A note on multiplicative sum Zagreb index

Hongzhuan Wang ${ }^{\text {© * }}$, Hongmei Bao ${ }^{\oplus}$
(1) Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, P.R. China
E-mail: hzwangmath@yeah.net
Received: 10-10-2012; Accepted: 12-15-2012 *Corresponding author
This work was supported by NSF of the Higher Education Institutions of Jiangsu Province (No.12KJB110001), P.R. China.

Abstract

For a nontrivial (molecular) graph G, its multiplicative sum Zagreb index, denoted by $\pi_{1}^{*}(G)$, is defined as the product of the sum $d_{G}(u)+d_{G}(v)$ over all edges $u v$ in G, where $d_{G}(u)$ is the degree of vertex u. In this note, we establish a relationship between $\pi_{1}^{*}(G)$ of a graph and the first multiplicative Zagreb index of its total graph. Moreover, we present some bounds for $\pi_{1}^{*}(G)$ in terms of some other graph parameters including the second multiplicative Zagreb index, radius, the first Zagreb index.

Key Words distance, Wiener index, the first multiplicative, Zagreb index
MSC 2010 05C12, 05C75

1 Introduction

We only consider finite, undirected and simple graphs throughout this paper. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The degree of $v \in V(G)$, denoted by $d_{G}(v)$, is the number of vertices adjacent to v in G. The distance between two vertices u and v in a connected graph G, denoted by $d_{G}(u, v)$, is the length of the shortest path connecting u and v. For other notations and terminology not defined here, the readers are referred to [2].

A graphical invariant is a number related to a graph, in other words, it is a fixed number under graph automorphisms. In chemical graph theory, these invariants are also called the topological indices. One of the oldest topological indices is the well-known Zagreb indices firstly introduced in [5], where Gutman and Trinajstić examined the dependence of total π-electron energy on molecular structure and elaborated in [6]. For a (molecular) graph G, its first Zagreb index $M_{1}(G)$ and second Zagreb index $M_{2}(G)$ are, respectively, defined as

$$
M_{1}=M_{1}(G)=\sum_{v \in V(G)}\left(d_{G}(v)\right)^{2} \quad \text { and } \quad M_{2}=M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v) .
$$

The above two ordinary topological indices (M_{1}-index and M_{2}-index) reflect the extent of branching of the molecular carbon-atom skeleton $[1,11]$. These two Zagreb indices were well-studied during the past decades, see $[3,4,8-10]$ and the references cited therein.

Recently, Todeschini et al. [12, 13] have proposed the multiplicative variants of ordinary Zagreb indices, which are defined as

$$
\pi_{1}=\pi_{1}(G)=\prod_{v \in V(G)}\left(d_{G}(v)\right)^{2} \quad \text { and } \quad \pi_{2}=\pi_{2}(G)=\prod_{u v \in E(G)} d_{G}(u) d_{G}(v)
$$

respectively.
These two topological indices are called "multiplicative Zagreb indices" by Gutman [7]. In [7], Gutman characterized that among all trees of order $n \geqslant 4$, the extremal trees with respect to these multiplicative Zagreb indices are the path P_{n} (with maximal π_{1} and minimal π_{2}) and the star S_{n} (with maximal π_{2} and minimal π_{1}), resepctively. Xu and Hua [14] provided a unified approach to determine extremal trees, unicyclic graphs and bicyclic graphs with respect to these two multiplicative Zagreb indices.

More recently, Xu and Das [15] proposed the multiplicative sum Zagreb index, which is defined as

$$
\pi_{1}^{*}=\pi_{1}^{*}(G)=\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)
$$

Concerning the multiplicative sum Zagreb index, the authors [15] characterized extremal trees, unicyclic graphs and bicyclic graphs with respect to the multiplicative sum Zagreb index.

In this note, we establish a relationship between $\pi_{1}^{*}(G)$ of a graph and the first multiplicative Zagreb index of its total graph. Moreover, we present some bounds for $\pi_{1}^{*}(G)$ in terms of some other graph parameters including the second multiplicative Zagreb index, radius, the first Zagreb index.

2 Main results

We divide this section into two subsections. In the first subsection, we establish the relationship between π_{1}^{*}-index of a graph and π_{1}-index of its total graph. In the second subsection, we build some bounds for π_{1}^{*}-index of nontrivial graphs in terms of other graph parameters.

Let G be a connected graph composed of s components G_{1}, \ldots, G_{s}. According to the definition of π_{1}^{*}-index, we have $\pi_{1}^{*}(G)=\prod_{i=1}^{s} \pi_{1}^{*}\left(G_{i}\right)$. So, it suffices to investigate π_{1}^{*}-index of connected graphs.

2.1 Relationships between π_{1}^{*}-index of a graph and π_{1}-index of its total graph

Theorem 2.1. Let G be a nontrivial connected graph, and let $T(G)$ be the total graph of G. Then

$$
\pi_{1}^{*}(G)=\frac{1}{2} \sqrt{\frac{\pi_{1}(T(G))}{\pi_{1}(G)}}
$$

Proof. By the definition of total graph, $V(T(G))=V(G) \cup E(G)$. For each vertex v in $G, d_{T(G)}(v)=$ $2 d_{G}(v)$; For each edge $e=u v$ in $G, d_{T(G)}(e)=d_{G}(u)+d_{G}(v)$.

According to the definition of the first multiplicative Zagreb index and the multiplicative sum Zagreb index, we have

$$
\begin{aligned}
\pi_{1}(T(G)) & =\prod_{w \in V(T(G))}\left(d_{T(G)}(w)\right)^{2} \\
& =\prod_{w \in V(G)}\left(2 d_{G}(w)\right)^{2} \cdot \prod_{w=x y \in E(G)}\left(d_{G}(x)+d_{G}(y)\right)^{2} \\
& =4 \pi_{1}(G) \cdot\left(\prod_{w=x y \in E(G)}\left(d_{G}(x)+d_{G}(y)\right)\right)^{2} \\
& =4 \pi_{1}(G)\left[\pi_{1}^{*}(G)\right]^{2}
\end{aligned}
$$

implying the expected result.

2.2 Relationships with other graph parameters

Xu and Das [15] have proposed the problem to find the relationship between the second multiplicative Zagreb index and the multiplicative sum Zagreb index. Here, we present a simple relationship between these two indices.

Theorem 2.2. Let G be a nontrivial connected graph of size m. Then

$$
\pi_{1}^{*}(G) \geqslant 2^{m} \sqrt{\pi_{2}(G)}
$$

with equality if and only if G is a regular graph.
Proof. By the definition of these two multiplicative Zagreb indices,

$$
\begin{align*}
\pi_{1}^{*}(G) & \geqslant \prod_{u v \in E(G)} 2 \sqrt{d_{G}(u) d_{G}(v)} \tag{1}\\
& =2^{m} \sqrt{\prod_{u v \in E(G)} d_{G}(u) d_{G}(v)} \\
& =2^{m} \sqrt{\pi_{2}(G)}
\end{align*}
$$

It can be seen that the equality in Ineq. (1) is attained if and only if $d_{G}(u)=d_{G}(v)$ for each edge $u v$ in G.

We claim that $\pi_{1}^{*}(G)=2^{m} \sqrt{\pi_{2}(G)}$ if and only if G is a regular graph.
If G is a regular graph, then the equality in Ineq. (1) is attained, and thus $\pi_{1}^{*}(G)=2^{m} \sqrt{\pi_{2}(G)}$.
Conversely, we assume that $\pi_{1}^{*}(G)=2^{m} \sqrt{\pi_{2}(G)}$. Let us prove that G is a regular graph. Suppose to the contrary that there exist two vertices, say u and v, in G, satisfying that $d_{G}(u) \neq d_{G}(v)$. Then $u v \notin E(G)$. Because G is connected, there must exist a $v_{0} v_{1} \ldots v_{s}$ path in G, where $v_{0}=u$ and $v_{s}=v$ and $s \geqslant 2$. Note that $d_{G}(x)=d_{G}(y)$ for any edge $x y$ in G. Thus, $d_{G}(u)=d_{G}\left(v_{1}\right)=\ldots=d_{G}(v)$, a contradiction to our assumption. Thus, G is a regular graph, as desired.

The radius $R(G)$ of a connected graph G is defined as $R(G)=\min \left\{\varepsilon_{G}(u) \mid u \in V(G)\right\}$, where $\varepsilon_{G}(u)=\max \left\{d_{G}(u, v) \mid v \in V(G)\right\}$.

In the following, we give a result relating multiplicative sum Zagreb index with radius for trees.
Theorem 2.3. Let G be a nontrivial tree of order n and $R(G)$ be its radius. Then

$$
\pi_{1}^{*}(G) \leqslant(n+1-R(G))^{\frac{n(n-1)}{2}}
$$

with equality if and only if $G \cong P_{2}$.
Proof. Suppose that G is a nontrivial tree of order n. For any two vertices u and v in G, it holds that

$$
\begin{equation*}
d_{G}(u, v) \leqslant n-\left(d_{G}(u)-1\right)-\left(d_{G}(v)-1\right)-1=n-d_{G}(u)-d_{G}(v)+1 \tag{2}
\end{equation*}
$$

with equality if and only if all vertices not belonging to $N_{G}(u) \cup N_{G}(v)$ lie within the unique $u-v$ path.
Therefore,

$$
\begin{align*}
\pi_{1}^{*}(G) & =\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right) \\
& \leqslant \prod_{\{u, v\} \subseteq V(G)}\left(d_{G}(u)+d_{G}(v)\right) \tag{3}\\
& \leqslant \prod_{\{u, v\} \subseteq V(G)}\left(n-d_{G}(u, v)+1\right) \tag{4}\\
& \leqslant(n+1-R(G))^{\binom{n}{2}} \tag{5}
\end{align*}
$$

It is easily seen that the equality in Ineq. (3) is attained if and only if $G \cong K_{n}$. The equality in Ineq. (4) is attained if and only if for any vertex pairs $\{u, v\}$ in G, the equality in Ineq. (2) is attained. Hence, the equality in Ineq. (4) is attained if and only if G is one of the paths P_{2}, P_{3} and P_{4}. The equality in Ineq. (5) is attained if and only if for any vertex pairs $\{u, v\}$ in G, there exists $d_{G}(u, v)=R(G)$, that is, G is K_{n}.

Summarizing above, we obtain

$$
\pi_{1}^{*}(G) \leqslant(n+1-R(G))^{\frac{n(n-1)}{2}}
$$

with equality if and only if $G \cong P_{2}$.
This completes the proof.

A bipartite graph $G=(X ; Y)$ is said to be semiregular if there exist two constants a and b such that each vertex in X has degree a and each vertex in Y has degree b; such bipartite graphs are also called $(a ; b)-$ semiregular.

Theorem 2.4. Let G be a nontrivial connected graph of size m. Then

$$
\pi_{1}^{*}(G) \leqslant\left(\frac{M_{1}(G)}{m}\right)^{m}
$$

with equality if and only if G is a regular or semiregular graph.

Proof. According to the definition of multiplicative sum Zagreb index and Geometric-Arithmetic Mean inequality, we obtain

$$
\begin{align*}
\pi_{1}^{*}(G) & =\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right) \\
& \leqslant\left(\frac{\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)}{m}\right)^{m} \tag{6}\\
& =\left(\frac{\sum_{w \in V(G)}\left(d_{G}(w)\right)^{2}}{m}\right)^{m} \\
& =\left(\frac{M_{1}(G)}{m}\right)^{m} .
\end{align*}
$$

It is obvious that the equality in Ineq. (6) is attained if and only if the value of $d_{G}(u)+d_{G}(v)$ is a constant regardless of the choice of edge $u v$.

We first prove the following claim.
Claim 1. For each edge $u v \in E(G), d_{G}(u)+d_{G}(v)$ is a constant if and only if G is regular or semiregular.
Proof. The sufficiency is obvious. Now, we check the necessity.
Assume that $d_{G}(u)+d_{G}(v)$ is a constant and G is not regular. We shall prove that G is a semiregular graph.

We first verify that G is bipartite. Suppose to the contrary that G is not bipartite. Then G contains an odd cycle, say $C_{l}=v_{1} v_{2} \ldots v_{l} v_{1}\left(l\right.$ is odd). As $d_{G}(u)+d_{G}(v)$ is a constant and C_{l} is an odd cycle, one can easily deduce that $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=\cdots=d_{G}\left(v_{l}\right)$. Since G is not regular, there exists at least a vertex, say x, lying outside the cycle C_{l}. Assume that x is adjacent to some $v_{j}(1 \leqslant j \leqslant l)$.

Clearly, for any given vertex u in G, its all neighbors must have equal degrees. Thus, $d_{G}(x)=$ $d_{G}\left(v_{1}\right)=\cdots=d_{G}\left(v_{j}\right)=\cdots=d_{G}\left(v_{l}\right)$. Obviously, $d_{G}(x) \geqslant 3$. As above, we can prove that for any vertex $y \in N_{G}(x) \backslash\left\{v_{j}\right\}, d_{G}(y)=d_{G}\left(v_{j}\right)$. Now, we actually have proved that for any edge $u v \in E(G) \backslash E\left(C_{l}\right)$, there exists $d_{G}(u)=d_{G}(v)=d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=\cdots=d_{G}\left(v_{l}\right)$. Thus, G is a regular graph, a contradiction to our assumption. So, G must be bipartite.

Assume that G has two partite sets X and Y. Let $u v$ be an edge in G such that $u \in X$ and $v \in Y$, and suppose without loss of generality that $d_{G}(u)=a$ and $d_{G}(v)=b$. We further claim that all vertices in X have degree a, and all vertices in Y have degree b. Suppose to the contrary that there exists a vertex, say x, in X whose degree is not equal to a.

Since G is bipartite and connected, there exists an even path connecting u and x. Because $d_{G}(u)+$ $d_{G}(v)$ is a constant for any edge $u v$, we must have $d_{G}(x)=d_{G}(u)=a$, a contradiction. Therefore, any vertex in X has degree a. Similarly, any vertex in Y has degree b. Thus, G is semiregular, as claimed.

By Claim 1, we have

$$
\pi_{1}^{*}(G) \leqslant\left(\frac{M_{1}(G)}{m}\right)^{m}
$$

with equality if and only if G is a regular or semiregular graph.

This completes the proof.

References

1 A.T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure-activity corrections, Topics Curr. Chem., 114 (1983) 21-55.
2 J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.

3 K.C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem., 46 (2009) 514-521.
4 K.C. Das, N. Trinajstić, Relationship between the eccentric connectivity index and Zagreb indices, Comput. Math. Appl., 62 (2011) 1758-1764.
5 I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535-538.
6 I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975) 3399-3405.
7 I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka, 18 (2011) 17-23.
8 H. Hua, Zagreb M_{1} index, indenpedence number and connectivity in graphs, MATCH Commun. Math. Comput. Chem., 60 (2008) 45-56.
9 M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The first and second Zagreb indices of graph operations, Discrete Appl. Math., 157 (2009) 804-811.
10 B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem., 65 (2011) 581-593.

11 R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
12 R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel molecular structure descriptors - Theory and applications I. (I. Gutman, B. Furtula, eds.), pp. 73-100. Kragujevac: Univ. Kragujevac 2010.

13 R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64 (2010) 359-372.
$14 \mathrm{~K} . \mathrm{Xu}, \mathrm{H}$. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem., 68 (2012) 241-256.
15 K. Xu, K. Ch. Das, Trees, unicyclic, and bicyclic graphs extremal with respect to multiplicative sum Zagreb index, MATCH Commun. Math. Comput. Chem., 68 (2012) 257-272.

