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Incorporating geological dip information
into geophysical inversions

Yaoguo Li∗ and Douglas W. Oldenburg‡

ABSTRACT

Geological bodies are often linear structures that have
well-defined strike direction and dip angle. We develop
a new model objective function that allows this impor-
tant information to be incorporated into geophysical in-
versions. A rotation matrix is applied to the horizontal
and vertical derivatives of the model so that the deriva-
tive in an arbitrary direction is obtained. A model objec-
tive function that measures the flatness with respect to
the rotated derivatives favors models that have elon-
gated features with the specified strike and dip angle.
Formulations for both 2-D and 3-D cases are presented,
and they are illustrated using examples from dc resis-
tivity and induced polarization (IP) problems. Synthetic
and field examples show that an inversion carried out
using known dip information produces a model that has
higher resolution and provides a better representation
of the true structure.

INTRODUCTION

The geophysical inverse problem is nonunique and is often
solved by minimizing an unconstrained objective function of
the form

φ(m) = φd(m) + µφm(m), (1)

where m denotes the model to be found, φd(m) is a data misfit
function whose magnitude depends upon the difference be-
tween observed and predicted data, and φm(m) is a model ob-
jective function. The regularization parameter µ determines
the trade-off between the data misfit and model objective func-
tion. Our optimization problem is solved by finding µ and
a minimizer of equation (1) such that the observed data are
fit to within the error tolerance (e.g., Tikhonov and Arsenin,
1977; Menke, 1984; Parker, 1994). The model objective func-
tion stabilizes the solution and provides a means to input prior
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information into the inversion so that a model is constructed
with certain user-defined characteristics. One type of objective
function we have used for inversion of many different geo-
physical data sets [e.g., dc resistivity and induced polarization
(IP) (Oldenburg et al., 1993; Oldenburg and Li, 1994), magnet-
ics (Li and Oldenburg, 1996), and gravity (Li and Oldenburg,
1998)] is comprised of a smallness component and first-order
derivatives in spatial directions:

φm(m) = αs

∫
V
{m(�r) − m0}2dv

+ αx

∫
V

{
∂[m(�r) − m0]

∂x

}2

dv

+ αy

∫
V

{
∂[m(�r) − m0]

∂y

}2

dv

+ αz

∫
V

{
∂[m(�r) − m0]

∂z

}2

dv. (2)

In equation (2), m is a generic symbol denoting the model to
be found (e.g., it can be the log conductivity in dc resistiv-
ity inversion or the chargeability in IP inversion) and m0 is a
reference model. The coefficients αs , αx , αy , and αz are pos-
itive constants that globally control the relative importance
of the different terms. Only three of the four coefficients are
independent; however, we retain all four for generality and
convenience. To obtain a smooth model, αs is usually chosen
to be much smaller than the remaining three coefficients. By
varying the relative magnitudes of αx , αy , and αz , the inversion
algorithm can construct models that are smoother, and thus
more elongated, in one or two preferential directions among
the three coordinate axes. For instance, choosing αz � αx = αy

will produce a model that has pipe-like features elongated ver-
tically; and choosing αz � αx = αy will produce a model that
has sheet-like horizontal features. The following example
illustrates the use of the coefficients in constructing different
types of models.
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For simplicity, we consider a 2-D dc resistivity problem in
which the strike direction of the model is aligned with the
y-axis. The associated model objective function will include
only the derivative terms in the x- and z-axis directions, and
only the ratio αx/αz needs be considered. Figure 1 shows a syn-
thetic conductivity model and the apparent conductivity pseu-
dosection from a pole-dipole array. Data are contaminated with
5% uncorrelated Gaussian noise. Here and elsewhere in the
paper we use the misfit function

φd =
N∑
i=1

(
dobs
i − dpre

i

εi

)2

, (3)

where dobs
i and dpre

i are observed and predicted data, respec-
tively, and εi is the standard deviation of the error. Each inver-
sion was completed so that the final misfit was equal to N = 116,
which is the number of data. Inverting this data set using differ-
ent αx/αz ratios produces conductivity models with different
smoothness characteristics, as shown in Figure 2. The recov-
ered anomalies are nearly circular when αx = αz , and they are
horizontally elongated when αx > αz and vertically elongated
when αx < αz . It is clear from the inversions in this example
that dip is not constrained by the data.

Strike and dip are important structural information, and they
can sometimes be obtained independently from other geophys-
ical surveys or estimated from known geology. When such in-
formation is available, it is important that it be incorporated
into geophysical inversions for then the final image will more
closely resemble the real earth. Although the current algorithm
using the objective function in equation (2) has the ability to
generate structures that are elongated in the horizontal or ver-
tical direction, it is not designed to generate structures with
arbitrary dips. This is because the objective function in equa-
tion (2) depends only upon the squares of the derivatives; the
directionality is lost.

FIG.1. (a) A synthetic conductivity model consisting of an over-
burden and two buried conductors with different dip angles. (b)
The apparent conductivity pseudosection from a pole-dipole
array with a = 10 m and n = 1, 8. The grayscale shows the
conductivities in mS/m.

In the following, we introduce a modification to equation (2)
by rotating the derivatives in a given coordinate system so that
an arbitrary structural direction, such as strike and dip, can be
incorporated into the inversion. Moreover, we divide the full
model domain into subdomains so that preferential strike and
dip can be assigned to each.

To generate a dipping objective function, we use the spatial
derivatives of the model in the direction of the principal axes
of the structure. Let

φm(m) = αs

∫
V
{m(�r) − m0}2dv

+ αx ′
∫
V

{
∂[m(�r) − m0]

∂x ′

}2

dv

+ αy′
∫
V

{
∂[m(�r) − m0]

∂y′

}2

dv

+ αz′
∫
V

{
∂[m(�r) − m0]

∂z′

}2

dv, (4)

where the derivatives are defined along the axes of the struc-
tural coordinates having directional vectors (x̂ ′, ŷ′, ẑ′), which
are aligned with the principal axes of the structure. The deriva-
tives are obtained by combining the partial derivatives given
in the axis directions of the user coordinates having directional
vectors (x̂, ŷ, ẑ):

�gs = R�gu, (5)

FIG. 2. Different conductivity models obtained from inverting
the data in Figure 1b using different smoothness values: (a)
αx/αz = 1.0; (b) αx/αz = 100.0; (c) αx/αz = 0.01.
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where �gs = (∂m/∂x ′, ∂m/∂y′, ∂m/∂z′)T is the gradient in the
structure coordinates and �gu = (∂m/∂x, ∂m/∂y, ∂m/∂z)T is the
gradient in the user coordinate system. The matrix R depends
upon the angles specifying the orientation of the structure in
the user coordinates.

The user coordinate system is usually defined as having the
z-axis pointing vertically downward and the x- and y-axes co-
inciding with the directions of the survey grid on the earth’s
surface. To specify the orientation of a general 3-D structure,
two angles are needed to describe the strike and dip if only
dike-like, or cylindrical, features are sought, and three angles
are needed to fully describe a 3-D orientation if ellipsoidal fea-
tures are sought. For 2-D models, only one angle that specifies
the dip of the structure with respect to the positive x-axis is
needed to define the orientation.

In the following sections we first present the 2-D dipping
objective function, illustrate it with examples, and then extend
the result to general 3-D models. Synthetic and field examples
of dc resistivity and IP problems illustrate the new objective
function for both cases. Since the IP inversion is a two-step
process that depends upon the completion of inverting the dc
resistivity data, we also examine the effect upon IP inversion
when the dip is incorporated into the dc resistivity inversion.

2-D DIPPING OBJECTIVE FUNCTIONS

Define the user coordinates as ẑ pointing vertically down-
ward, ŷ pointing along the strike, and x̂ pointing horizontally
on the earth’s surface. Define a structure coordinate system
by rotating (x̂, ŷ, ẑ) about ŷ clockwise such that x̂ ′ is aligned
with the dipping plane of the structure and points downward.
Since the model is independent of the y-coordinate, we can
remove the y-derivative term in equation (2) and reduce the
volume integral to a surface integral performed over the x-z-
plane. Using the partial derivatives in the structure coordinate
system, the objective function can be written as

φm(m) = αs

∫
S
{m − m0}2ds + αx ′

∫
S

{
∂[m − m0]

∂x ′

}2

ds

+ αz′
∫
S

{
∂[m − m0]

∂z′

}2

ds. (6)

Defining the dip angle of the structure, θ , as measured clock-
wise from x̂ , the rotation matrix is given by

R =
(

cos θ sin θ

−sin θ cos θ

)
. (7)

From equation (5) we have

∂m

∂x ′ = ∂m

∂x
cos θ + ∂m

∂z
sin θ,

(8)
∂m

∂z′
= −∂m

∂x
sin θ + ∂m

∂z
cos θ.

Substituting into equation (6) yields the desired dipping model
objective function:

φm(m) = αs

∫
S
{m − m0}2 ds

+
∫
S

(
αx ′ cos2 θ + αz′ sin2 θ

){∂[m − m0]
∂x

}2

ds

+
∫
S

(
αx ′ sin2 θ + αz′ cos2 θ

){∂[m − m0]
∂z

}2

ds

+
∫
S

2(αx ′ − αz′) sin θ cos θ
∂[m − m0]

∂x

× ∂[m − m0]
∂z

ds. (9)

The first three terms in equation (9) are the objective func-
tion in equation (6) (henceforth referred to as the generic ob-
jective function) with modified coefficients. The last term di-
rectly introduces the preferential weighting for a given dip.
The dipping objective function reduces to the original function
when αx ′ = αz′ , which means there is no preferential weighting,
or when θ = 0 or θ = π/2, which means the preferential di-
rection is aligned with one of the axes in the user coordinate
system.

In practical applications, we would like to incorporate differ-
ent dip angles in regions of the subsurface. Thus, we divide the
model domain into a number of subdomains and compose the
total model objective function from components defined over
these subdomains. Each region is assigned particular values of
(αs, αx ′ , αz′ , θ) such that the preferred dip is generated. This
is illustrated in Figure 3. To accomplish this numerically, each
cell is defined with its own set of values for (αs j , αx ′ j , αz′ j , θ j ),
where the subscript j denotes the index of cells in the model.
The discretized objective function has the form

φm(m) = ( �m − �m0)T
[
WT
s Ws + DT

x Bx Dx + DT
z BzDz

+ (
DT
x BxzDz + DT

z BxzDx
)]

( �m − �m0), (10)

where

Bx = diag
{
αx ′ j cos2 θ j + αz′ j sin2 θ j

∣∣
j = 1,M

}
,

Bz = diag
{
αx ′ j sin2 θ j + αz′ j cos2 θ j

∣∣
j = 1,M

}
, (11)

Bxz = diag{(αx ′ j − αz′ j ) sin θ j cos θ j | j = 1,M},
and Dx and Dz are the matrix representations of finite-differ-
ence operators. All the derivatives are defined at the centers

FIG. 3. Different dip angles can be input for different regions
of the model; here, the model consists of three regions.
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of the cells. The last term in equation (9) is represented by
two matrix products in equation (10). This ensures that the
composite weighting matrix is symmetric.

The objective function in equation (10) can now be used to
construct models that have dipping structures. The user first
needs to specify the angle θ . Then specifying αx ′ > αz′ in a re-
gion will favor linear structures having a dip angle of θ , and
setting αx ′ < αz′ will produce structures that dip at an angle
of π/2 + θ . The latter is equivalent to specifying a dip angle of
π/2+θ and αx ′ > αz′ . Note that α’s in equation (2) have a global
effect, while α’s in equation (10) are local and are specific to
each region. Thus, to retain the global contribution of the small-
ness term to the total model objective function, the inversion
should assign a constant αs throughout the model domain and
only vary the relative magnitude of αx ′ and αz′ to achieve the
desired dip. The value of αs should be varied only if a different
preference on the closeness to the reference model is sought in
different regions. This is the justification for retaining all coef-
ficients instead of only the independent ones in equation (2).

2-D NUMERICAL EXAMPLES

We now apply the new objective function to the inversion of
2-D dc resistivity data. The first model is shown in Figure 1a.
It consists of two conductors buried in a more resistive half-
space beneath an overburden. The overburden on the left is
more resistive than the half-space; on the right, the overburden
is more conductive than the half-space. The buried conductor
on the left has a dip angle of 135◦, and the one on the right
is horizontal. Assuming a surface pole-dipole array with the
potential dipole on the right (PDR) and a dipole length of 10 m,
we have simulated data between x = (−100, 100). The data are
shown as an apparent conductivity pseudosection in Figure 1b.
We carry out a number of inversions by varying αx ′ , αz′ , and θ .
The reference model m0 is a constant of 5 mS/m. In this and
all synthetic inversions, the data have been contaminated with
Gaussian noise (5% for dc potentials and 5% plus 0.001 for
apparent chargeabilities). The correct standard deviations of
the data are used in the inversion, and the final data misfit φd
achieves the expected χ 2 value of 116.

Figure 4 compares the models recovered using generic and
dipping objective functions. In Figure 4a the conductivity
model is obtained by inverting the data usingαx ′ = αz′ and θ = 0.
The model clearly shows the two sections of the overburden
layer and the two buried conductors. However, the conduc-
tors appear as nearly circular highs within a broad conductive
anomaly. There is no indication of dip since this is not unequiv-
ocally demanded by the data. Figure 4b is the model recovered
using an objective function that incorporates three regions of
different dip angles. The region below z = 20 m and west of
x = 0 m has θ = 135◦ and αx ′/αz′ = 1000, and the region below
z= 20 m and east of x = 0 m has θ = 0◦ and αx ′/αz′ = 20. The
rest of the model domain has no dip incorporated, and αs re-
mains constant throughout the model. The recovered model
now shows a dipping conductor on the left and a horizontal
conductor on the right. There is clear separation between the
two conductors, and the dipping conductor yields a good esti-
mate of the position of the true conductor. The overburden is
basically the same as that in Figure 4a, since no special weight-
ing has been applied in that region. This inversion shows the
effectiveness of the new model objective function, and it illus-

trates the potential benefits that can be gained by including dip
information in the geophysical inversion.

Next, we invert the induced polarization data generated from
a chargeability distribution associated with the above conduc-
tivity model. The chargeability model is shown in Figure 5a,
and the apparent chargeability pseudosection is displayed in
Figure 5b. IP inversion uses the conductivity model recovered
from dc resistivity data for sensitivity calculation; therefore, it
is dependent upon the details of preceding dc resistivity inver-
sion. Three different inversions are performed using conduc-
tivities from generic and dipping objective functions: (1) both
dc resistivity and IP inversions use generic objective function;
(2) dc resistivity inversion uses the generic objective function
but IP inversion uses a dipping objective function; (3) the same
dipping objective function is used in both dc resistivity and IP
inversions. The results are displayed in Figure 6. The second
inversion can be viewed as assuming no structural correlation
between the conductivity and chargeability distributions, while
the third inversion assumes that the conductivity and charge-
ability are structurally correlated. Although some obvious ar-
tifacts are created, the use of a dipping objective function only
in the IP inversion is able to construct dipping anomaly in the
region where it is expected, and the incorporation of the dip
information in both dc resistivity and IP inversions produces a
sharper image of the dipping anomaly.

As a second example, we investigate the improvement in
resolution gained from incorporating the dip information. A
set of pole-dipole data with a= 10 m and n= 1, 8 was gener-
ated from the conductivity model shown in Figure 7a, which
consists of two parallel, conductive dikes whose dip angle is

FIG. 4. Comparison of conductivity models recovered from the
data in Figure 1b by using a generic objective function (a) and a
dipping objective function with three different regions (b). The
dashed lines indicate the boundaries between different regions.
The arrows within identify the principal axes of the structure
and the lengths of the arrows indicate qualitatively the relative
weighting αx ′/αz′ .
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FIG. 5. (a) A chargeability model associated with the conduc-
tivity model in Figure 1a. The chargeability of the buried bodies
is 0.15, and the surface layer is 0.1. The apparent chargeability
from the same pole-dipole array is shown as a pseudosection in
(b). The grayscale shows the chargeability multiplied by 100.

FIG. 6. Different chargeability models recovered by inverting
the apparent chargeability in Figure 5b: (a) both dc and IP
inversion use a generic (no dip) objective function; (b) dc in-
version uses a generic objective function, but IP inversion uses
a dipping objective function; (c) both dc and IP inversions use
a dipping objective function. The different regions and their
dipping directions are marked in the two lower panels.

135◦. This model is similar to the one used by Coggon (1973)
to compare the resolution of different arrays. The conductivity
of the dike on the left is 25 mS/m, while that on the right is
50 mS/m. The depth to the top of the two dikes is 20 m; they
are separated by a horizontal distance of 30 m, and each is 20 m
wide. There is also a conductive overburden whose thickness
is 10 m. The conductivity is then smoothed to complete the
model. The noise-contaminated data are shown as an apparent
conductivity pseudosection in Figure 7b. The data only show a
broad, conductive anomaly, and there is no indication of two
dipping conductors.

Carrying out inversion without dip weighting produces the
conductivity model in Figure 8a, which shows a conductive
overburden and a single buried conductor. There is some vari-
ation in the depth to the top of the conductor, but nothing
indicates the presence of two conductors and their dipping
structure.

Now, assume that we have information suggesting a dip angle
of 135◦ below the overburden. We can incorporate that infor-
mation into the inversion by assigning a ratio of αx ′/αz′ = 1000
everywhere below the overburden. The resulting model is
shown in Figure 8b. Two conductors are clearly visible, and
their locations and separation agree well with those of the true
model. With the addition of dip information, the inversion is
able to resolve the two anomalies, which would otherwise be
interpreted as a single conductor.

Of course, a natural question is what happens if the inver-
sion incorporates a dip that differs from the true dip. To see
this, we inverted the same data by assuming that the dip angle
is θ = 45◦. The resulting model is shown in Figure 8c, and it
has only a broad conductor dipping at approximately 45◦. Ex-
amining the three inverted models shows that the tops of the
recovered conductivity anomalies are at the same depth. This
indicates that the data contain enough information to resolve
the tops of the conductors but not their dips or depth extents.

FIG. 7. A synthetic example consisting of two parallel dipping
conductors beneath an overburden. (a) The model; (b) the ap-
parent conductivity pseudosection from a pole-dipole array
with a = 10 m and n = 1, 8.
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An appropriate objective function, based upon the geological
dip information, is needed to reconstruct the deeper portion
of the model.

To test the effect of the array’s depth penetration, we con-
ducted the same experiments using data from arrays with a
20-m dipole length. For brevity, we have not produced the re-
sults here, but inverting those data has yielded similar models,
as shown in Figure 8. Although the large array separation gives
greater depth of penetration, it does not provide increased con-
straint on the dip of the subsurface structure. This is consistent
with our observation that 2-D dc resistivity data acquired along
a single traverse are not very sensitive to the dip. We conclude
that the result depicted in Figure 8 is not limited to data sets
with small depth of penetration.

Both models from the inversions using the opposite dip an-
gles are valid since they reproduce the observations to the same
degree. Shown in Figure 9 are the misfit maps corresponding to
the three inversions in Figure 8. All three misfit maps are rea-
sonably random, and there is little indication of which might
constitute a better inversion. If one has no knowledge about ge-
ologic dip, then each of the three models represents a possible
description of the true structure. Only when additional infor-
mation is provided can one make a choice. For instance, if one
knows that the geology is dipping to the left, the model in

FIG. 8. Comparison of conductivity models recovered from the
data in Figure 7b by using a generic objective function (a) and
a dipping objective function (b and c). Panel (b) assumes a dip
of 135◦ and shows that the correct dip information has helped
to resolve the two conductors. Panel (c) assumes a dip of 45◦,
and the resulting conductivity illustrates the effect of incorrect
dip angles.

Figure 8b would be more favorable, and we can then infer
that there are two separate conductors. Conversely, if we know
that there are two separate units, then the same model would
again be favorable; the fact that setting θ = 135◦ produces two
anomalies suggests that the geology is likely dipping to the left.

3-D DIPPING OBJECTIVE FUNCTION

Define the user coordinates as ẑ pointing vertically down-
ward, x̂ and ŷ pointing respectively to nominal northing and
easting directions of the survey. Define a structure coordinate
system such that the x̂ ′-ẑ′ plane is parallel to the dipping plane
of geological bedding or structure and x̂ ′ is aligned with the di-
rection of the major axis. The objective function is defined by
equation (4). The specification of an orientation in 3-D space is
more difficult to visualize than that in 2-D space. We define the
orientation of a 3-D object by three angles (ϕ, θ, ψ), where
ϕ is the strike defined as the angle from the northing, θ is the
dip measured downward from the horizontal plane, and ψ is
the tilt that specifies the rotation of the object within its dip-
ping plane. The reason for adopting tilt instead of the more
commonly used plunge is that the strike direction defined as
the intersection of the dipping plane and the earth’s surface is
constant under arbitrary tilt angle so that the intended strike ϕ

is preserved. Figure 10 illustrates this set of angles by rotating a
rectangular sheet that is vertical and striking north to the final
position defined by the angles. The rotation is accomplished in
three steps: rotation with respect to the z-axis by ϕ gives the
desired strike; rotation with respect to the newly defined x ′-
axis by (90 − θ) gives the dip angle of θ ; and rotation about the
latest y′-axis by ψ yields the desired tilt. Although we develop
the objective function for a general 3-D structure defined by
three angles, most practical applications are likely to use only

FIG. 9. Data-misfit maps corresponding to the three inversions
shown in Figure 8. The quantity displayed in each panel is the
difference between observed and predicted data normalized
by the standard deviation of the error. All three inversions
reproduce the observations to exactly the same misfit value.
The misfit maps are very similar and appear to be sufficiently
random.
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the first two angles so that the dip can be incorporated perpen-
dicular to the correct strike direction. In such cases, the tilt can
be set to zero.

Given the above definition of the rotation angles, the ro-
tation matrix R is defined by the concatenation of three 2-D
rotation matrices in the order in which the rotations are ap-
plied. The final expression is given by

R =




cos ϕ cos ψ − sin ϕ cos θ sin ψ sin ϕ cos ψ + cos ϕ cos θ sin ψ sin θ sin ψ

−sin ϕ sin θ cos ϕ sin θ −cos θ

−cos ϕ sin ψ − sin ϕ cos θ cos ψ sin ϕ sin ψ + cos ϕ cos θ cos ψ sin θ cos ψ




≡



r11 r12 r13

r21 r22 r23

r31 r32 r33


 . (12)

Thus, the derivatives in the structural coordinates are given
by 



∂m

∂x ′
∂m

∂y′
∂m

∂z′




=




r11
∂m

∂x
+ r12

∂m

∂y
+ r13

∂m

∂z

r21
∂m

∂x
+ r22

∂m

∂y
+ r23

∂m

∂z

r31
∂m

∂x
+ r32

∂m

∂y
+ r33

∂m

∂z




. (13)

Substituting into equation (4) yields the desired 3-D dipping
objective function,

φm(m) =
∫
V

αsm
2 dv

+
∫
V

(
αx ′r

2
11 + αy′r

2
21 + α′zr

2
31

)(∂m

∂x

)2

dv

+
∫
V

(
αx ′r

2
12 + αy′r

2
22 + α′zr

2
32

)(∂m

∂y

)2

dv

+
∫
V

(
αx ′r

2
13 + αy′r

2
23 + α′zr

2
33

)(∂m

∂z

)2

dv

+
∫
V

2(αx ′r11r12 + αy′r21r22 + α′zr31r32)
∂m

∂x

∂m

∂y
dv

+
∫
V

2(αx ′r12r13 + αy′r22r23 + α′zr32r33)
∂m

∂y

∂m

∂z
dv

+
∫
V

2(αx ′r11r13 + αy′r21r23 + α′zr31r33)
∂m

∂x

∂m

∂z
dv.

(14)

We have omitted the reference model m0 for brevity. The first
four terms are the generic objective function with modified co-
efficients, and the last three terms directly introduce the strike,
dip, and tilt.

For numerical solutions, the domain of the sought model is
usually discretized by a 3-D orthogonal mesh, and the model
is represented by a set of cuboidal cells of constant value.
Correspondingly, the objective function in equation (14) is

approximated by a finite-difference representation. Each cell is
assigned its own set of values for (αs j , αx ′ j , αy′ j , αz′ j , ϕ j , θ j , ψ j ),
where the subscript j denotes the index of cells in the model.
This again allows several regions of different strike, dip, and tilt
to be included in the model. The discretized objective function
has a form similar to that of the 2-D dipping objective function
in equation (10).

We now apply the 3-D dipping objective function to a syn-
thetic dc resistivity problem. The model consists of two con-
ductors buried in uniform background beneath an overburden
of variable conductivity. Figure 11 shows the perspective view
of the model, in which the conductor on the left has a strike of
0◦ and a dip of 135◦ and the second conductor has a strike
of 30◦ and a dip of 74◦. Both have zero tilt. Surface pole-
dipole data are calculated for arrays with a= 50 m and n= 1,
8 along eleven east–west traverses spaced 100 m apart. In-
dependent Gaussian noise having standard deviation equal
to 2% of each accurate datum is added. There are 1364 ob-
servations. Figure 12 shows two apparent conductivity pseu-
dosections at x = 400, 500 m and a plan map at the spacing
n= 4. We first invert the data using a generic model objec-
tive function without dip information. The inversion is car-
ried out using a Gauss–Newton approach (Li and Oldenburg,
1997). The resultant model is displayed in Figure 13. The
strike direction of each conductor is clearly shown in the
plan section at depth 150 m (Figure 13c). In the cross-section,
the conductors appear to be dipping, although they are very
smooth and become almost circular at lower conductivity val-
ues. This is nonetheless a good representation of the true
model.

FIG. 10. Definition of the strike (ϕ), dip (θ), and tilt (ψ) that
specify the orientation of the structural coordinates aligned
with the principal axes of a 3-D object. The dashed lines in-
dicate the position of the object before the particular rotation
is applied. The user coordinates have axes (x, y, z), and the
structural coordinates have axes (x ′, y′, z′).
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We next invert the data using a 3-D dipping objective func-
tion. Three different regions are included: (1) the region above
z = 50 m has no dip incorporated; (2) the region below
z= 50 m and west of y= 500 m has (ϕ, θ, ψ) = (0◦, 135◦, 0◦)

FIG. 11. A 3-D perspective view of the 3-D synthetic conductiv-
ity model. The conductors are represented by the gray-shaded
blocks, and the overburden is represented by the light solid
lines. The conductor on the left has a strike of 0◦ and a dip of
135◦. It extends from x = 300 m to x = 700 m along strike and
z = 75 m to z = 400 m at depth. The second conductor has
a strike of 30◦ and dip of 74◦; it extends from x = 200 m to
x = 800 m along strike and z = 75 m to z = 450 m at depth.
The half-space conductivity is 1 mS/m, while the overburden
has a conductivity of 2 mS/m on the left and 0.5 mS/m on the
right. The dipping conductors both have a conductivity of 100
mS/m.

FIG.12. Pole-dipole data are simulated for arrays witha = 50 m
and n = 1, 8 along eleven east–west lines spaced 100 m
apart. Apparent conductivity in two selected pseudosections
at x = 400 m and 500 m, and in one plan section for n = 4 are
shown in this figure. The grayscale indicates apparent conduc-
tivity in mS/m.

and (αx ′ , αy′ , αz′) = (10.0, 0.1, 10.0); and (3) the region below
z= 50 m and east of y= 500 m has (ϕ, θ, ψ) = (30◦, 74◦, 0◦)
and (αx ′ , αy′ , αz′) = (10.0, 0.1, 10.0). The resultant conductiv-
ity model is shown in Figure 14. The prisms clearly appear as
tabular, dipping bodies in the cross-section, and the dip angles
are very close to the true value. The inferred strike direction
has not changed substantially. Overall, the recovered model
has shown clear improvements as a result of incorporating the
information about strike and dip of the true structure, and this
model is a better representation of the true conductivity than
that in Figure 13.

In this example the strike direction is recovered very well
by the generic inversion. This is true for most inversions of
data that have good areal coverage. In such cases, the strike
direction is evident in the data; incorporating the strike in the
inversion only serves as a means to incorporate the dip.

FIELD EXAMPLE

To test the dipping objective function on field data, we invert
a 2-D data set presented by Hallof and Yamashita (1990). The
data were acquired over a gold deposit in Ontario. The deposit
is associated with a steeply dipping sulfide body embedded in
metasedimentary rock surrounded by volcanics. The formation

FIG. 13. A 3-D conductivity model recovered using a generic
model objective function. The model is shown in two cross- sec-
tions and one plan section. The true positions of the conductors
are outlined by the white boxes. The strike direction of each
conductor is clearly shown in the plan section. In cross-section,
the conductors appear as broad anomalies with some indication
of their dipping nature. The grayscale indicates the conductiv-
ity in mS/m.
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is overlain by a layer of glacial sediments of variable thickness.
A dipole-dipole array with a= 40 m and n= 1, 4 is used. Fig-
ure 15 shows the apparent conductivity and IP phase pseudo-
sections along with the geology. The dip angle of the sulfide
body is estimated to be 110◦.

Figure 16 displays the two inverted resistivity models using
the generic and dipping objective functions, respectively. The
generic objective function has αx = αz , whereas the dipping ob-
jective function has (αx/αz = 8000) in the region below 30 m.
The data are assigned errors of 5%. The main feature in these
models is a conductive overburden of variable thickness. The
dipping model displays some variations beneath the overbur-
den, and the sharp change from the conductive to the resistive
zone around x = 50 m appears to coincide with the boundary
between the metasedimentary unit and the volcanics on the
right. However, because of the limited depth of penetration,
the variation at depth is poorly defined.

Three inverted IP phase models recovered using different
objective functions are shown in Figure 17. We have assumed a
constant error of 5% plus 2 mrad. The generic inversion using
no dip information shows a concentrated IP high coinciding
with the top of the mineralization zone. When the dip is incor-
porated into the IP inversion, the recovered anomaly shows
an improved correspondence with the steeply dipping sulfide

FIG. 14. A 3-D conductivity model recovered using a model
objective function that incorporates the strike and dip of each
conductor. The true position of the conductors is outlined by
the white boxes. The recovered conductors dip at angles con-
sistent with the respective true conductor.

body and with the metasedimentary unit. The incorporation of
dip information has provided better horizontal definition and
has increased the depth extent of the body, which is compatible
with known geology.

FIG. 15. A field data set reproduced with permission from
Hallof and Yamashita (1990). The upper and middle panels
show the apparent conductivity (in mS/m) and apparent IP
phase (in mrad) pseudosections, respectively. The data were ac-
quired using a dipole-dipole array with a = 40 m and n = 1, 4.
The lower panel displays the geology and drillhole intersec-
tions.

FIG. 16. Conductivity models recovered by inverting the dc
resistivity data shown in Figure 15a using a generic model ob-
jective function (a) and a dipping model objective function (b),
respectively. The geological boundaries and drillhole traces are
shown by the overlays. Both models recover a conductive over-
burden of variable thickness; this corresponds with the glacial
sediments. The variation at depth, however, is poorly defined
because of the limited depth of penetration. The grayscale in-
dicates the conductivity in mS/m.
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FIG. 17. Comparison of IP phase models (in mrad) recovered
by inverting IP data shown in Figure 15b using different ob-
jective functions and background conductivity models. (a) A
generic objective function and a generic conductivity used in
Figure 16a. (b) A dipping model objective function for the IP
inversion and a generic conductivity model used in Figure 16a.
(c) A dipping model objective function and a dipping conduc-
tivity model used in Figure 16b.

CONCLUSION

Geophysical inversions are nonunique, and complemen-
tary information is often needed to reduce the ambiguity.
Incorporating structural information such as dip angle helps
construct a model that reflects known characteristics of the

true geology. We have developed a new model objective func-
tion that includes strike and dip information about the geologic
structure in multiple regions in our geophysical inversions. This
additional information is particularly helpful in model regions
that are poorly defined because of the data constraints. The
resultant model is thus consistent with a priori geologic infor-
mation and with data from the geophysical survey.
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