
Satori: Enlightened page sharing
Grzegorz Miłoś, Derek G. Murray, Steven Hand
University of Cambridge Computer Laboratory

Cambridge, United Kingdom
First.Last@cl.cam.ac.uk

Michael A. Fetterman
NVIDIA Corporation

Bedford, Massachusetts, USA
mafetter@nvidia.com

Abstract
We introduce Satori, an efficient and effective system

for sharing memory in virtualised systems. Satori uses
enlightenments in guest operating systems to detect shar-
ing opportunities and manage the surplus memory that
results from sharing.

Our approach has three key benefits over existing sys-
tems: it is more able to detect short-lived sharing op-
portunities, it is efficient and incurs negligible overhead,
and it maintains better performance isolation between
virtual machines.

We have implemented and evaluated a prototype of
Satori for the Xen virtual machine monitor. In our
evaluation, we show that Satori quickly exploits up to
94% of the maximum possible sharing with insignifi-
cant performance overhead. Furthermore, we demon-
strate workloads where the additional memory improves
macrobenchmark performance by a factor of two.

1 Introduction
An operating system can almost always put more mem-
ory to good use. By adding more memory, an OS can ac-
commodate the working set of more processes in physi-
cal memory, and can also cache the contents of recently-
loaded files. In both cases, cutting down on physical I/O
improves overall performance. We have implemented
Satori, a novel system that exploits opportunities for sav-
ing memory when running on the Xen virtual machine
monitor (VMM). In this presentation, we will explain
the policy and architectural decisions that make Satori
efficient and effective, and evaluate its performance.

Previous work has shown that it is possible to save
memory in virtualised systems by sharing pages that
have identical [5] and/or similar [2] contents. These
systems were designed for unmodified operating sys-
tems, which impose restrictions on the sharing that can
be achieved. First, they detect sharing opportunities by
periodically scanning the memory of all guest VMs. The
scanning rate is a trade-off: scanning at a higher rate de-
tects more sharing opportunities, but uses more of the
CPU. Secondly, since it overcommits the physical mem-
ory available to guests, the VMM must be able to page
guest memory to and from disk. We observe in our eval-
uation that this can lead to poor performance.

We introduce enlightened page sharing as a collec-
tion of techniques for making informed decisions when
sharing memory and distributing the benefits. Several
projects have shown that the performance of a guest OS
running on a VMM improves when the guest is modified
to exploit the virtualised environment [1, 6]. In Satori,
we add two main enlightenments to guests. We modify
the virtual disk subsystem, to implement sharing-aware
block devices: these detect sharing opportunities in the
page cache immediately as data is read into memory.
We also add a repayment FIFO between the guest and
VMM, through which the guest provides pages that can
be used when sharing is broken. Through our modifi-
cations, we detect the majority of sharing opportunities
much sooner than a memory scanner would, we obvi-
ate the constant run-time overhead of scanning, and we
avoid paging in the VMM altogether.

We also introduce a novel approach for distributing
the benefits of page sharing. Each guest VM receives
a sharing entitlement that is proportional to the amount
of memory that it shares with other VMs. Therefore,
the guests which share most memory receive the great-
est benefit, and so guests have an incentive to share.
Moreover, this maintains strong isolation between VMs:
when a page is unshared, only the VMs originally in-
volved in sharing the page are affected.

When we developed Satori, we had two main goals:

Detect short-lived sharing We show in the evaluation
that the majority of sharing opportunities are short-
lived and do not persist long enough for a mem-
ory scanner to detect them. We then demonstrate
that Satori detects sharing opportunities immedi-
ately when pages are loaded, and quickly passes on
the benefits to the guest VMs.

Detect sharing cheaply We also show that Satori’s im-
pact on the performance of a macrobenchmark –
even without the benefits of sharing – is insignif-
icant. Furthermore, when sharing is exploited,
we achieve improved performance for some mac-
robenchmarks, because the guests can use the addi-
tional memory to cache more data.

We propose to present Satori in two parts: first, we
will outline the major design decisions that differentiate



Satori from other systems (Section 2), then we will de-
scribe how we implemented a prototype of Satori on the
Xen VMM (Section 3). Finally, we will present the re-
sults of a thorough evaluation of Satori’s performance,
including its effectiveness at finding sharing opportuni-
ties and its impact on overall performance (Section 4).

2 Design decisions
We will first present the major design decisions that dif-
ferentiate Satori from existing page sharing schemes, in-
cluding those found in VMWare ESX Server [5] and Dif-
ference Engine [2]. Figure 1 shows the life-cycle of a
page that participates in sharing. This diagram raises
three key questions, which we will address in the pre-
sentation:

How are duplicates detected? We propose sharing-
aware block devices as a low-overhead mechanism
for detecting duplicate pages. Since a large amount
of sharing originates within the page cache [3], we
exploit this fact by monitoring data as it enters the
cache.

How are memory savings distributed? When n iden-
tical pages are discovered, these can be represented
by a single physical page, and n−1 pages are saved.
We propose distributing these savings to guest VMs
in proportion with their contribution towards shar-
ing.

What happens when sharing is broken? Shared
pages are necessarily read-only. When a guest VM
attempts to write to a shared page, the hypervisor
usually makes a writable private copy of the page
for the guest. We propose that the guest itself
provides a list of volatile pages that may be used to
provide the necessary memory for private copies.
In addition, we obviate the need for copying in
certain cases.

3 Implementation
We implemented Satori for Xen version 3.1 and Linux
version 2.6.18 in 11551 lines of code (5351 in the Xen
hypervisor, 3894 in the Xen tools and 2306 in Linux).
We chose Xen because it has extensive support for par-
avirtualised guests [1]. In this part of the presentation,
we will describe how we implemented the design deci-
sions from Section 2.

Our changes can be broken down into three main cate-
gories. We first modified the Xen hypervisor, in order to
add support for sharing pages between VMs. Next, we
modified the blktap driver to add support for sharing-
aware block devices. Finally, we enlightened the guest
operating system, so that it can take advantage of ad-
ditional memory, and repay that memory when sharing
is broken. The guest OS enlightenments were based

on porting some parts of IBM’s Collaborative Memory
Management (CMM) system to Xen [4].

4 Evaluation
To characterise Satori’s performance, we conducted an
evaluation in three parts. First, we profiled the oppor-
tunities for page sharing under different workloads. In
contrast with previous work, we specifically considered
the duration of each sharing opportunity, as this is cru-
cial to the utility of page sharing. We then measured
the effectiveness of Satori, and found that it is capable
of quickly detecting a large amount of sharing. Finally,
we measured the effect that Satori has on performance,
in terms of the benefit when sharing is enabled, and the
overhead on I/O operations.

For reasons of brevity, we cannot present the full eval-
uation results here. However, we note that Satori ex-
ploits up to 94% of the total sharing opportunities for
some workloads. We also note that the overhead of du-
plicate detection (without exploiting sharing opportuni-
ties) is statistically insignificant. When sharing is en-
abled, the additional page cache capacity improves per-
formance for some I/O-bound macrobenchmarks.

5 Conclusions
In this abstract, we have introduced Satori, which em-
ploys enlightenments to improve the effectiveness and
efficiency of page sharing in virtualised environments.
In our presentation, we will identify several cases where
the traditional page sharing approach (i.e. periodic mem-
ory scanning) does not discover or exploit opportunities
for sharing; and show that, by using information from
the guest VMs, and making small modifications to the
operating systems, it is possible to discover a large frac-
tion of the sharing opportunities with insignificant over-
head.

Our implementation has concentrated on sharing-
aware block devices. In the future we intend to add other
enlightened page sharing mechanisms – such as long-
lived zero-page detection, page-table sharing and kernel
text sharing – which will improve Satori’s sharing dis-
covery rate.



Figure 1: Sharing cycle

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[2] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference en-
gine: Harnessing memory redundancy in virtual machines.
In 8th USENIX symposium on Operating System Design
and Implementation, 2008.

[3] J. F. Kloster, J. Kristensen, and A. Mejlholm. On the Fea-
sibility of Memory Sharing. Master’s thesis, Aalborg Uni-
versity, June 2006.

[4] M. Schwidefsky, H. Franke, R. Mansell, H. Raj, D. Osisek,
and J. Choi. Collaborative Memory Management in
Hosted Linux Environments. In Proceedings of the 2006
Ottawa Linux Symposium, 2006.

[5] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th USENIX
symposium on Operating Systems Design and Implemen-
tation, 2002.

[6] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. In Proceedings of
the 5th USENIX symposium on Operating Systems Design
and Implementation, 2002.


