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Long-chain fatty acid uptake is upregulated in omental
adipocytes from patients undergoing bariatric surgery
for obesity
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OBJECTIVE: To determine the impact of obesity on adipocyte cell size and long-chain fatty acid (LCFA) uptake kinetics in human
subjects undergoing laparoscopic abdominal surgery.
SUBJECTS: A total of 10 obese patients (BMI 49.8711.9 (s.d.) kg/m2) undergoing laparoscopic bariatric surgery, and 10
nonobese subjects (BMI 24.272.3 kg/m2) undergoing other clinically indicated laparoscopic abdominal surgical procedures.
MEASUREMENTS: Cell size distribution and [3H]oleic acid uptake kinetics were studied in adipocytes isolated from omental fat
biopsies obtained during surgery. Adipocyte surface area (SA) was calculated from the measured cell diameters. Plasma leptin
and insulin concentrations were measured by RIA in fasting blood samples obtained on the morning of surgery.
RESULTS: The mean SA of obese adipocytes (41 50875381 m2/cell) was increased 2.4-fold compared to that of nonobese
adipocytes (16 92876529m2/cell; Po0.01). LCFA uptake in each group was the sum of saturable and nonsaturable
components. Both the Vmax of the saturable component (21.376.3 vs 5.171.9 pmol/s/50 000 cells) and the rate constant k of
the nonsaturable component (0.01570.002 vs 0.006670.0023 ml/s/50 000 cells) were increased (Po0.001) in obese
adipocytes compared with nonobese controls. When expressed relative to cell size, Vmax/m

2 SA was greater in obese than
nonobese adipocytes (Po0.05), whereas k/m2 SA did not differ between the groups.
CONCLUSION: The data support the concepts that (1) adipocyte LCFA uptake consists of distinct facilitated (saturable) and
diffusive processes; (2) increased saturable LCFA uptake in obese adipocytes is not simply a consequence of increased cell size,
but rather reflects upregulation of a facilitated transport process; and (3) the permeability of adipocyte plasma membranes to
LCFA is not appreciably altered by obesity, and increased nonsaturable uptake in obese adipocytes principally reflects an increase
in cell SA. Regulation of saturable LCFA uptake by adipocytes may be an important control point for body adiposity.
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Introduction
Obesity is, virtually by definition, the excessive retention

and storage of long-chain fatty acids (LCFA), principally as

triglycerides, in adipose and other tissues. Nevertheless,

although certain aspects of LCFA disposition, and inter-

mediary metabolism in general, have been widely studied in

obese patients and in related animal models of obesity, there

have been few studies of the trans-plasma membrane

transport and consequent cellular uptake of LCFA in these

settings, and none, to our knowledge, in human subjects.

Although cellular LCFA uptake was long considered to be

an entirely passive, unregulated process, we and others have

established that LCFA enter cells such as adipocytes by two

distinct pathways: saturable, and presumably protein-
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mediated transport of LCFA anions and passive ‘flip-flop’ of

protonated LCFA.1,2 We have also shown that obesity

resulting from a variety of causes (eg genetic, dietary) in

several rodent species is associated with the tissue-specific

upregulation of saturable LCFA uptake by adipocytes, but

not by hepatocytes or cardiac myocytes.3,4 These findings

suggest (1) that the selective upregulation of adipocyte LCFA

uptake in obesity alters LCFA partitioning, diverting LCFA

away from tissues where they would be consumed as fuel to

adipose tissue, where they are stored as triglycerides; and (2)

that the increase in saturable LCFA uptake reflects upregula-

tion of specific membrane transport process(es). In animal

models such as the ob/ob mouse, insulin appears to be an

important upregulator and leptin a key downregulator of

adipocyte LCFA uptake.5 The observation that, in particular

experimental settings, upregulation of adipocyte LCFA

uptake precedes weight gain,3 whereas downregulation of

adipocyte LCFA uptake precedes weight loss5 further suggests

that regulation of saturable LCFA uptake may be an

important control point for body adiposity.6

We here describe studies of the uptake kinetics of 9,10-

[3H]oleic acid (OA) by omental adipocytes isolated from

obese patients undergoing laparoscopic bariatric surgical

procedures, and compare the results with those obtained

with omental adipocytes isolated from nonobese individuals

undergoing a variety of other, clinically indicated laparo-

scopic procedures. Although it was not possible to obtain

samples of liver and cardiac muscle for studies of LCFA

uptake in these patients, the upregulation of adipocyte LCFA

uptake observed in the obese subjects suggests that in human

as well as rodent obesity, alterations in LCFA partitioning

that favor storage over metabolism contribute to the obese

phenotype.

Methods
Patients

The study population consisted of 20 patients undergoing

clinically indicated abdominal laparoscopic surgical proce-

dures, who consented to removal of an omental fat sample

during surgery for studies of LCFA transport and a venous

blood sample for the measurement of plasma levels of

insulin and leptin. A total of 10 of the patients (five males,

five females) were obese, and were undergoing bariatric

surgical procedures related to their obesity. Four of them

(two males, two females) had elevated fasting blood glucose

concentrations. These ranged from 141 to 170 mg/dl at

operation, but none was on medications likely to influence

glucose or fatty acid metabolism for at least 2 weeks prior to

surgery. The other 10 patients (five males, five females) were

nonobese, and were undergoing a variety of clinically

indicated laparoscopic procedures, including donor ne-

phrectomy (4), cholecystectomy (2), inguinal hernia repair

(1), removal of a mucinous cystadenoma (1), relief of celiac

compression (1), and repair of a hiatal hernia for relief of

symptoms of gastroesophageal reflux disease (GERD) (1).

None was diabetic, had a significant chronic inflammatory

disease or malignancy, or was on medications likely to

influence glucose or fatty acid metabolism at the time of

surgery. The protocol and consent documents and proce-

dures for these studies were approved by the Institutional

Review Board (IRB) of the Mount Sinai School of Medicine.

Materials

OA was purchased from NEN Life Science Products (Boston,

MA, USA), type I collagenase for adipocyte isolation from

Sigma (St Louis, MO, USA), fatty acid-free bovine serum

albumin (BSA) from Boehringer Mannheim (Indianapolis,

IN), and human insulin-specific- and leptin-specific RIA kits

from Linco Research, Inc. (St Charles, MO, USA).

Preparation of isolated adipocytes

Single cell suspensions of human adipocytes were prepared

from the omental fat samples by collagenase digestion, as

previously described.7–9 All preparations used in subsequent

studies met established viability criteria.9 Optimal viability

was achieved by maintaining the cells at room temperature

in Dulbecco’s modified Eagle’s medium (DMEM) after

isolation, and rewarming them to 371C just prior to use.

The distribution of cell diameters in each preparation was

determined by direct microscopy at �100, using a graduated

eyepiece reticle with which measurements of cell diameter

were recorded in arbitrary units (U). After conversion to

micrometers (m) (1 U¼9.6 mm), the corresponding mean cell

surface area (SA), in m2, was calculated.10

LCFA uptake studies

Cell aliquots from each preparation were incubated at 371C

in DMEM containing 500 mM BSA11,12 and one of five

different concentrations of OA, such that the OA:BSA molar

ratio (n) was 0.25, 0.5, 1.0, 1.5, or 2.0 : 1. The initial velocity

(V0) of cellular oleate uptake from each test solution was

determined by a standard, rapid filtration technique7–9,13

from four samples obtained in triplicate over the initial 30 s

of incubation, during which uptake was a linear function of

time.

Computations and data fitting

The unbound oleate concentration ([OAu]) in each test

solution was calculated from n,14 using the LCFA:BSA

binding constants of Spector et al15 Our rationale for the

use of these particular binding constants rather than several

alternative, more recently determined values16–18 has been

reported in detail previously.5

Based on prior analyses,2 measurements of initial oleate

uptake velocity at values of n from 0.25 to 2.0 were fitted to

the sum of a saturable and a nonsaturable function of the
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corresponding [OAu], according to the equation:

UTð½OAu�Þ ¼ ðVmax½OAu�Þ=ðKmþ½OAu�Þ þ k½OAu�; ð1Þ

in which UT([OAu]) is the experimental measurement of

uptake, in pmol/s/50 000 cells, at the stipulated concentration

of unbound oleic acid; Vmax and Km are, respectively, the

maximal uptake velocity of the saturable oleic acid uptake

component and the value of [OAu] at one-half the maximal

uptake velocity; and k is the rate constant for nonsaturable

uptake.1–5,9 Data fitting was accomplished using the SAAM II

version of the Simulation, Analysis and Modeling (SAAM)

program of Berman and Weiss19 as modified for execution on

a lap-top PC computer.20 SAAM uses an iterative, nonlinear

algorithm to compute for each data set values of the Vmax

(pmol/s/50000 cells) and Km (nM) of the saturable uptake

function, and the rate constant k (ml/s/50 000 cells) for the

nonsaturable uptake process, as well as their variances and

covariances. Prior studies in isolated hepatocytes and adipo-

cytes have documented that, when measured under the

specific conditions employed in the current studies, V0 and

derived parameters such as Vmax are measures of trans-

membrane transport. Their values are largely unmodified by

such premembrane phenomena as rate-limiting dissociation

from albumin and the effects of the pericellular unstirred

water layer on substrate availability at the cell surface, or of

subsequent intracellular binding or metabolism.11–13 Further

studies, in which an increase in Vmax was shown to precede an

increase in adipocyte size early in the development of obesity,3

and a decrease in Vmax preceded a reduction in adipocyte size

during leptin-induced weight loss5 clearly established that

changes in Vmax did not reflect changes in cell volume.

Statistical considerations

Values for physiologic variables are reported as mean7s.d.,

calculated according to standard methods of descriptive

statistics.21 The significance of obesity and gender were

tested in two-way factorial ANOVAs, using a log transforma-

tion to accommodate disparate variances where needed.

Results
Patients

Overall, the obese and nonobese patient groups were similar

in age (Table 1). By definition, the obese patients weighed

more and had significantly higher BMIs (Po0.001). Plasma

insulin (P¼ 0.016), leptin (Po0.001), and glucose (Po0.001)

concentrations were also significantly higher in the obese

patient group, but small increases in cholesterol and

triglycerides did not achieve statistical significance.

Adipocytes

Within each isolated adipocyte preparation, the distribution

of cell diameters was not Gaussian, but rather skewed to the

right, due to the presence of a small subpopulation of very

large cells. For this reason, the mean SA per cell within each

preparation was calculated from the formula of Di Giralomo

et al,10 rather than that of Zinder and Shapiro,22 since the

former more accurately reflects the disproportionate con-

tribution to the total SA of the population derived from these

very large cells. At 41 50875381 m2/cell, the mean SA of

adipocytes from obese patients was 2.4-fold greater than that

of adipocytes from nonobese subjects (16 92876529 m2/cell)

(Table 2; Po0.01).

LCFA uptake studies

Representative OA uptake studies in adipocyte suspensions

from one obese and one nonobese subject are illustrated in

Figure 1. Data points are depicted as the mean7s.d. of

triplicate determinations. Each curve clearly consists of

distinct saturable and nonsaturable components, and repre-

sents a computer fit of the data to Eq (1). Total uptake, as well

as each of its components, is appreciably faster in the obese

than in the nonobese cells. Computer-fitted curves in all

studied individuals are shown in Figure 2. Uptake in all of the

obese individuals exceeds that in any of the nonobese subjects.

The Vmax for saturable oleic acid uptake and the rate

constant (k) for nonsaturable uptake were both highly

Table 1 Patient characteristicsa

Group (n) Age (y) Weight (kg) BMI (kg/m2) Insulin (ng/ml) Leptin (ng/ml) Glucose (mg/dl) Cholesterol (mg/dl) Triglycerides (mg/dl)

Obese

Male (5) 49.0710.7 164734 56.4714.4 13.175.2 18.678.6 122733 174740 130796

Female (5) 44.473.6 11579 43.271.8 10.573.9 24.575.2 120733 265723 163716

Total (10) 46.777.9 139735 49.8711.9 11.874.5 21.677.4 121731 224756 146767

Nonobese

Male (5) 48.2712.6 7877 24.971.8 8.274.6 3.272.7 66710 190756 142719

Female (5) 48.2711.0 69712 23.572.6 4.972.4 7.076.3 77714 177732 129744

Total (10) 48.2711.2 74710 24.272.3 6.774.0 4.974.8 72713 184743 136733

aAll values mean7s.d.
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significantly increased in obese subjects compared with the

values in nonobese subjects (Table 2; Po0.001). As reported

in multiple animal models of obesity,3,4 the 4.2-fold increase

in Vmax was appreciably greater than the increase in adipocyte

SA. While Km is increased by a mean of 43% in obese patients,

this was not significantly greater than that in the nonobese

population in the present study (P¼0.09), due at least in part

to the large variances in this parameter in both populations.

Relationship of LCFA uptake to adipocyte size

Both Vmax and k were highly correlated with adipocyte SA

(r¼0.87, Po0.001 and r¼0.93, Po0.001, respectively), raising

the question of whether the increased LCFA uptake in these cells

is simply a reflection of increased cell size. To address this issue,

it is useful to express Vmax and k explicitly as functions of cell SA:

Vmaxðpmol=s=50 000 cellsÞ ¼Vmax
0ðpmol=s=SAÞSA and ð2Þ

kðml=s=50 000 cellsÞ ¼k0ðml=s=SAÞSA ð3Þ

where the SA denoted here is that of 50000 cells. Based on the

units in which Vmax and SA are measured experimentally, the

corresponding units for Vmax
0 are (pmol�10	8/s/m2), and for k0

are (ml�10	8/s/m2) (Table 2). Equations (2) and (3) indicate that

correlations between Vmax and k, on the one hand, and SA, on

the other, are to be expected and do not, in and of themselves,

provide an answer to the question. However, Vmax
0 was

significantly increased in adipocytes from obese individuals

compared with those from nonobese patients (Table 2, Po0.05).

For reasons presented in detail earlier,5 this increase in Vmax
0

Table 2 Kinetic parameters of adipocyte LCFA uptakea

Group

Vmax

(pmol/s/50 000 cells)

Km

(nM)

k

(ml/s/50 000 cells)

Adipocyte

surface area (m2/cell)

Vmax
0 ¼Vmax/surface area

(pmol/s/50 000 cells)

k0 ¼ k/surface area

(ml� 10	8/s/m2)

Obese

Male 24.275.9 155729 0.01670.0023 44 98675597 1.0770.21 0.7170.05

Female 18.475.8 1637116 0.01470.0004 38 03071892 0.9770.31 0.7470.05

Total 21.376.3 159780 0.01570.0019 41 50875381 1.0270.26 0.7370.05

Nonobese

Male 4.071.4 98745 0.006370.0023 16 97678496 0.5670.34 0.8570.35

Female 6.171.8 125746 0.006970.0026 16 87974871 0.8070.40 0.8870.499

Total 5.171.9 111745 0.006670.0023 16 92876529 0.6870.37 0.8770.41

aAll values mean7s.d.

Figure 1 Representative studies of OA uptake by omental adipocytes

isolated during bariatric surgery from an obese patient (BMI 80 kg/m2), and

from a nonobese patient (BMI 25 kg/m2) during a laparoscopic cholecystect-

omy. Values are means7s.d. of triplicate determinations at five different [OAu]

concentrations. Where no error bars are shown, their range was smaller than

the data point symbol. Plotted curves were fitted by computer to the sum of a

saturable and a non-saturable function of [OAu]. Curves representing both

total OA uptake and the computer-generated nonsaturable uptake compo-

nent are shown for each study.

Figure 2 Computer fits to the OA uptake data in 10 obese (dashed lines)

and 10 nonobese (solid lines) subjects. There is no overlap between the

groups. Kinetic parameters calculated from these curves are presented in

Table 2.
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indicates that the overall increase in Vmax and saturable LCFA

uptake observed in obese adipocytes is not merely reflective of

an increased cell size, but rather, indicates upregulation of a

membrane transport system mediating LCFA uptake. By

contrast, the value of k0, while slightly greater in nonobese

adipocytes, was not significantly different between adipo-

cytes from obese and nonobese subjects (Table 2, P40.1).

Over the range of cell sizes encompassed by obese and

nonobese adipocytes, both the magnitude and direction of

the small difference observed are consistent with the small

increases in the permeability of lipid bilayer membranes to

amphipathic molecules that occur with decreases in the

radius of curvature.1,2 Thus, k0 reflects the permeability of

adipocyte plasma membranes to LCFA per unit SA, and is

largely independent of cell size. Accordingly, nonsaturable

LCFA uptake at any given [OAu] can be approximated by

UTNSð½OAu�Þ ffi k0SA½OAu�: ð4Þ

That nonsaturable uptake reflects the product of a perme-

ability term (k0) and an area term is consistent with our

hypothesis that k is a measure of the rate of passive diffusion

(‘flip-flop’) of LCFA into cells.1,2,23

Correlations among measured variables

Vmax was highly significantly correlated with both body

weight (r¼0.908) (Figure 3) and BMI (r¼0.869) (Po0.01 in

each case). As expected, both plasma insulin and leptin

concentrations were also correlated with BMI (r¼0.669 and

0.635, respectively) and body weight (r¼0.680 and 0.640,

respectively) (Po0.01 in each instance). As a result, there

were significant correlations between insulin (r¼0.662) and

leptin (r¼0.754) concentrations and Vmax (Po0.01).

Discussion
Obesity is widespread in the US, and carries with it profound

health issues with enormous health care costs.24,25 It is a

major risk factor for noninsulin-dependent diabetes mellitus

(NIDDM), and is associated with excess morbidity and

mortality from many causes, including cardiovascular dis-

ease, liver disease, and cancer. As summarized by Leibel

et al,26 only three basic mechanisms or a combination

thereof can lead to the development of obesity: (I) a relative

increase in energy intake; (ii) a relative decrease in energy

expenditure; and (iii) preferential partitioning of ingested

calories to storage as fat. As the most energy-dense nutrient,

changes in LCFA disposition may play a role in each of these

mechanisms.

LCFA are major energy substrates, key components of cell

membranes, precursors of important signaling molecules

and other biologic mediators, and critical intracellular

regulators of gene expression. Their entry into cells was long

believed to occur by passive diffusion through the lipid

bilayer of plasma membranes. However, recent work has

clearly established that LCFA enter many cell types by both

the facilitated, protein-mediated transport of LCFA anions

and the passive diffusion (‘flip-flop’) of the uncharged,

protonated fatty acid.1,2 Based on determination of the

t1/2s for the movement of a fatty acid molecule across the

plasma membranes of isolated rat adipocytes and hepato-

cytes, the facilitated process is at least 10-fold faster than that

of passive flip-flop.2,23 Under basal physiologic conditions,

more than 90% of LCFA uptake by hepatocytes, adipocytes,

and cardiac myocytes occurs via the saturable, facilitated

process.9,11,13,27,28

Altered LCFA disposition is typical of both obesity and

NIDDM.29,30 Indeed, some believe that such changes are the

primary disturbances in these conditions.31–34 Animal

models have been very useful in studying this process. The

discovery of leptin and the role of leptin deficiency in the ob/

ob mouse in 199435 opened the door to an explosion of

information about the existence and roles of numerous

hormones, as well as systemic and localized neuropeptides,

involved in complex regulatory loops that modulate feeding

behavior, energy expenditure, and various aspects of inter-

mediary metabolism (reviewed in Friedman and Halaas36).

Our studies in the fa/fa rat3 and the ob/ob, db/db, fat, and

tubby mouse models of genetically determined obesity4,5 as

well as both rat and mouse models of dietary obesity4 found

that the Vmax for saturable LCFA uptake in adipocytes was

appreciably upregulated in every instance. In virtually all of

the models studied, saturable uptake per unit of SA (Vmax
0)

was significantly increased in adipocytes from obese animals

compared to appropriate controls (Figure 4), suggesting that

the increase in saturable uptake resulted from upregulation

of a facilitated membrane transport system.5 By contrast, the

increase in k in the absence of a significant increase in k0

indicated that the increased nonsaturable uptake reflected

passive diffusion across the increased SA of enlarged obese

adipocytes. All of these observations have been confirmed in

the present study in human omental adipocytes.

Several further observations in the animal model studies

have not yet been confirmed in man. In particular, the
Figure 3 Relationship between body weight and the Vmax for saturable LCFA

uptake. The correlation coefficient (r¼0.908) is highly significant (Po0.01).

Increased adipocyte oleate uptake in human obesity
O Petrescu et al

200

International Journal of Obesity



upregulation of saturable LCFA uptake was found to be

tissue-specific, in that, in marked contrast to adipocytes,

saturable LCFA uptake by hepatocytes and cardiac myocytes

from obese animals was virtually unchanged from control

values.2,3 We have not yet had an opportunity to study LCFA

uptake kinetics in human liver or cardiac muscle. The

increase in adipocyte LCFA uptake in weanling Zucker fatty

(fa/fa) rat pups was found to precede by several days

enlargement of adipocytes and weight gain,3 whereas the

rapid downregulation of saturable LCFA uptake that results

from leptin infusion in the ob/ob mouse precedes reductions

in food intake, increased locomotor activity, and weight

loss.5 Again, it has not yet been possible to make analogous

observations in man. Several lines of observation in animals

have led us to speculate that insulin normally upregulates,

and leptin downregulates, saturable LCFA in adipocytes.3–5

We consider that the significant correlation observed

between plasma insulin levels and Vmax in the current

studies is consistent with the first of these speculations. The

correlation between leptin levels and Vmax may, by contrast,

be a manifestation of leptin resistance.

Finally, alterations in saturable LCFA uptake in several

rodent obesity models3–5 and in differentiating mouse 3T3-

L1 preadipocytes37,38 have been consistently associated with

parallel changes in the expression, at both mRNA and

protein levels, of putative LCFA transporters such as plasma

membrane fatty acid binding protein (FABPpm) and fatty acid

translocase (FAT/CD36).3–5 Indeed, the correlation between

Vmax and expression of mRNA levels for these transporters in

some studies has achieved a value of r¼0.99.3 As recently

reviewed,6 the former of these has proven identical to the

mitochondrial isoform of aspartate aminotransferase (mAs-

pAT).39–41 Nevertheless, its presence on adipocyte and

hepatocyte plasma membranes has been firmly established

by immunofluorescence, immunohistochemical, and immu-

noelectron microscopic techniques and by immunoprecipi-

tation from highly purified plasma membrane preparations,6

while its function as a plasma membrane LCFA transporter

was demonstrated in antibody inhibition,28 transfection,42

and microinjection43 experiments. Relative mRNA levels in

these published studies were assayed principally by Northern

hybridization analysis. In assaying the corresponding mRNA

levels in the human adipocyte samples obtained in the

present studies, we found frequent discrepancies between

the results obtained by microarray, RT-PCR, and Northern

hybridization assays. While we believe that these incon-

sistencies reflect a technical artefact, we are reluctant to

express an opinion about mAspAT gene expression in human

obesity pending full resolution of this unexpected problem,

which in no way alters the interpretation of the oleic acid

kinetic studies.

Based on observations to date in both rodents and man, it

is our hypothesis that regulation of adipocyte LCFA uptake

in response to imbalances between energy intake and energy

expenditure from any cause is an important control point for

body adiposity, both in terms of quantity and distribution

(Figure 5). In particular, tissue selective upregulation of LCFA

uptake by adipocytes would be expected to alter the

partitioning of this energy dense nutrient, diverting it away

from tissues where it is oxidized as fuel and into adipose

tissue, where it is stored as fat. While the data obtained thus

Figure 4 Comparison of Vmax
0 (pmol�10	8/s/m2) in adipocytes from obese

and nonobese subjects. Human data are from the current study. Data in obese

mice and rats and appropriate control strains are replotted from Berk et al.3,4

Saturable LCFA uptake/m2 of adipocyte SA was increased in all groups. All

differences were significant except in db/db mice.

Figure 5 Regulation of adipocyte LCFA uptake controls body adiposity.

Although the primary genetic defects in well-studied animal models of obesity

are in the CNS (db mouse, Zucker fatty rat) or in peripheral tissues (ob mouse),

all such defects, as well as animal models of dietary obesity, result in selective

upregulation of facilitated LCFA by adipocytes. This suggests that regulation of

adipocyte LCFA uptake represents a final, common pathway for control of

body adiposity resulting from a diversity of primary causes. The upregulation

of adipocyte LCFA uptake observed in the present study suggests that a similar

regulatory process applies to human adiposity. Reproduced from Clinics in

Liver Disease44 with permission.
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far are fully consistent with this hypothesis, a full under-

standing of the role of fatty acid transport in the pathogen-

esis of obesity will require parallel studies of rates of lipolysis.

These will be included in our future investigations.

Owing to the central role of LCFA in intermediary

metabolism, a detailed understanding of cellular LCFA

disposition, including their transmembrane transport, will

yield important insights into the pathophysiology of obesity

and the pathogenesis of obesity-related NIDDM and the

entire spectrum of nonalcoholic fatty liver disease.44 Our

efforts to clarify in fine detail the mechanisms involved in

membrane transport of LCFA are directed at improving

understanding of the underlying pathophysiology of an

important group of diseases.
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