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Abstract— The major benefit of the state estimation based on
kinematic model such as the kinematic Kalman filter (KKF)
is that it is immune to parameter variations and unknown
disturbances and thus can provide an accurate and robust
state estimation regardless of the operating condition. Since
it suggests to use a combination of low cost sensors rather
than a single costly sensor, the specific characteristics of each
sensor may have a major effect on the performance of the
state estimator. As an illustrative example, this paper considers
the simplest form of the KKF, i.e., the velocity estimation
combining the encoder with the accelerometer and addresses
two major issues that arise in its implementation: the limited
bandwidth of the accelerometer and the deterministic feature
(non-whiteness) of the quantization noise of the encoder at slow
speeds. It has been shown that each of these characteristics can
degrade the performance of the state estimation at different
regimes of the operation range. A simple method to use the
variable Kalman filter gain has been suggested to alleviate
these problems using the simplified parameterization of the
Kalman filter gain matrix. Experimental results are presented
to illustrate the main issues and also to validate the effectiveness
of the proposed scheme.

I. INTRODUCTION

One of fundamental issues in designing mechanical servo

systems is how we can estimate the missing states accurately

and robustly. Existing state estimation methods often rely on

the physical parameters of the plant such as the inertia and

the damping to design a state observer. This means that the

observer is essentially prone to unexpected errors such as

parameter variations and unknown external disturbances. As

a result, the robustness and the performance of the closed

loop system is generally not guaranteed in the observer-based

state feedback control [1]. Further improvement may be

achieved through an extensive process to refine the physical

model and to identify external disturbances so that we can

maximize the robustness margins, thereby extending the limit

of performances. Originating from the earlier work in [2],

there also have been numerous attempts, to come up with a

proper strategy to trade off between the noise rejection and

the robustness margin in the observer-based state feedback

scheme. However, the fundamental limitation still exists

because a physical model cannot be exact in reality.

On the other hand, if other signals can be measured

such as the acceleration of the motor shaft or the inertial

measurements of the end effector of a robot, the estimator

design can be approached from a fundamentally different

point of view. Clearly, the more sensors we use, the less
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model parameters we need. Less dependence on model

parameters, in turn, means more robustness of the control and

estimation algorithms against parameter uncertainties and

external disturbances. So, the performance is not necessarily

sacrificed for robustness in such sensor-based approach.

From state estimation point of view, one of simple examples

of such approaches is to use the (exact) kinematic model

instead of (uncertain) physical models so that we can for-

mulate the estimation problem under the ideal condition that

optimal estimation algorithms such as the Kalman filter are

guaranteed to be optimal. This type of Kalman filter is called

the kinematic Kalman filter (KKF) [3][4]. In this approach,

the sensor measurements are used not only as output from

the system but also as the input to the system. All the

information engaged in the estimation process is obtained

from sensors, so it is a sensing-rich approach [5]. Besides

the main advantage of robust and accurate state estimation,

the sensing rich approach such as the KKF suggests that,

instead of using a single expensive sensor, we can get more

benefits from using multiple low cost sensors without losing

the major performance [3]. In fact, the state estimation based

on kinematic model has been the main framework in the

aided navigation [6] and human motion tracking [7][8] where

the system model is described by the kinematics of a particle

or a rigid body.

Kinematic model itself is indeed an exact model. However,

in reality, the sensor signals engaged in the KKF cannot be

ideal due to the limitations and/or characteristics of each

sensor used. There are two types of sensors comprising the

KKF, which are the absolute position sensor (such as encoder

and vision) and inertial sensors (such as accelerometers and

gyroscopes). The former is more related to the quantization

effect while the latter is more to the bandwidth and noise

covariance. Especially, there is an inherent constraint on the

signal bandwidth of low cost inertial sensors due to the

on-board low pass filter for signal conditioning, which, in

fact, realizes the trade off between the signal bandwidth and

the noise density of the measured signal. Even though we

set the signal bandwidth of the inertial sensor very high

(thus sacrificing the noise density), it brings out unnecessary

phase lag over the wide frequency range below the cut-off

frequency. On the other hand, the absolute position sensor

typically has a quantization error and we approximate it with

Gaussian white noise in designing the KKF. However, we

may encounter situations where this assumption is severely

violated, especially when the frequency content of the motion

is very low (or the motor is moving very slowly) resulting in

the quantization noise of the encoder close to a deterministic
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signal rather than a white noise. This paper addresses these

two practical issues in implementing the KKF, i.e., 1) the

limitation on the signal bandwidth of the inertial sensors,

which results in the excessive phase lag at fast (or high

frequency) motion and 2) the manifestation of non-whiteness

of the quantization error at slow (or low frequency) motion.

It should be noted that the explicit consideration of the

sensor characteristics is also one of major issues in systems

comprised of large number of low cost sensors such as the

sensor network [9][10].

This paper is organized as follows. The velocity estimation

using the KKF will be briefly reviewed in Section II. Then

Section III explains two practical issues in implementing the

KKF. First, the effect of the signal bandwidth is introduced

in Subsection III-A and then the problem with the constant

(steady state) Kalman filter gain is elaborated in Subsection

III-B with some illustrative results from the experiment. To

address these issues, a simple strategy to use a variable filter

gain is considered in Section IV and finally, the conclusions

are given in Section V.

II. VELOCITY ESTIMATION BASED ON KINEMATIC

MODEL: KKF

If the motor encoder is the only measurement available,

the simplest method to get the velocity is to numerically

differentiate the encoder counts, e.g. in the simplest case,

v(k) =
�(k)− �(k − 1)

Ts

. (1)

where �(k) is the position at the time step k and Ts is the

sampling interval. At high speeds, this method may provide a

relatively accurate estimate of the velocity, but at low speeds

the estimate becomes highly unreliable. At extremely low

speeds, a better approach is to time the interval between

two consecutive encoder pulses at the expense of a large

phase lag. Such a numerical differentiation is very simple, yet

practically important, there have been continuous interests in

further improving the accuracy of the estimation of the veloc-

ity. The majority of methods in this approach depends on the

intelligent use of various filtering and timing mechanisms.

The most recent results and reviews can be found in [11] and

[12]. The velocity may also be estimated using the model-

based state estimation theory [13][14][15][16]. As mentioned

above, in the model-based approaches, model parameters

and external disturbances must be accurately known for the

estimate of velocity to be accurate, which is not trivial. In any

case, a high resolution encoder can provide a more accurate

velocity estimate, but it greatly increases the implementation

cost if we want very high accuracy at low speeds. This is the

reason why some of high precision motion control systems

use encoders with a resolution much higher than necessary

to satisfy the accuracy requirement for positioning.

In contrast, if we have an access to the acceleration

signal (potentially noisy), then we can directly use the exact

kinematic model instead of the uncertain physical model.

The kinematic model relates the angular acceleration �(t) to

the position �(t) by

�̈(t) = �(t). (2)

Considering the real angular acceleration a(t) as the sum of

the measurement ā(t) and its noise component na(t), i.e.

�(t) = ā(t) + na(t) (3)

a state space representation of the kinematic model has the

acceleration as an input and the encoder measurement as the

system output. Since the encoder measurements are obtained

only intermittently, it is best to describe the kinematic model

in the discrete-time domain and (2) can be rewritten using

the zero order hold as

x(k + 1) = Ax(k) +B(ā(k) + na(k)) (4a)

y(k) = Cx(k) + q�(k) (4b)

A =

[

1 Ts

0 1

]

B =

[

T 2

s
2
Ts

]

C =
[

1 0
]

(4c)

where q�(k) is the quantization noise of the position encoder.

The accelerometer noise na(k) is correctly modelled as

a zero mean Gaussian white noise since it comes from

electrical noise. The quantization error q�(k) does not exactly

follow the Gaussian white noise property but it is known

to behave as an uncorrelated uniform distribution if the

signal is sufficiently complicated and the quantization level

is sufficiently small [17]. So, q�(k) can be approximated as

a Gaussian white noise with its noise variance

V =
Δ2

�

12
. (5)

where Δ� is the quantization level of the encoder. Then,

the steady-state Kalman filter is an optimal estimator for (4)

and its observer gain F can be obtained by the discrete-time

algebraic Riccati equation (DARE) as follows.

F =
MCT

CMCT + V
(6a)

M = AMAT +BWBT − AMCTCMAT

CMCT + V
(6b)

where W is the variance of na(k) and M is the one-

step prediction error covariance matrix. Then it leads to the

following state estimator called the kinematic Kalman filter

(KKF):

x̂k(k + 1) = Acx̂k(k) +Bcā(k) + Fy(k + 1) (7)

where Ac = (I − FC)A and Bc = (I − FC)B.

III. SENSOR CHARACTERIZATION FOR KKF

A. The Effect of Signal Bandwidth of Accelerometer

In (3), we are assuming that the accelerometer is ideal, i.e.

the acceleration can be measured over the entire frequency

range. However, in practice, the measurement from the

accelerometer will always be limited by a certain bandwidth.

This is particularly true for the case with commercial low

cost MEMS accelerometers [18]. In fact, the bandwidth

should be traded off with the noise density because the output
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signal is usually conditioned by the first order low pass filter,

the cut-off frequency of which is determined by an external

capacitor [18]. In this case, the noise density (rms) is related

to the cut-off frequency �! [rad/sec] of the bandwidth by

rmsNoise ∝ √
�! . (8)

This adds an addition dynamics to the kinematic model in

(4) so we need to augment it with the inverse of the low pass

filter as shown in Fig. 1 where L! is the first order low pass

filter given by

L!(s) =
1

s+ 1

�!

. (9)

Accordingly, the system matrix Bk in (4c) changes to

B! =

[

Ts

�!
+

T 2

s

2

Ts

]

. (10)

Also, the noise covariance of the accelerometer will change

according to (8) as

W = k!�! (11)

where k![(rad/s
2)2/Hz] is the constant coefficient.

Figure 2a shows how the Kalman filter poles change as we

set different values for the bandwidth of the accelerometer. It

is assumed that k! = 0.05 and the resolution of the encoder

is 1024 ppr (pulse per revolution). As the covariance of the

accelerometer W increases, the observer poles move toward

the inside of the unit circle. On the other hand, for the same

value of W , the bandwidth limitation results in moving the

closed-loop poles of the Kalman filter even further inward the

unit circle. This means that we may be using the estimator

with the slower dynamics than the desired one if we do not

take the bandwidth characteristics into account.

L¡1
!
(s) 1

s2

a¹a

na

µ

Fig. 1: Augmented kinematic model

This is also confirmed by the estimated velocity profiles

in Fig. 2b which simulates different velocity profiles when

the system is excited by 10 Hz sinusoidal signal. In this

simulation, �! = 100Hz is considered as the bandwidth of

the accelerometer with k! = 0.05 (i.e., W = 5 (rad/s2)2).

The dashed line is the actual velocity and other lines are

the estimated velocities from the KKF. Both estimated ve-

locities show the phase lag due to the limited bandwidth of

the accelerometer. However, the velocity estimated by the

KKF without considering �! (the grey line with dot marks)

introduces additional distortion due to the slower estimation

dynamics than the case with the explicit consideration of �!
into the design of the KKF (the black solid line).

In fact, as we can see in Fig. 2b, the difference is

not very significant between the case that we consider the

low pass filter and the case that we do not. More serious

problem comes from the fact that there is an inherent phase

Real

Im
ag

BW limited

BW not limited

W = 0:25

W = 2

(a) Kalman filter closed-loop poles when k! = 0.05

¿! = 100Hz
¿! =1

Real velocity

V
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o
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)
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(b) Velocity profiles (10 Hz reference signal with �! = 100Hz)

Fig. 2: Effect of the bandwidth limitation on KKF

lag resulting from the low pass filtered acceleromter signal

whether we explicitly consider the bandwidth limitation or

not. The effect is quite pervasive as shown in Fig 2b. More

specifically, even though �! is set to 100Hz, the phase

delay affects the performance of the velocity estimation on

signals in much lower frequency ranges as well (10 Hz signal

in this case). This problem can actually be mitigated by

intentionally increasing the speed of the convergence rate

of the observer dynamics. Faster observer dynamics means

that we are relying more on the encoder signal than the

accelerometer. However, as we rely more on the encoder

signal for the velocity estimation, the noise characteristics of

the quantization error from the encoder will become more

dominant. This issue will be addressed in more detail in

the following section when we consider another problem of

the KKF, i.e. the manifestation of the non-whiteness of the

quantization error for the slow frequency motion when we

design the KKF with intentionally fast observer dynamics.

B. The Effect of Deterministic Quantization Error

In formulating the KKF, we assumed that the quantization

noise of the encoder can be approximated by the Gaussian

white noise as in (5). This is reasonably true when the motor

is moving with a motion fast and complicated enough to

make the whiteness assumption hold [17], i.e. the asymptotic

convergence of the quantization error to the white noise

signal. However, this does not hold when the motor is

operating in slow frequency ranges due to the increased

time correlation between consecutive encoder samples. In a
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typical case, this may not be significant. However, in such

a case that we intentionally increase the convergence rate

of the observer (for example, to compensate for the phase

lag coming from the bandwidth limitation), the problem

of the non-whiteness of the quantization error can become

significant.

Hollow Shaft

Encoder

Housing

Servo

Motor

Disc with

MEMS

Accelerometer

Liquid Metal

Slip Ring

Fig. 3: Experimental setup for KKF test

In order to illustrate this issue, a series of experiments

have been performed using the joint actuator unit shown

in Fig. 3. It is equipped with the angular accelerometer as

well as the motor encoder. It uses two ADXL210E linear

MEMS accelerometers (Analog Devices) mounted on the

opposite sides of the disc element that rotates with the motor

shaft. So it converts the linear acceleration measurement into

the angular acceleration. In order to minimize the signal

transmission noise, the liquid metal slip ring (Mercotec)

has been adopted to transmit the measured acceleration

signals. Table I shows the parameters of the encoder and

the accelerometer for the design of the KKF.

TABLE I: Experimental Conditions

Encoder Spec. Value Unit

Encoder Counts N 212 [ppr]
Sampling Time Ts 0.002 [sec]

Accelerometer Spec. Value Unit

Resolution ∣wa∣max 8 [rad/sec2]
Bandwidth 500 [Hz]

k� 0.005 [(rad/sec2)2/Hz]

Maximum Range 5144 [rad/sec2]

Fig. 4a shows the velocity profiles when we designed the

steady state KKF with the nominal values given in Table

I. The motor was run with the chirping signal (starting

from 0 Hz to 50 Hz in 5 second) to see the performance

of the velocity estimation both at the slow motion and at

the fast motion. The solid line is the velocity from the

KKF and the grey dashed line is the velocity estimation

by the numerical differentiation. Note the the discontinuous

velocity profile from the numerical differentiation is due to

the velocity resolution given by Δ�/Ts = 3.068rad/sec.
Figure 4a shows the initial motion of the motor. Due to

the Coulomb friction in the shaft, the motor moves very

slowly in the beginning and as it overcomes the stiction

level, the velocity starts ramping up. As we can see, the KKF

provides a smooth velocity profile compared to the numerical
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(a) Velocity estimation at low frequency motion
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(b) Velocity estimation at high frequency motion

Fig. 4: Estimated velocities with the observer of slow con-

vergence rate

differentiation. However, as Fig. 4b illusrates, during the

high frequency motion, the estimated velocity from the

KKF introduces an additional phase lag compared to the

numerical differentiation. Note that the velocity estimation

by the numerical differentiation has the default phase lag

corresponding approximately to the size of the sampling time

Ts. Therefore, the phase lag in the estimated velocity for the

KKF in Fig. 4b is quite significant. As was explained in the

previous section, this is primarily due to the the inherent

bandwidth limitation of the accelerometer which is set to

500 Hz in this case.

To get around the additional phase lag shown in Fig. 4b,

one might try to intentionally increase the convergence rate

of the observer dynamics by using excessively large values

for W . This means that the velocity estimation will more

depend on the encoder measurement than the accelerometer.

The results in such a case are shown in Fig. 5. We can see

in Fig. 5b that the phase lag has been considerably reduced

compared to Fig. 4b. Although the velocity profile now has

glitches due to the excessive effect of the encoder, it still

shows smoother profile compared to the velocity estimation

by the numerical differentiation. In this case, however, we

sacrificed the velocity estimation at the slow frequency

motion as we can see in Fig. 5a. Due to the quantization
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error of the encoder, now we have a deterministic signal for

the velocity estimation at this slow frequency motion and the

velocity profile is directly responding to the discontinuous

encoder signal.
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(a) Velocity estimation at low frequency motion
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(b) Velocity estimation at high frequency motion

Fig. 5: Estimated velocities with the observer of fast conver-

gence rate

IV. THE KKF WITH VARIABLE FILTER GAIN

From Fig. 4 and 5, we can conclude that the steady

state gain for the KKF, (i.e. the constant filter gain) may

not be suitable for all the frequency ranges of the motion,

which suggests to use a variable filter gain depending on the

frequency component of the motion. In general, if we want

to make the filter gain variable, the DARE in (6) must be

solved in real time. However, due to the simplicity of the

kinematic model (i.e. the double integrator model), we can

have the closed (parameterized) form of the Kalman filter

gain. The system matrices in (4) has only one parameter Ts

and we can expect that the solution to the DARE in (6) will

be parameterized by the sampling time Ts, the accelerometer

noise covariance W and the encoder noise covariance V .

Following equation provides the parameterized solution for

M [19].

M(1, 1) = V

√
1 + 2r(

√
1 + 2r + 1)2

r2
(12a)

M(1, 2) =
WT 3

s

8
(
√
1 + 2r + 1)2 (12b)

M(2, 2) =
WT 2

s

2

(√
1 + 2r + 1

)

(12c)

where r = 4

T 2
s

√

V
W

. Accordingly, from the Eq. (6a), the KKF

gain F =
[

f1 f2
]T

can be written as

f1 =

√
1 + 2r(

√
1 + 2r + 1)2√

1 + 2r(
√
1 + 2r + 1)2 + r2

(13a)

f2 =
2

Ts

(
√
1 + 2r + 1)2√

1 + 2r(
√
1 + 2r + 1)2 + r2

(13b)

Equation (13) is reasonable to implement for the real time

computation but we can actually further simplify the parame-

terization by using the equivalent formulation of the so called

alpha-beta filter with respect to Kalman filter [20]. From the

relations between the Kalman filter version of the alpha-beta

filter and its continuous-time impulse-invariant inverse, the

KKF gain can be reparameterized as follows.

f1 = �Ts

(√
2− �Ts

2

)

, f2 = �2Ts (14)

where � is the main parameter to be adjusted and it satisfies

�Ts ≤ �, 0 ≤
√
2− �Ts

2
≤ 1. (15)

The former is needed to satisfy the Nyquist criterion the

letter is to guarantee the stability of the Kalman filter.

As mentioned before, we can adjust the KKF gain with

respect to frequency component of the motion. Ideally,

it can be obtained by the Fourier series of the velocity

samples within a fixed time frame. However, to reduce the

computational load, we choose to approximate the frequency

component of the motion by the ratio between the magnitude

of the acceleration and that of the velocity. Denoting N�

as the number of samples within which we want to extract

the frequency component of the motion, the index for the

frequency content can be obtained as

u(k) :=

max
i=0,..,N�−1

∣ā(N�(m− 1) + i)∣

max
i=0,..,N�−1

∣ ˆ̇�(N�(m− 1) + i)∣+ cv
, m =

⌊

k

N�

⌋

(16)

where
ˆ̇
�(k) is the estimated velocity and cv is a constant

to avoid the zero at the denominator. Since u(k) is updated

every N� sample times, N� should be chosen considering

the expected largest frequency component within the motion

range.

Then the variable KKF gain can be determined by the

following linear mapping.

�(k) = �max, if u(k) ≥ umax (17a)

�(k) = �min, if u(k) ≤ umin (17b)

�(k) =
�max − �min

umax − umin

(umax − u(k)) + �min (17c)
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where the subscripts either max or min indicates the maxi-

mum and the minimum values chosen for the corresponding

variable. Since the u(k) is defined for k ≥ N� in (16), we

can use �(k) = �min for 0 ≤ k ≤ N� − 1.

Fig. 6 shows the result when we implement the variable

gain for the KKF as described above. Table II lists the

parameters chosen for the adaptation rule. We can see that

it provides smooth velocity profile both at the slow motion

and the fast motion ranges without the additional phase lag.

TABLE II: Constants for variable Kalman filter gain

Variable Value Unit Variables Value Unit

N� 50 samples cv 1 rad/sec
�max 400 Hz umax 500 Hz
�min 30 Hz umin 0 Hz
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(a) Velocity estimation at slow frequency motion

Numerical
Di®erentiation
KKF

0

1

2

3

¡1

¡2

¡3
4:5 4:51 4:52

Time (sec)

V
el
o
ci
ty
(r
a
d
/
se
c)

(b) Velocity estimation at fast frequency motion

Fig. 6: Estimated velocities with variable Kalman filter gain

V. CONCLUDING REMARKS

Sensor-based state estimation is an attractive option for

its superior robustness and accuracy compared to the con-

ventional model-based methods. However, the use of low

cost sensors can introduce various sources of performance

degradation coming from the inherent characteristics or the

limitations of each sensor. The KKF for velocity estimation is

investigated as an illustrative example. The bandwidth limit

of the MEMS accelerometer and the deterministic feature

of the quantization noise at slow velocity are addressed as

major characteristics of sensors used in the KKF. A simple

filter gain adaptation rule is suggested to mitigate the above

mentioned problems in sensors and its performance has been

verified through the experimental results.
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