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Abstract In a real situation, optimization problems often involve uncertain parameters. Robust
optimization is one of distribution-free methodologies based on worst-case analyses for handling such
problems. In this paper, we first focus on a special class of uncertain linear programs (LPs). Applying
the duality theory for nonconvex quadratic programs (QPs), we reformulate the robust counterpart
as a semidefinite program (SDP) and show the equivalence property under mild assumptions. We
also apply the same technique to the uncertain second-order cone programs (SOCPs) with “single”
(not side-wise) ellipsoidal uncertainty. Then we derive similar results on the reformulation and the
equivalence property. In the numerical experiments, we solve some test problems to demonstrate the
efficiency of our reformulation approach. Especially, we compare our approach with another recent
method based on Hildebrand’s Lorentz positivity.
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1 Introduction

In constructing a mathematical model from a real-world problem, we cannot always determine the
objective function or the constraint functions precisely. For example, when parameters in the functions
are obtained in a statistical or simulative manner, they usually involve uncertainty, e.g., statistical
error, to some extent. To deal with such situations, we need to incorporate uncertain data in a
mathematical model.

Generally, a mathematical programming problem with uncertain data is expressed as follows:

minimize
x

f0(x, u)

subject to fi(x, u) ∈ Ki (i = 1, . . . , m),
(1.1)

where x ∈ Rn is the decision variable, u ∈ Rd is the uncertain data, f0 : Rn×Rd → R and fi : Rn×Rd →
Rki (i = 1, . . . , m) are given functions, and Ki ⊆ Rki (i = 1, . . . , m) are given nonempty sets. Since
problem (1.1) cannot be captured precisely due to u, it is difficult to handle in a straightforward
manner.

Robust optimization [12] is one of distribution-free methodologies for handling mathematical pro-
gramming problems with uncertain data. In robust optimization, the uncertain data are assumed to
belong to some set U ⊆ Rd, and then, the objective function is minimized (or maximized) with taking
the worst possible case into consideration. That is, the following robust counterpart (RC) is solved
instead of the original problem (1.1):

minimize
x

supu∈U f0(x, u)

subject to fi(x, u) ∈ Ki (i = 1, . . . , m), ∀u ∈ U .
(1.2)
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Over the past decade, robust optimization has been studied by many researchers. Ben-Tal and
Nemirovski [8, 9, 11], Ben-Tal, Nemirovski and Roos [13], and El Ghaoui, Oustry and Lebret [19]
showed that certain classes of robust optimization problems can be reformulated as efficiently solvable
problems such as a semidefinite program (SDP) [32] or a second-order cone program (SOCP) [3]
under the assumptions that the uncertainty set is ellipsoidal and the functions fi (i = 0, 1, . . . ,m) in
problem (1.2) are expressed as fi(x, u) = gi(x) + Fi(x)u with gi : Rn → Rki and Fi : Rn → Rki×d. El
Ghaoui and Lebret [17] showed that the robust least-squares problem can be reformulated as an SOCP.
Bertsimas and Sim [15] gave another robust formulation and some properties of the solution. Also,
the robust optimization techniques have been applied to many practical problems such as game theory
[2, 22, 29], portfolio selection [6, 18, 20, 25, 26, 34], classification problem [33], structural design [7]
and inventory management problem [1, 16].

In this paper, we first focus on a special class of linear programs (LPs) with uncertain data. To
such a problem, we apply the strong duality in nonconvex quadratic optimization problems with two
quadratic constraints studied by Beck and Eldar [4], and reformulate its robust counterpart as an SDP.
Moreover, we show that any optimum of the reformulated SDP solves the robust counterpart, when a
certain matrix inequality in the SDP holds strictly or the uncertainty sets are spherical. Particularly,
we further establish equivalency results in the latter case. By using the same technique, we reformulate
the robust counterpart of SOCP with uncertain data as an SDP. In this reformulation, we emphasize
that the uncertainty set for each second-order cone (SOC) constraint is a “single” ellipsoid∗1, which is
different from “side-wise” ellipsoidal uncertainty considered by Ben-Tal et al. [13]. In fact, it had been
an open problem for a long time whether or not the robust counterpart of uncertain SOCP reduces
to an SDP under such a single ellipsoidal uncertainty assumption. Recently, Ben-Tal, El Ghaoui and
Nemirovski [5] pointed out that the robust counterpart can be reformulated as an SDP by applying
Hildebrand’s Lorentz positivity [23, 24]. However, as will be shown later, our reformulation approach
is much less expensive than the Hildebrand-based approach in terms of computational costs. The
numerical results also indicate the advantage of our SDP reformulation.

This paper is organized as follows. In Section 2, we review the strong duality in nonconvex
quadratic optimization problems with two quadratic constraints, which plays a key role in the SDP
reformulation of the robust counterpart. In Section 3, we reformulate the robust counterpart of some
LP with uncertain data as an SDP. In Section 4, we reformulate the robust counterpart of SOCP with
single ellipsoidal uncertain data as an SDP. In Section 5, we give some numerical results to show the
validity and efficiency of our reformulation.

Throughout the paper, we use the following notations. Rn
+ denotes the nonnegative orthant in

Rn, that is, Rn
+ := {x ∈ Rn | xi ≥ 0 (i = 1, . . . , n)}. Sn denotes the set of n × n real symmetric

matrices. Sn
+ denotes the cone of positive semidefinite matrices in Sn. For a vector x ∈ Rn, ‖x‖

denotes the Euclidean norm defined by ‖x‖ :=
√

x>x. For a matrix M = (Mij) ∈ Rm×n, ‖M‖F

is the Frobenius norm defined by ‖M‖F := (
∑m

i=1

∑n
j=1(Mij)2)1/2, ‖M‖2 is the `2-norm defined by

‖M‖2 := maxx6=0 ‖Mx‖/‖x‖, tr(M) is the trace of M defined by tr(M) :=
∑n

i=1 Mii when n = m,
and kerM is the kernel of matrix M , i.e., kerM := {x ∈ Rn | Mx = 0}. For matrices X, Y ∈ Sn,
X Â (º) 0 denotes the positive (semi)definiteness of X, and X Â (º) Y means that X − Y Â (º) 0.
B(x, r) denotes the closed sphere with center x and radius r > 0, i.e., B(x, r) := {y ∈ Rn | ‖y−x‖ ≤ r}.
In denotes the n × n identity matrix. e

(n)
k denotes the n-dimensional unit vector with 1 at the k-th

element and 0 elsewhere. val(P) denotes the optimal value of problem (P).

2 Strong duality in nonconvex quadratic programs with two quadratic
constraints

In this section, we briefly describe the duality theory in nonconvex quadratic programs with two
quadratic constraints. This concept plays a significant role in reformulating the robust optimization
problem as an SDP. In particular, we mention sufficient conditions, shown by Beck and Eldar [4],

∗1Notice that the single ellipsoidal uncertainty is considered for each SOC constraint. Therefore, if the SOCP has K
SOC constraints, then the whole uncertainty set consists of K independent ellipsoids. (See Section 4.)
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under which there exists no duality gap.
We consider the following quadratic optimization problem:

(QP)
minimize f0(x)

subject to f1(x) ≥ 0, f2(x) ≥ 0,
(2.1)

where fj (j = 0, 1, 2) are given by fj(x) := x>Ajx + 2bj
>x + cj with symmetric matrices Aj ∈ Rn×n,

vectors bj ∈ Rn, and scalars cj ∈ R.
We first consider the Lagrangian dual problem to QP (2.1). The Lagrangian function L for QP (2.1)

is defined by

L(x, α, β) =

{
x>A0x + 2b>0 x + c0 − α(x>A1x + 2b>1 x + c1)− β(x>A2x + 2b>2 x + c2), α, β ≥ 0
−∞, otherwise

with Lagrange multipliers α ∈ R and β ∈ R. By introducing an auxiliary variable λ ∈ R, we have

sup
α,β≥0

inf
x∈Rn

L(x, α, β)

= sup
α,β≥0,λ

{λ | L(x, α, β) ≥ λ, ∀x ∈ Rn}

= sup
α,β≥0,λ

{
λ

∣∣∣∣∣
[
x
1

]>([
A0 b0

b>0 c0 − λ

]
− α

[
A1 b1

b>1 c1

]
− β

[
A2 b2

b>2 c2

])[
x
1

]
≥ 0, ∀x ∈ Rn

}

= sup
α,β≥0,λ

{
λ

∣∣∣∣
[
A0 b0

b>0 c0 − λ

]
− α

[
A1 b1

b>1 c1

]
− β

[
A2 b2

b>2 c2

]
º 0

}
.

Hence, the Lagrangian dual problem to (QP) is written as

(D)

maximize
α,β,λ

λ

subject to
[
A0 b0

b>0 c0 − λ

]
º α

[
A1 b1

b>1 c1

]
+ β

[
A2 b2

b>2 c2

]

α ≥ 0, β ≥ 0, λ ∈ R.

(2.2)

Since (D) is an SDP, its dual problem is written as

(SDR)

minimize tr(M0X)
subject to tr(M1X) ≥ 0

tr(M2X) ≥ 0
Xn+1,n+1 = 1,

X º 0,

(2.3)

where

Mj =
[
Aj bj

b>j cj

]
(j = 0, 1, 2).

Now let χ(x) be a rank-one positive semidefinite symmetric matrix defined by χ(x) :=
(
x
1

)(
x
1

)>.
Then we have fj(x) =

(
x
1

)>
Mj

(
x
1

)
= tr(Mjχ(x)) for j = 0, 1, 2. Thus problem (2.1) is rewritten as

minimize tr(M0χ(x))
subject to tr(M1χ(x)) ≥ 0

tr(M2χ(x)) ≥ 0.

(2.4)
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Actually, problem (2.3) can be seen as a relaxation of problem (2.4) since the rank-one condition on
χ(x) is removed. In other words, problem (2.3) is the so-called semidefinite relaxation [10] of (2.4).
From the above argument, we have val (SDR) ≤ val (QP). Hence, by using the weak duality theorem,
we have

val (D) ≤ val (SDR) ≤ val (QP).

Finally, we consider the strong duality. Beck and Eldar [4] considered a nonconvex quadratic
optimization problem in the complex space and its dual problem, and showed that they have zero
duality gap under strict feasibility and boundedness assumptions. Furthermore, they extended the idea
to the nonconvex quadratic optimization problem in the real space, and provided sufficient conditions
for zero duality gap among (QP), (D) and (SDR).

Theorem 2.1. [4, Theorem 3.5] Suppose that both (QP) and (D) are strictly feasible and that

∃α̂, β̂ ∈ R such that α̂A1 + β̂A2 Â 0.

Let (λ, α, β) be an optimal solution of the dual problem (D). If

dim(ker(A0 − αA1 − βA2)) 6= 1,

then val (QP) = val (D) = val (SDR).

3 SDP reformulation for a class of robust linear programs

In this section, we focus on the following uncertain LP:

minimize
x

(γ̂0)>(Â0x + b̂0)

subject to (γ̂i)>(Âix + b̂i) ≤ 0 (i = 1, . . . , K)
x ∈ Ω,

(3.1)

where γ̂i ∈ Rmi , Âi ∈ Rmi×n and b̂i ∈ Rmi are uncertain vectors and matrices, and Ω ⊆ Rn is a given
closed convex set∗2 with no uncertainty. Let Ui and Vi be the uncertainty sets for (Âi, b̂i) ∈ Rmi×(n+1)

and γ̂i ∈ Rmi , respectively. Then, under the compactness of Ui and Vi, the robust counterpart (RC)
for (3.1) can be written as

minimize
x

max
(Â0,b̂0)∈U0, γ̂0∈V0

(γ̂0)>(Â0x + b̂0)

subject to (γ̂i)>(Âix + b̂i) ≤ 0 ∀(Âi, b̂i) ∈ Ui, ∀γ̂i ∈ Vi (i = 1, . . . , K),
x ∈ Ω,

that is,

minimize
x

f0(x) := max{(γ̂0)>(Â0x + b̂0) | (Â0, b̂0) ∈ U0, γ̂0 ∈ V0}
subject to fi(x) := max{(γ̂i)>(Âix + b̂i) | (Âi, b̂i) ∈ Ui, γ̂i ∈ Vi} ≤ 0

(i = 1, . . . ,K), x ∈ Ω.

(3.2)

The main purpose of this section is to show that RC (3.2) can be reformulated as an SDP [32],
which can be solved by existing algorithms such as the primal-dual interior-point method. One may
think that the structures of LP (3.1) and its RC (3.2) are much more special than the existing robust
optimization models for LP [9]. However, we note that the robust optimization technique in this
section plays an important role in considering the robust SOCPs in the next section. Moreover, (3.1)
reduces to the uncertain LP considered by Ben-Tal et al. [9, 10], when Vi is a finite set given by

∗2Typically, Ω is Rn, Rn
+, or a polyhedral set characterized by a finite number of linear equalities and inequalities.
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Vi := {e(mi)
1 , . . . , e

(mi)
mi } where e

(mi)
k is the mi-dimensional unit vector with 1 at the k-th element and

0 elsewhere.
We first introduce the following proposition, which plays a crucial role in reformulating RC (3.2)

to an SDP.

Proposition 3.1. Consider the following optimization problem:

maximize
u∈Rs, v∈Rt

ξ(v)>M(u)η

subject to u>u ≤ 1, v>v ≤ 1,
(3.3)

where η ∈ Rn is a given constant, and M : Rs → Rm×n and ξ : Rt → Rm are defined by

M(u) := M0 +
s∑

j=1

ujM
j , ξ(v) := ξ0 +

t∑

j=1

vjξ
j (3.4)

with given matrices M j ∈ Rm×n(j = 0, 1, . . . , s) and vectors ξj ∈ Rm(j = 0, 1, . . . , t). Then, the
following two statements hold:

(a) The Lagrangian dual problem of (3.3) is written as

minimize
α,β,λ

− λ

subject to
[
P0 q
q> r − λ

]
º α

[
P1 0
0 1

]
+ β

[
P2 0
0 1

]
,

α ≥ 0, β ≥ 0, λ ∈ R

(3.5)

with

P0 := −1
2

[
0 (Ξ>Φ)>

Ξ>Φ 0

]
, q := −1

2

[
Φ>ξ0

Ξ>M0η

]
,

r := −(ξ0)>M0η P1 :=
[−Is 0

0 0

]
, P2 :=

[
0 0
0 −It

]
,

Ξ :=
[
ξ1 · · · ξt

]
, Φ :=

[
M1η · · · M sη

]
.

(3.6)

Moreover, it always holds val(3.3) ≤ val(3.5).

(b) If

dim(ker(P0 − α∗P1 − β∗P2)) 6= 1 (3.7)

for an optimum (α∗, β∗, λ∗) of the dual problem (3.5), then val(3.3) = val(3.5).

Proof. From the definition of M(u) and ξ(v), the objective function of problem (3.3) can be rewritten
as

ξ(v)>M(u)η = (ξ0 + Ξv)>(M0η + Φu)

= v>Ξ>Φu + (ξ0)>Φu + (M0η)>Ξv + (ξ0)>M0η

= −y>P0y − 2q>y − r,

where y :=
(
u
v

)
. Hence, problem (3.3) is equivalent to the following optimization problem:

maximize
y∈Rs+t

− y>P0y − 2q>y − r

subject to y>P1y + 1 ≥ 0, y>P2y + 1 ≥ 0.
(3.8)
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Now, notice that problem (3.8) is a nonconvex quadratic optimization problem with two quadratic
constraints since P0 is indefinite in general. Hence, from the results stated in Section 2, problem (3.5)
serves as the Lagrangian dual problem of (3.3).

Next we show (b). From Theorem 2.1, it suffices to show that the following three statements hold:

(i) Both problems (3.3) and (3.5) are strictly feasible.

(ii) There exist α̂ ∈ R and β̂ ∈ R such that α̂P1 + β̂P2 Â 0.

(iii) dim(ker(P0 − α∗P1 − β∗P2)) 6= 1 for the optimum (α∗, β∗, λ∗) of problem (3.5).

Problem (3.3) is obviously strictly feasible since (u, v) = (0, 0) is an interior point of the feasible region.
Also, problem (3.5) is strictly feasible since the inequalities in the constraints hold strictly when we
choose sufficiently large α, β, and sufficiently small λ. Thus, we have (i). We can readily see (ii) since
α̂P1 + β̂P2 Â 0 for any α̂, β̂ such that α̂, β̂ < 0. We also have (iii) from the assumption of the theorem.
Hence, the optimal values of (3.3) and (3.5) are equal.

By using the above proposition, we next reformulate RC (3.2) as an SDP. Assume that the uncer-
tainty sets Ui and Vi are ellipsoids expressed as follows:

Assumption 1. (Ellipsoidal uncertainty) For i = 0, 1, . . . , K, the uncertainty sets Ui and Vi are
expressed as

Ui :=
{

(Âi, b̂i)
∣∣∣∣ (Âi, b̂i) = (Ai0, bi0) +

si∑

j=1

ui
j(A

ij , bij), (ui)>ui ≤ 1, ui ∈ Rsi

}
,

Vi :=
{

γ̂i

∣∣∣∣ γ̂i = γi0 +
ti∑

j=1

vi
jγ

ij , (vi)>vi ≤ 1, vi ∈ Rti

}
,

respectively, where si and ti are positive integers and Aij ∈ Rmi×n, bij ∈ Rmi (j = 0, 1, . . . , si) and
γij ∈ Rmi (j = 0, 1, . . . , ti) are given matrices and vectors.

Then, by fixing x ∈ Rn arbitrarily, and letting η :=
(
x
1

)
,M j := (Aij , bi) and ξj := γij in Proposition

3.1, we have the following inequality for each i = 0, 1, . . . , K:

max{(γ̂i)>(Âix + b̂i) | (Âi, b̂i) ∈ Ui, γ̂i ∈ Vi}

≤ min



−λi

∣∣∣∣∣∣

[
P i

0(x) qi(x)
qi(x)> ri(x)− λi

]
º αi

[
P i

1 0
0 1

]
+ βi

[
P i

2 0
0 1

]

αi ≥ 0, βi ≥ 0, λi ∈ R



 ,

(3.9)

where P i
0(x), qi(x) and ri(x) are defined by

P i
0(x) = −1

2

[
0 (Γ>i Φi(x))>

Γ>i Φi(x) 0

]
, qi(x) = −1

2

[
Φi(x)>γi

Γ>i (Ai0x + bi0)

]
,

ri(x) = −(γi)>(Ai0x + bi0), P i
1 =

[−Isi 0
0 0

]
, P i

2 =
[
0 0
0 −Iti

]
,

Γi =
[
γi1 · · · γit

]
, Φi(x) =

[
Ai1x + bi1 · · · Aisix + bisi

]
.

(3.10)

Moreover, we consider the following problem in which max{(γ̂i)>(Âix + b̂i) | (Âi, b̂i) ∈ Ui, γ̂i ∈ Vi} in
RC (3.2) is replaced by the right-hand side of (3.9):
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minimize
x

g0(x) := min



−λ0

∣∣∣∣∣∣

[
P 0

0 (x) q0(x)
q0(x)> r0(x)− λ0

]
º α0

[
P 0

1 0
0 1

]
+ βi

[
P 0

2 0
0 1

]

α0 ≥ 0, β0 ≥ 0, λ0 ∈ R





subject to gi(x) := min



−λi

∣∣∣∣∣∣

[
P i

0(x) qi(x)
qi(x)> ri(x)− λi

]
º αi

[
P i

1 0
0 1

]
+ βi

[
P i

2 0
0 1

]

αi ≥ 0, βi ≥ 0, λi ∈ R



 ≤ 0

(i = 1, . . . ,K), x ∈ Ω,

(3.11)

which is equivalent to the following SDP:

minimize
x,α,β,λ

− λ0

subject to
[

P i
0(x) qi(x)

qi(x)> ri(x)− λi

]
º αi

[
P i

1 0
0 1

]
+ βi

[
P i

2 0
0 1

]
(i = 0, 1, . . . , K),

α = (α0, α1, . . . , αK) ∈ RK+1
+ , β = (β0, β1, . . . , βK) ∈ RK+1

+ ,

λ = (λ0, λ1, . . . , λK) ∈ R× RK
+ , x ∈ Ω.

(3.12)

Here, notice that, if the matrix inequalities in (3.12) hold with some λi ≥ 0 (i = 1, . . . , K), then
they also hold for λi = 0. Hence, we can set λi = 0 (i = 1, . . . , K) without changing the optimal value
of (3.12). That is, SDP (3.12) is equivalent to the following SDP:

minimize
x,α,β,λ0

− λ0

subject to
[

P 0
0 (x) q0(x)

q0(x)> r0(x)− λ0

]
º α0

[
P 0

1 0
0 1

]
+ β0

[
P 0

2 0
0 1

]
,

[
P i

0(x) qi(x)
qi(x)> ri(x)

]
º αi

[
P i

1 0
0 1

]
+ βi

[
P i

2 0
0 1

]
(i = 1, . . . , K),

α = (α0, α1, . . . , αK) ∈ RK+1
+ , β = (β0, β1, . . . , βK) ∈ RK+1

+ ,

λ0 ∈ R, x ∈ Ω.

(3.13)

Consequently, we have val (3.2) ≤ val (3.11) = val (3.12) = val (3.13) where the inequality is due to
fi(x) ≤ gi(x) for any x ∈ Rn and i = 0, 1, . . . , K. Moreover, we can show val (3.2) = val (3.11), under
the following assumption.

Assumption 2. Let z∗ := (x∗, α∗, β∗, λ∗0) be an optimum of SDP (3.13). Then, there exists ε > 0
such that

dim(ker(P i
0(x)− αiP

i
1 − βiP

i
2)) 6= 1 (i = 0, 1, . . . ,K)

for all (x, α, β, λ∗0) ∈ B(z∗, ε).

Theorem 3.2. Suppose that Assumption 1 holds, and (x∗, α∗, β∗, λ∗0) is an optimum of SDP (3.13).
Then, x∗ is feasible to RC (3.2) and val (3.13) is an upper bound of val (3.2). Moreover, x∗ solves
RC (3.2) if in addition Assumption 2 holds.

Proof. Since the first part is trivial from fi(x) ≤ gi(x) for any x ∈ Rn and i = 0, 1, . . . , K, we only
show the last part.

Define Sf , Sg ⊆ Rn and f0, g0 : Rn → (−∞,∞] by

Sf := {x ∈ Rn | fi(x) ≤ 0 (i = 1, . . . , K)} ∩ Ω,

Sg := {x ∈ Rn | gi(x) ≤ 0 (i = 1, . . . ,K)} ∩ Ω,

f0(x) := f0(x) + δSf
(x),

g0(x) := g0(x) + δSg(x),
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where δSf
and δSg denote the indicator functions [30] of Sf and Sg, respectively. Then, we can see

that RC(3.2) and SDP(3.13) are equivalent to the unconstrained minimization problems with objective
functions f0 and g0, respectively. In addition, since functions fi, gi (i = 0, 1, . . . , K) are proper and
convex [14, Proposition 1.2.4(c)], f0 and g0 are proper and convex, too.

Let (x∗, α∗, β∗, λ∗0) be an arbitrary solution to SDP (3.13). Then, it is obvious that x∗ minimizes
g0. Moreover, from Proposition 3.1(b) and Assumption 2, there exists a closed neighborhood B(x∗, ε)
of x∗ such that f0(x) = g0(x) for all x ∈ B(x∗, ε). Hence, we have

f0(x
∗) = g0(x

∗) ≤ g0(x) = f0(x), ∀x ∈ B(x∗, ε). (3.14)

Now, for contradiction, assume that x∗ is not a solution to RC(3.2). Then, there must exist
x ∈ Rn such that f0(x) < f0(x∗). Moreover, we have x 6∈ B(x∗, ε) from (3.14). Set α := ε/‖x − x∗‖
and x̃ := (1− α)x∗ + αx. Then, α ∈ (0, 1) since x 6∈ B(x∗, ε), i.e., ‖x− x∗‖ > ε. Thus, we have

f0(x̃) = f0((1− α)x∗ + αx)

≤ (1− α)f0(x
∗) + αf0(x)

< (1− α)f0(x
∗) + αf0(x

∗) = f0(x
∗),

where the first inequality follows from the convexity of f0, and the last inequality follows from f0(x) <
f0(x∗) and α > 0. However, since ‖x̃ − x∗‖ = α‖x − x∗‖ = ε, we have x̃ ∈ B(x∗, ε), which implies
f0(x∗) ≤ f0(x̃) from (3.14). This is a contradiction, and hence x∗ is an optimum of RC (3.2).

In order to see whether Assumption 2 holds or not, we generally have to check the condition in
a neighborhood of the optimum. However, in some situations, it can be guaranteed more easily. For
example, suppose that at the optimum z∗ = (x∗, α∗, β∗, λ∗0), we have

dim(ker(P i
0(x

∗)− α∗i P
i
1 − β∗i P i

2)) = 0 (i = 0, 1, . . . , K),

equivalently P i
0(x

∗) − α∗i P
i
1 − β∗i P i

2 Â 0∗3. Then, by the continuity of P i
0(x) − αiP

i
1 − βiP

i
2, we have

P i
0(x)−αiP

i
1−βiP

i
2 Â 0 for any z sufficiently close to z∗. Moreover, when the uncertainty sets Ui and

Vi are spherical, Assumption 2 also holds automatically. We will show this fact in the remainder of
this section.

Assumption 3. (Spherical uncertainty) Suppose that Assumption 1 holds with si = mi(n + 1)
and ti ≥ 2. Moreover, for each i = 0, 1, . . . , K, the following statements hold:

• For each j = 1, . . . , mi(n + 1), matrix (Aij , bij) is expressed as

(Aij , bij) = ρiEkl

where ρi is a given positive constant, Ekl ∈ Rmi×(n+1) is the matrix with 1 at the (k, l)-th
component and 0 elsewhere, and k ∈ {1, . . . , mi} and l ∈ {1, . . . , n + 1} are integers such that
j = k + mi(l − 1), i.e., l = dj/mie and k = 1 + mod(j − 1,mi).

• For any (k, l) ∈ {1, . . . , ti} × {1, . . . , ti}, vectors γik and γil satisfy

(γik)>γil = σ2
i δkl,

where σi is a given positive constant, and δkl denotes Kronecker’s delta, i.e., δkl = 0 for k 6= l
and δkl = 1 for k = l.

Assumption 3 claims that Ui is the mi(n + 1)-dimensional sphere with radius ρi in the mi(n + 1)-
dimensional space and Vi is the ti-dimensional sphere with radius σi in the mi-dimensional space,

∗3By the constraints of SDP (3.13), P i
0(x

∗)− α∗i P i
1 − β∗i P i

2 º 0 always holds at the optimum (x∗, α∗, β∗, λ∗0).
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i.e.,

Ui =
{
(Âi, b̂i)

∣∣ (Âi, b̂i) = (Ai0, bi0) + (δAi, δbi), ‖(δAi, δbi)‖F ≤ ρi

} ⊂ Rmi×(n+1),

Vi =
{
γ̂i

∣∣ γ̂i = γi0 + δγi, ‖δγi‖ ≤ σi, δγi ∈ span {γij}ti
j=1

} ⊂ Rmi .

The following lemma provides sufficient conditions under which condition (3.7) in Proposition 3.1
holds. It also plays an important role in showing that Assumption 3 implies Assumption 2.

Lemma 3.3. Consider the optimization problem (3.3) with a given constant η ∈ Rn and functions
M : Rs → Rm×n and ξ : Rt → Rm defined by (3.4). Moreover, suppose that the following statements
hold for some ρ > 0 and σ > 0.

• t, n ≥ 2, and s = mn > t.

• M j (j = 1, . . . , s) are given by M j = ρEkl, where Ekl ∈ Rm×n is the matrix with 1 at the
(k, l)-th component and 0 elsewhere, and k ∈ {1, . . . , m} and l ∈ {1, . . . , n} are integers such
that j = k + m(l − 1), i.e., l = dj/me and k = 1 + mod(j − 1,m).

• For any (k, l) ∈ {1, . . . , t} × {1, . . . , t}, (ξk)>ξl = σ2δkl.

Then, for P0, P1 and P2 defined by (3.6), we have

dim(ker(P0 − αP1 − βP2)) 6= 1

for any (α, β) ∈ R× R, and hence val (3.3) = val (3.5).

Proof. Let P (α, β) := P0 − αP1 − βP2. Then, since P (α, β) is symmetric, it suffices to show that the
multiplicity of zero eigenvalues of P (α, β) cannot be 1.

We first define matrices Ξ ∈ Rm×t and Φ ∈ Rm×s by (3.6). By the given assumptions, we have the
following equalities:

Ξ>Ξ =
[
ξ1 · · · ξt

]> [
ξ1 · · · ξt

]
= σ2It,

Φ =
[
M1η · · · M sη

]

= ρ
[
e
(m)
1 (e(n)

1 )>η e
(m)
2 (e(n)

1 )>η · · · e
(m)
m (e(n)

n )>η
]

= ρ
[[

η1e
(m)
1 η1e

(m)
2 · · · η1e

(m)
m

]
· · ·

[
ηne

(m)
1 ηne

(m)
2 · · · ηne

(m)
m

]]

= ρ
[
η1Im · · · ηnIm

] ∈ Rm×s.

Therefore,

Ξ>ΦΦ>Ξ = Ξ>(ρ2‖η‖2Im)Ξ

= ρ2σ2‖η‖2It.

Now we consider the characteristic equation det(P (α, β)− ζI) = 0. If ζ 6= α, then we have

det(P (α, β)− ζIs+t) = det
([

(α− ζ)Is −1
2(Ξ>Φ)>

−1
2Ξ>Φ (β − ζ)It

])

= det [(α− ζ)Is] · det
[
(β − ζ)It − 1

4(α− ζ)
Ξ>ΦΦ>Ξ

]

= (α− ζ)s−t det
[(

(α− ζ)(β − ζ)− 1
4
ρ2σ2‖η‖2

)
It

]

= (α− ζ)s−t

(
(α− ζ)(β − ζ)− 1

4
ρ2σ2‖η‖2

)t

, (3.15)
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where the second equality follows from the Schur complement [21, Theorem 13.3.8]. Moreover, since
det(P (α, β) − ζI) is continuous at any (α, β, ζ), equality (3.15) is also valid at ζ = α. Note that we
have s − t = mn − t ≥ 2 since t, n ≥ 2 and t ≤ m. Therefore (3.15) implies that the multiplicity of
all eigenvalues of P (α, β) is at least 2. Hence, even if P (α, β) has a zero eigenvalue, its multiplicity
cannot be 1.

By the above lemma, we obtain the following theorem.

Theorem 3.4. Suppose Assumption 3 holds. Then, x∗ solves RC (3.2) if and only if there exists
(α∗, β∗, λ∗0) such that (x∗, α∗, β∗, λ∗0) is an optimal solution of SDP (3.13).

Proof. Since SDP (3.13) is equivalent to problem (3.11), it suffices to show the equivalence between
problems (3.2) and (3.11). In a way similar to the proof of Theorem 3.2, we evaluate max{(γ̂i)>(Âix+
b̂i) | (Âi, b̂i) ∈ Ui, γ̂i ∈ Vi} for each i = 0, 1, . . . ,K in (3.2).

By Assumption 3, we may apply Lemma 3.3 with η :=
(
x
1

)
, M j := (Aij , bij), and ξj := γij , to

conclude that, for all x ∈ Rn and α, β ∈ R,

dim(ker(P i
0(x)− αP i

1 − βP i
2)) 6= 1, (i = 0, 1, . . . , K).

From Proposition 3.1, we then have fi(x) = gi(x) for all x ∈ Rn. Hence, RC (3.2) is equivalent to
problem (3.11). This completes the proof.

In Theorem 3.2, the optimality of SDP (3.13) is just a sufficient condition for the optimality of
RC (3.2) under appropriate assumptions. However, Theorem 3.4 shows not only the sufficiency but
also the necessity. This is due to the fact that Assumption 3 guarantees fi(x) = gi(x) for all x ∈ Rn,
though Assumption 2 guarantees it only in a neighborhood of the SDP solution.

4 Robust second-order cone programs with single ellipsoidal uncer-
tainty

The second-order cone program (SOCP) is expressed as follows:

minimize
x

f>x

subject to M ix + qi ∈ Kmi+1 (i = 1, . . . , K),
x ∈ Ω,

(4.1)

where f ∈ Rn, M i ∈ R(mi+1)×n and qi ∈ Rmi+1 are given data, Kmi+1 denotes the (mi+1)-dimensional
second-order cone (SOC) defined by Kmi+1 := {(z0, z

>)> ∈ R × Rmi | z0 ≥ ‖z‖} and Ω ⊆ Rn is a
given closed convex set. SOCP is applicable to many practical problems such as antenna array weight
design problems, truss design problems, etc. [3, 27]. We note that the SOC constraints M ix + qi ∈
Kmi+1 (i = 1, . . . , K) in (4.1) are rewritten as ‖Aix+bi‖ ≤ (ci)>x+di with M i =

((ci)>
Ai

)
and qi =

(
di

bi

)
.

In this section, we consider the following uncertain SOCP:

minimize
x

f>x

subject to ‖Âix + b̂i‖ ≤ (ĉi)>x + d̂i (i = 1, . . . , K),
x ∈ Ω,

(4.2)

where Âi ∈ Rmi×n, b̂i ∈ Rmi , ĉi ∈ Rn and d̂i ∈ R are uncertain data with uncertainty set Ui. Then,
the robust counterpart (RC) for (4.2) can be written as

minimize
x

f>x

subject to ‖Âix + b̂i‖ ≤ (ĉi)>x + d̂i, ∀(Âi, b̂i, ĉi, d̂i) ∈ Ui,

(i = 1, . . . , K), x ∈ Ω.

(4.3)
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Throughout this section, we assume mi ≥ 2 for all i = 1, . . . , K∗4.
Ben-Tal and Nemirovski [8] showed that RC (4.3) can be reformulated as an SDP under the fol-

lowing assumption.

Assumption 4. (Side-wise ellipsoidal uncertainty) For each i = 1, . . . , K, the uncertainty set
Ui in RC (4.3) is given by Ui = ULi × URi with

ULi =
{

(Âi, b̂i)
∣∣∣∣ (Âi, b̂i) = (Ai0, bi0) +

li∑

j=1

ui
j(A

ij , bij), (ui)>ui ≤ 1
}

,

URi =
{

(ĉi, d̂i)
∣∣∣∣ (ĉi, d̂i) = (ci0, di0) +

ri∑

j=1

vi
j(c

ij , dij), (vi)>vi ≤ 1
}

,

where li and ri are positive integers, and Aij , bij (j = 0, 1, . . . , li) and cij , dij (j = 0, 1, . . . , ri) are
given constants.

This assumption means that the uncertainty sets for the left-side data (Âi, b̂i) and the right-side data
(ĉi, d̂i) are independent and represented with two ellipsoids. On the other hand, the next assumption
requires the whole uncertainty set to be represented by a single ellipsoid. According to Ben-Tal and
Nemirovski [12], it had been an open problem until quite recently whether or not RC (4.3) can be
reformulated as an SDP when Ui is a single ellipsoid.

Assumption 5. (Single ellipsoidal uncertainty) For each i = 1, . . . ,K, the uncertainty set
Ui (i = 1, . . . , K) in RC (4.3) is given by

Ui =





[
Âi b̂i

(ĉi)> d̂i

] [
Âi b̂i

(ĉi)> d̂i

]
=

[
Ai0 bi0

(ci0)> di0

]
+

si∑

j=1

ui
j

[
Aij bij

(cij)> dij

]
, (ui)>ui ≤ 1



 ,

where Aij , bij , cij and dij (j = 0, 1, . . . , si) are given constants.

Now, using the results in the previous section, we show that the robust counterpart can be refor-
mulated as an explicit SDP under Assumption 5. We first rewrite RC (4.3) in the form of RC (3.2).
To this end, the following result from semi-infinite programming [28, Section 4] will be useful.

Proposition 4.1. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and d ∈ R be given. Then x ∈ Rn satisfies the
inequality ‖Ax + b‖ ≤ c>x + d if and only if x satisfies w>(Ax + b) ≤ c>x + d for all w ∈ Rm such
that ‖w‖ ≤ 1.

By this proposition, RC (4.3) can be rewritten as

minimize
x

f>x

subject to (γ̂i)>
([

Âi

−(ĉi)>

]
x +

[
b̂i

−d̂i

])
≤ 0, ∀

[
Âi b̂i

(ĉi)> d̂i

]
∈ Ui, ∀γ̂i ∈ Vi

(i = 1, . . . , K), x ∈ Ω,

that is,

minimize
x

f>x

subject to max
{

(γ̂i)>
([

Âi

−(ĉi)>

]
x +

[
b̂i

−d̂i

]) ∣∣∣∣
[

Âi b̂i

(ĉi)> d̂i

]
∈ Ui, γ̂i ∈ Vi

}
≤ 0

(i = 1, . . . , K), x ∈ Ω,

(4.4)

∗4If mi = 1 for some i, then the constraint can be rewritten as two linear inequalities −(ĉi)>x + d̂i ≤ Âix + b̂i ≤
(ĉi)>x + d̂i. So existing frameworks can be applied. (See Ben-Tal and Nemirovski [9]).
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where Vi :=
{
γ̂i =

[
wi

1

] ∣∣ ‖wi‖ ≤ 1
}
. Clearly, problem (4.4) has the form of RC (3.2) with f0(x) = f>x.

Thus, by applying the results in Section 3, we have the following theorem.

Theorem 4.2. Suppose that Assumption 5 holds. Let (x∗, α∗, β∗) be an optimal solution of the fol-
lowing SDP:

minimize
x,α,β

f>x

subject to
[

P i
0(x) qi(x)

qi(x)> ri(x)

]
º αi

[
P i

1 0
0 1

]
+ βi

[
P i

2 0
0 1

]
(i = 1, . . . , K),

α = (α1, . . . , αK) ∈ RK
+ , β = (β1, . . . , βK) ∈ RK

+ , x ∈ Ω,

(4.5)

where

P i
0(x) = −1

2

[
0 Ψi(x)>

Ψi(x) 0

]
, qi(x) = −1

2

[ −ψi(x)
Ai0x + bi0

]
,

ri(x) = (ci0)>x + di0, P i
1 =

[−Isi 0
0 0

]
, P i

2 =
[
0 0
0 −Imi

]
,

ψi(x) =
[
(ci1)>x + di1, . . . , (cisi)>x + disi

]> ∈ Rsi ,

Ψi(x) =
[
Ai1x + bi1, . . . , Aisix + bisi

] ∈ Rmi×si .

(4.6)

Then, x∗ solves RC (4.3) if

dim(ker(P i
0(x)− αiP

i
1 − βiP

i
2)) 6= 1 (i = 1, . . . , K) (4.7)

in an neighborhood of (x∗, α∗, β∗).

Proof. Note that SDP (3.13) is equivalent to the following problem:

minimize
x,α,β

g0(x)

subject to
[

P i
0(x) qi(x)

qi(x)> ri(x)

]
º αi

[
P i

1 0
0 1

]
+ βi

[
P i

2 0
0 1

]
(i = 1, . . . , K),

α = (α1, . . . , αK) ∈ RK
+ , β = (β1, . . . , βK) ∈ RK

+ , x ∈ Ω,

where function g0 is given in (3.11). Moreover, Assumption 1 holds by setting Vi := {γ̂i | γ̂i =
γi0 +

∑mi
j=1 vi

jγ
ij , (vi)>vi ≤ 1} with γi0 = e

(mi+1)
mi+1 and γij = e

(mi+1)
j (j = 1, . . . , mi). Hence, we can

prove the theorem in a way similar to Theorem 3.2 with replacing both f0(x) and g0(x) by f>x.

By using similar arguments to those just after Theorem 3.2, we can easily see that condition (4.7)
is guaranteed to hold if

P i
0(x

∗)− α∗i P
i
1 − β∗i P i

2 Â 0. (4.8)

Also when the uncertainty sets are spherical, condition (4.7) is satisfied and hence the following
theorem holds.

Assumption 6. The uncertainty sets Ui in RC (4.3) are given by

Ui =

{[
Âi b̂i

(ĉi)> d̂i

]
=

[
Ai0 bi0

(ci0)> di0

]
+

[
δAi δbi

(δci)> δdi

] ∣∣∣∣∣
∥∥∥∥

δAi δbi

(δci)> δdi

∥∥∥∥
F

≤ ρi

}
.

Theorem 4.3. Suppose Assumption 6 holds. Then, x∗ solves RC (4.4) if and only if there exists
(α∗, β∗) such that (x∗, α∗, β∗) is an optimal solution of SDP (4.5).
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Proof. Problem (4.4) and Assumption 6 reduce to RC (3.2) and Assumption 3, respectively. Hence,
the theorem readily follows from Theorem 3.4.

Finally, we mention another SDP reformulation approach based on Hildebrand’s recent results.
Hildebrand [23, 24] showed that the cone of Lorentz-positive matrices is represented by an explicit SDP,
and then, Ben-Tal, El Ghaoui and Nemirovski [5] pointed out that problem (4.3) can be reformulated
as an explicit SDP under Assumption 5 by applying Hildebrand’s idea. Specifically, Ben-Tal et al. [5]
claim that the following equivalence holds:

‖Âix + b̂i‖ ≤ (ĉi)>x + d̂i, ∀(Âi, b̂
i, ĉi, d̂i) ∈ Ui

m

∃Xi ∈ Ami ⊗Asi , (Wmi+1 ⊗Wsi+1)
([

(ci0)>x + di0 ψi(x)>

Ai0x + bi0 Ψi(x)

])
+ Xi º 0

where Ap denotes the set of p × p real skew-symmetric matrices, ⊗ denotes the tensor product, and
functions Ψi and ψi are defined by (4.6). Moreover, (Wmi+1⊗Wsi+1) : R(mi+1)×(si+1) → Smi ⊗Ssi is
the tensor product of the linear mapping Wr : Rr → Sr−1 defined by




z0

z1
...

zr−1


 7→




z0 + z1 z2 · · · zr−1

z2 z0 − z1 0
...

. . .
zr−1 0 z0 − z1


 .

Thus, we obtain the following SDP equivalent to RC (4.3) under Assumption 5:

minimize
x,α,β

f>x

subject to (Wmi+1 ⊗Wsi+1)
([

(ci0)>x + di0 ψi(x)>

Ai0x + bi0 Ψi(x)

])
+ Xi º 0,

Xi ∈ Ami ⊗Asi (i = 1, . . . , K), x ∈ Ω.

(4.9)

Our SDP reformulation (4.5) has some advantages and disadvantages compared with the above
Hildebrand-based reformulation (4.9), which are summarized as follows:

• Under Assumption 5, the equivalence between SDP (4.9) and RC (4.3) is guaranteed without
any additional condition. However, our approach with SDP (4.5) requires condition (4.7).

• The size of matrix inequalities in (4.5) is much smaller than that of (4.9). Actually, in SDP (4.9),
the matrix size is (misi)×(misi) for each i, while it is only (mi+si+1)×(mi+si+1) in SDP (4.5).

• The number of decision variables in (4.5) is also much smaller than that of (4.9). Essentially,
SDP (4.9) has n+ 1

4

∑K
i=1 misi(mi−1)(si−1) variables, while SDP (4.5) has only n+2K variables.

In the subsequent numerical experiments, we will observe the above advantages and disadvantages,
by comparing the SDP reformulations (4.5) and (4.9).

5 Numerical experiments

In this section, we report some numerical results for the SDP reformulation approaches discussed in
the previous sections. Particularly, we solve the robust SOCPs discussed in Section 4 to observe the
efficiency of our approach and the properties of obtained solutions. For solving reformulated SDPs,
we apply SDPT3 solver [31] based on the infeasible path-following method. All programs are coded in
MATLAB 7.4.0 and run on a machine with Intel r© Core 2 DUO 3.00GHz CPU and 3.20GB memory.
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We consider the following robust SOCP with one SOC constraint and linear equality constraints:

minimize
x

f>x

subject to ‖Âx + b̂‖ ≤ ĉ>x + d̂, ∀(Â, b̂, ĉ, d̂) ∈ U ,

Aeqx = beq,

(5.1)

where Â ∈ Rm×n, b̂ ∈ Rm, ĉ ∈ Rn, and d̂ ∈ R are uncertain data with uncertainty set U , and f ∈ Rn,
Aeq ∈ Rmeq×n and beq ∈ Rmeq are given constants with meq < n. Notice that the SOC constraint is
always active whenever problem (5.1) is solvable.

Experiment 1

In the first experiment, we generate 100 random test problems with ellipsoidal uncertainties, and
another set of 100 random test problems with spherical uncertainties. Then, we solve each problem
by our SDP reformulation approach, to confirm that the obtained solution is surely the original RC
solution when a sufficient condition (Assumption 5 with condition (4.8), or Assumption 6) is satisfied.

We generate each test problem (5.1) as follows. We first let (n,meq,m) := (5, 2, 5), and choose
each component of A0 ∈ Rm×n, b0 ∈ Rm, c0 ∈ Rn, d0 ∈ R, Aeq ∈ Rmeq×n, beq ∈ Rmeq and f ∈ Rn

randomly from the interval [−5, 5]. We also choose κ randomly from the interval [0.01, 0.1]. Moreover,
we determine the uncertainty set U by using either of the following two procedures corresponding to
the ellipsoidal and spherical uncertainty cases. In both cases, U is determined so that the relative
error is at most κ, i.e.,

(Maximum radius of U) = κ

∥∥∥∥
A0 b0

(c0)> d0

∥∥∥∥
F

. (5.2)

Procedure 5.1. (Ellipsoidal uncertainty)

1. Generate random matrices
[

Ãj b̃j

(c̃j)> d̃j

]
∈ R(m+1)×(n+1), j = 1, . . . , (m + 1)(n + 1)

where each component is randomly chosen from the interval [−1, 1].

2. Let the ellipsoid Ẽ be defined by

Ẽ :=

{
(m+1)(n+1)∑

j=1

uj

[
Ãj b̃j

(c̃j)> d̃j

] ∣∣∣∣∣ u>u ≤ 1

}
,

and τ > 0 be its maximum radius.

3. Define U by

U :=
[

A0 b0

(c0)> d0

]
+

κ

τ

∥∥∥∥
A0 b0

(c0)> d0

∥∥∥∥
F

Ẽ .

Procedure 5.2. (Spherical uncertainty) Define U by

U =
[

A0 b0

(c0)> d0

]
+

{[
δA δb

(δc)> δd

] ∣∣∣∣∣
∥∥∥∥

δA δb
(δc)> δd

∥∥∥∥
F

≤ κ

∥∥∥∥
A0 b0

(c0)> d0

∥∥∥∥
F

}
.

We solve the SDP reformulations (4.5) for each test problem (5.1). We show the obtained results in
Table 1, in which “prob.”, Nsuf and Nsuc denote the number of solved problem instances, the number
of times that condition (4.8) was satisfied (which applies only to the ellipsoidal case), and the number
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of times that the original RC solution was obtained, respectively. In practice, we judge that condition
(4.8) holds when all eigenvalues are greater than 10−6, and that the original RC solution is obtained
when val (4.5)−val (4.9) < 10−6. (That is, we also solve the Hildebrand-based SDP (4.9) for each test
problem (5.1), and compare val (4.9) with val (4.5).)

Table 1 shows that, in the spherical case, the proposed SDP reformulation approach found the
original RC solution for all instances. In the ellipsoidal uncertainty case, our approach was unable to
find an RC optimum for 2 among 100 instances. However, neither of those instances satisfies condition
(4.8). This indicates that our SDP reformulation approach always finds an RC optimum under the
sufficient conditions given in Assumption 5 with (4.8) or in Assumption 6.

Table 1: Results of Experiment 1

prob. Nsuf Nsuc

ellipsoidal 100 98 98
spherical 100 – 100

Experiment 2

This experiment is intended to answer the following three questions concerning our SDP reformulation
approach:

• How often does condition (4.8) is satisfied when our SDP reformulation approach is applied to
problems with ellipsoidal uncertainty?

• If condition (4.8) does not hold, how often does an optimum of SDP (4.5) solve the original RC?

• If an optimum of SDP (4.5) does not solve the original RC, how big is the difference between
the optimal value of SDP (4.5) and that of the original RC?

We generate 200,000 test problems of the form (5.1) as follows. We first generate 1,000 nominal
problems∗5 such that (i) (n,meq,m) = (5, 2, 5), (ii) A0, b0, c0, d0, Aeq, beq and f are matrices and vectors
whose components are randomly chosen from the interval [−5, 5], and (iii) each nominal problem has
an optimal solution∗6. Moreover, for each nominal problem, we generate 200 ellipsoidal uncertainty
sets U (1),U (2), . . . ,U (200) as follows: First we generate U (1),U (2), . . . ,U (100) by Procedure 5.1 with
relative error κ = 0.01, and then, set U (i+100) := 10U (i) for i = 1, 2, . . . , 100, i.e., U (101), . . . ,U (200)

correspond to the case of κ = 0.1 and their shapes are similar to U (1), . . . ,U (100), respectively. Thus,
we have 1,000 problem groups, each of which contains 200 instances sharing the same nominal data
A0, b0, c0, d0, Aeq, beq and f .

The obtained results are shown in Table 2, in which each column denotes the number of feasible
instances (feas.), the number of instances that condition (4.8) was satisfied (Nsuf), the number of
instances for which an original RC solution was obtained (Nsuc), and the mean of relative errors, i.e.,

Error = Mean
(

val (4.5)− val (4.9)
| val (4.9)|

)
,

where the mean value is taken over the instances violating condition (4.8). Similarly to the previous
experiment, the RC optimality is judged by means of Hildebrand-based SDP (4.9)∗7. In the table,
we give the details for only 9 problem groups (Groups 1 – 9), each of which contains at least one

∗5The problem where (Â, b̂, ĉ, d̂) is replaced by (A0, b0, c0, d0) is called a nominal problem.
∗6Note that, if a nominal problem has an optimal solution, then the objective function value of problem (5.1) is

bounded below. (The feasible region of problem (5.1) becomes smaller as κ increases.)
∗7Actually, we did not apply the Hildebrand-based approach to instances satisfying condition (4.8), since the RC

optimality of our approach is theoretically guaranteed for such problem instances.
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instance such that the reformulated SDP (4.5) is feasible but condition (4.8) does not hold. For the
remaining 991 groups (Groups 10 – 1000), we just give the aggregate numbers, since every instance in
those groups satisfied condition (4.8) whenever the reformulated SDP (4.5) was feasible.

As the table shows, 77,367 among 100,000 problem instances were feasible when κ = 0.01, whereas
only 46,937 instances were feasible when κ = 0.1. This is quite natural since the feasible region becomes
smaller as κ increases. Also, we observed that condition (4.8) was satisfied in most cases. However,
if condition (4.8) does not hold, then an optimum of SDP (4.5) often violates the optimality of the
original problem (5.1). For example, in the case of κ = 0.01, only 6 (= 77, 367 − 77, 361) instances
violate condition (4.8). However, among those 6 instances, we failed to find an optimum of (5.1) for
5 (= 77, 367−77, 362) instances. On the other hand, when κ = 0.1, no less than 66 (= 46, 927−46, 861)
instances violate condition (4.8). This result indicates that condition (4.8) is less likely to hold as κ
becomes larger. However, for all instances, the relative error of the optimal value is sufficiently small
(less than 1%). In other words, our SDP reformulation approach may find almost optimal solutions
even if (4.8) does not hold. In addition to the above experiments, we examined the relationship
between the likelihood of (4.8) holding and the shape∗8 of the ellipsoid U . However, we could not
see any relevance between them. Hence, whether or not condition (4.8) holds is supposed to depend
mainly on the nominal problem and the size of the uncertainty set.

Table 2: Results of Experiment 2

κ = 0.01 κ = 0.1

feas. Nsuf Nsuc Error feas. Nsuf Nsuc Error

Group 1 100 100 100 – 100 93 93 1.7e -3
Group 2 100 100 100 – 100 94 94 5.7e -4
Group 3 100 100 100 – 100 98 98 3.2e -5
Group 4 100 99 99 1.8e -4 0 0 0 –
Group 5 2 1 1 3.9e -5 0 0 0 –
Group 6 100 96 97 1.0e -5 100 72 75 1.3e -4
Group 7 100 100 100 – 100 81 86 8.6e -4
Group 8 100 100 100 – 100 97 98 1.1e -3
Group 9 100 100 100 – 100 99 99 6.8e -3

Group 10
... 76,565 76,565 76,565 – 46,227 46,227 46,227 –

Group 1000

total 77,367 77,361 77,362 – 46,927 46,861 46,870 –

Experiment 3

Finally, we compare our SDP reformulation approach with the Hildebrand-based approach in terms
of the computation time. In this experiment, we vary the values of n and m, i.e., the number of
decision variables and the dimension of SOC in problem (5.1). We generate 100 random test problems
with ellipsoidal uncertainties for each (n,m). In a way similar to the previous experiments, we let
A0 ∈ Rm×n, b0 ∈ Rm, c0 ∈ Rn, d0 ∈ R, Aeq ∈ Rmeq×n, beq ∈ Rmeq and f ∈ Rn be randomly chosen from
the interval [−5, 5], and determine the uncertainty set U by Procedure 5.1 with κ = 0.01. Then, we
solve each test problem by our SDP reformulation approach and the Hildebrand-based one.

∗8More precisely, we examined the condition number of a certain matrix that characterizes the shapes of the ellipsoid
U . The condition number of matrix H is defined as (the maximum singular value of H)/(the minimum singular value of
H). If the condition number is 1, then U is a sphere. As the condition number becomes larger, the ellipsoid U becomes
thinner.
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The results are shown in Table 3, in which “]var.”, “mat. size” and “fail.” denote the number
of variables, the size of the square matrix in the semidefinite constraint, and failure due to out of
memory, respectively. For all test problems, condition (4.8) was satisfied, that is, our approach solved
the original RCs as well as the Hildebrand-based approach.

Table 3 shows that our SDP reformulation approach was able to solve all test problems within a rea-
sonable computation time, whereas the Hildebrand-based approach is much more expensive and did not
work any more for n,m ≥ 6. Particularly, the number of additional variables for the Hildebrand-based
approach grows explosively as n or m increases. Thus, we can conclude that our SDP reformulation
approach is more favorable than the Hildebrand-based one in terms of computation time.

Table 3: Results of Experiment 3

dimension
(n, m)

the proposed approach Hildebrand-based approach

]var. mat. size time [sec] ]var. mat. size time [sec]

(3, 3) 5 20×20 0.33 3.6e2 48×48 0.72
(4, 4) 6 30×30 0.36 1.8e3 100×100 9.84
(5, 5) 7 42×42 0.39 6.3e3 180×180 236.96
(6, 6) 8 56×56 0.56 1.8e4 294×294 fail.

(10, 10) 9 132×132 2.37 3.3e5 1210×1210 fail.
(20, 20) 10 462×462 39.54 1.8e7 8820×8820 fail.

6 Concluding remarks

In this paper, we considered a class of LPs with ellipsoidal uncertainty, and constructed its RC as an
SDP by utilizing the strong duality in nonconvex quadratic programs with two quadratic constraints.
We gave sufficient conditions under which an optimum of the RC can be obtained by solving the SDP.
Moreover, we showed that those two problems are equivalent, particularly when the uncertainty sets
are spherical. By using a similar technique, we reformulated the robust counterpart of SOCP with
single ellipsoidal uncertainty as an SDP, and showed that the above-mentioned results for robust LPs
can naturally be extended. Finally, we carried out some numerical experiments, and investigated some
empirical properties of our SDP reformulation approach.

We still have some future issues to be addressed. One important issue is to weaken the sufficient
conditions for the equivalence between the original RC and the proposed SDP. Especially, it will be
interesting to study the case with some restricted classes of ellipsoids. Another issue is to extend our
reformulation approach to other classes of robust optimization problems.
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