

{∂s
ε1

(f + T ◦ h)(x), T ∈ ∂s
ε2

g(h(x̄))}

for any x̄ ∈ X and ε ∈ Z+ .

Proof. By taking x̄ ∈ dom h and ȳ := h(x̄), one has from (2.2),

T ∈ ∂s
ε(f + g ◦ h)(x̄) ⇐⇒ (T, 0) ∈ ∂s

ε(F + G)(x̄, ȳ).

By virtue of Remark 3.1, G is finite and continuous at point (a, h(a)) ∈ dom F,
and according to Theorem 3.1, we have

∂s
ε(F + G)(x̄, ȳ) =

⊔
ε1+ε2=ε
ε1,ε2∈Z+

{∂s
ε1

F (x̄, ȳ) + ∂s
ε2

G(x̄, ȳ)}.

Hence, it follows that T ∈ ∂s(f +g◦h)(x̄) if and only if there exists ε1, ε2 ∈ Z+

such that (T1,−K) ∈ ∂s
ε1

F (x̄, ȳ) and (T2, M) ∈ ∂s
ε1

G(x̄, ȳ) with ε1 +ε2 = ε and
(T, 0) = (T1,−K) + (T2, M). The definition of G ensures that T2 = 0 which
yields K ∈ ∂s

ε2
g(ȳ) and T ∈ ∂s

ε1
(f + K ◦ h)(x̄). Thanks to Lemma 3.2, we

obtain
T ∈ ∂s

ε1
(f + K ◦ h)(x̄) and K ∈ ∂s

ε2
g(ȳ).

So
∂s

ε(f + g ◦ h)(x̄) =
⊔

ε1+ε2=ε
ε1,ε2∈Z+

{∂s
ε1

(f + T ◦ h)(x), T ∈ ∂s
ε2

g(h(x̄))}

which completes the proof. �

In particular by taking f ≡ 0, we have

Corollary 3.5 Let g : Y −→ Z∪{+∞} be a proper and Z+-convex mapping
and (Y+, Z+)-nondecreasing and h : X −→ Y ∪{+∞} be proper Y+-convex. If
there exists some point a ∈ dom h such that g is finite and continuous at point
h(a) ∈ Z then

∂s
ε(g ◦ h)(x̄) =

⊔
ε1+ε2=ε
ε1,ε2∈Z+

{∂s
ε1

(T ◦ h)(x), T ∈ ∂s
ε2

g(h(x̄))}

for any x̄ ∈ X.
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Consider now the case of composition with an affine operator h : X −→ Y
associated to a linear operator A : X −→ Y and let g : Y −→ Z ∪ {+∞} be
a proper and Z+-convex mapping. Put Y+ := {0Y }, obviously the mapping
g is (Y+, Z+)-nondecreasing on Y . So, applying Corollary 3.2, one gets the
following result

Corollary 3.6 Let g : Y −→ Z∪{+∞} be a proper and Z+-convex mapping
and h : X −→ Y be an affine continuous operator associated to a linear
operator A ∈ L(X, Y ). Assume that there exists some a ∈ dom h such that g
is finite and continuous at h(a). Then for every x̄ ∈ X, one has

∂s
ε(g ◦ h)(x̄) = A∗(∂s

εg(h(x̄))),

where A∗ : Y ∗ −→ X∗ is the adjoint operator of A.

Suppose now the case of composition with a linear operator A : X −→ Y
with domain DA (a vector subspace of X). By setting

h(x) :=

{
Ax if x ∈ DA

+∞, otherwise.

and (g ◦ A)(x) = +∞ if x /∈ DA, then g ◦ A = g ◦ h. So, applying Corollary
3.2, one gets the following result

Corollary 3.7 Let g : Y −→ Z∪{+∞} be a proper and Z+-convex mapping
and A : X −→ Y be a linear operator with domain DA. Assume that g is finite
and continuous at some point of Im A. Then for every x̄ ∈ DA and with the
above definition of g ◦ A over all the space X, one has

∂s
ε(g ◦ A)(x̄) = {T ∈ L(X, Z) : ∃K ∈ ∂s

εg(Ax̄); T|A = K ◦ A}.

Here T|A denotes the restriction of T to DA.

In the case DA is dense in X we obtain the following corollary

Corollary 3.8 Let g : Y −→ Z∪{+∞} be a proper and Z+-convex mapping
and A : X −→ Y be a densely defined linear operator. Assume that g is finite
and continuous at some point of Im A. Then one has for every x̄ ∈ DA

∂s
ε(g ◦ A)(x̄) = A∗(∂s

εg(Ax̄) ∩ DA∗).
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4 Approximate optimality conditions for com-

posed convex vector optimization problems

In this section, we will consider vector optimization problem of the form

(P ) inf
x∈X

(f + g ◦ h)(x)

where f : X −→ Z ∪ {+∞} is proper and Z+-convex, g : Y −→ Z ∪ {+∞}
is proper, Z+-convex and (Y+, Z+)-nondecreasing and h : X −→ Y ∪ {+∞} is
proper and Y+-convex.

We will apply the preceding results to obtain optimality conditions for
composed convex vector optimization problem (P ). Let ε ∈ Z+. A point x̄ is
said to be ε−strong minimizer of problem (P ) if

(f + g ◦ h)(x̄) − ε ≤Z (f + g ◦ h)(x), ∀x ∈ X.

Proposition 4.1 If there exists some point a ∈ dom f ∩ dom h such that
g is finite and continuous at h(a) ∈ Z, then x̄ is an ε−strong minimizer of the
problem (P) if and only if there exists ε1, ε2 ∈ Z+, T ∈ ∂s

ε2
g(h(x̄) such that

ε1 + ε2 = ε and 0 ∈ ∂s
ε1

(f + T ◦ h)(x̄).

Proof. We have x̄ is an ε−strong minimizer of the problem (P) if and only
if 0 ∈ ∂s

ε(f + g ◦ h)(x̄). Thanks to Theorem 3.2, there exist ε1, ε2 ∈ Z+ and
T ∈ ∂s

ε2
g(h(x̄) such that 0 ∈ ∂s

ε1
(f + T ◦ h)(x̄). �

Now, let us consider the cone-constrained vector optimization problem

(Q)

{
inf f(x)
h(x) ∈ −Y+

where f : X −→ Z∪{+∞} is proper and Z+-convex and h : X −→ Y ∪{+∞}
is proper and Y+-convex. By introducing the indicator mapping δ−Y+ : Y −→
Z∪{+∞}, the problem (Q) may be rewritten equivalently as the unconstrained
composed convex problem (P) by setting

g : Y −→ Z ∪ {+∞}
y −→ g(y) := δ−Y+(y).

By considering the approximate strong normal cone of −Y+ (at ȳ ∈ −Y+)
defined by

N ε
−Y+

(ȳ) : = ∂s
εδ−Y+(ȳ)

= {T ∈ L(Y, Z) : T (y − ȳ) ≤Z ε, ∀y ∈ −Y+}
we have
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Lemma 4.2 i) The indicator mapping δ−Y+ : Y −→ Z ∪ {+∞} is Z+-
convex, proper and (Y+, Z+)-nondecreasing.
ii)

N ε
−Y+

(ȳ) = {T ∈ L+(Y, Z) : −T (ȳ) ≤Z+ ε}. (4.1)

Proof. i) The convexity and properness of δ−Y+ are obvious since Y+ is convex
and dom δ−Y+ = −Y+ = ∅. For the monotonicity of δ−Y+ , let us take any
y1, y2 ∈ Y such that y1 ≤Y y2. If y2 /∈ −Y+, obviously δ−Y+(y1) ≤Z δ−Y+(y2) =
+∞. The case y2 ∈ −Y+ entails y1 ∈ −Y+ since y1 = y1−y2+y2 ∈ −Y+−Y+ ⊂
−Y+ and hence we get δ−Y+(y1) = δ−Y+(y2) = 0.
ii) We have

T ∈ N ε
−Y+

(ȳ) ⇐⇒ T (y − ȳ) ≤Z ε, ∀y ∈ −Y+.

By taking y = 0 we obtain −T (ȳ) ≤Z+ ε. Now we claim that T ∈ L+(Y, Z).
Indeed, let any u ∈ Z+ and any n ∈ N∗. By taking y := −nu + ȳ in (4.1)
and using the fact that Z+ is a convex cone we get T (u) + ε

n
∈ Z+. Passing

now to the limit n −→ +∞ and since Z+ is closed, it follows that T (u) ∈ Z+

for any u ∈ Y+ i.e. T ∈ L+(Y, Z). Conversely, let T ∈ L+(Y, Z) such that
−T (ȳ) ≤Z+ ε. We have for any y ∈ −Y+

T (y − ȳ) = T (y) − T (ȳ) ≤Z −T (ȳ) ≤Z ε

and this yields T ∈ N ε
−Y+

(ȳ). �

Now we are ready to state necessary and sufficient optimality conditions
associated to vector problem (Q)

Proposition 4.3 If there exists some a ∈ dom f ∩ domh such that h(a) ∈
−intY+ then x̄ is a ε−strong minimizer of the problem (Q) if and only if there
exists some T ∈ L+(Y, Z) satisfying

⎧⎨
⎩

h(x̄) ∈ −Z+

−T (ȳ) ≤Z+ ε
0 ∈ ∂s

ε(f + T ◦ h)(x̄).

(intY+ stands for the topological interior of Y+).

Proof. x̄ is a ε−strong minimizer of (Q) if and only if 0 ∈ ∂s
ε(f + δ−Y+ ◦h)(x̄)

and by virtue of Theorem 3.2 and Lemma 4.1 there exists T ∈ L+(Y, Z) such
that h(x̄) ∈ −Z+, −T (ȳ) ≤Z+ ε and 0 ∈ ∂s

ε(f + T ◦ h)(x̄). �
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