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Abstract

Missing records are a perennial problem in analysis of complex data of all types,
when the target of inference is some function of the full data law. In simple cases,
where data is missing at random or completely at random [15], well-known ad-
justments exist that result in consistent estimators of target quantities.
Assumptions underlying these estimators are generally not realistic in practical
missing data problems. Unfortunately, consistent estimators in more complex
cases where data is missing not at random, and where no ordering on variables
induces monotonicity of missingness status are not known in general, with some
notable exceptions [13, 18, 16].
In this paper, we propose a general class of consistent estimators for cases where
data is missing not at random, and missingness status is non-monotonic. Our es-
timators, which are generalized inverse probability weighting estimators, make
no assumptions on the underlying full data law, but instead place independence
restrictions, and certain other fairly mild assumptions, on the distribution of miss-
ingness status conditional on the data.
The assumptions we place on the distribution of missingness status conditional on
the data can be viewed as a version of a conditional Markov random field (MRF)
corresponding to a chain graph. Assumptions embedded in our model permit
identification from the observed data law, and admit a natural fitting procedure
based on the pseudo likelihood approach of [2]. We illustrate our approach with
a simple simulation study, and an analysis of risk of premature birth in women in
Botswana exposed to highly active anti-retroviral therapy.

1 Introduction

Practical data sets generally have missing or corrupted entries. A classical missing data problem is
to find a way to make valid inferences about the full data law. In other words, the goal is to exploit
assumptions on the mechanism which is responsible for missingness or corruption of data records
to transform the problem into another where missingness or corruption were not present at all.

In simple cases, where missingness status is assumed to be missing completely at random (deter-
mined by an independent coin flip), or at random (determined by a coin flip independent conditional
on observed data records), adjustments exist which result in consistent estimators of many functions
of the full data law. Unfortunately, these cases are difficult to justify in practice. Often, data records
are missing intermittently and in complex patterns that do not conform to above assumptions. For
instance, in longitudinal observational studies in medicine, patients may elect to not show up at a
particular time point, for reasons having to do with their (by definition missing) health status at that
time point, and then later return for followup.
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In this situation, missingness is not determined by a coin flip independent of missing data conditional
on the observed data (data is missing not at random), and missingness status of a patient is not
monotonic under any natural ordering. In this setting, deriving consistent estimators of even simple
functions of the full data law is a challenging problem [13, 18, 16].

In this paper we propose a new class of consistent generalized inverse probability weighting (IPW)
estimators for settings where data is missing non-monotonically and not at random. Like other IPW
estimators, ours makes no modeling assumptions on the full data law, and only models the joint
missingness status of all variables, conditional on those variables. This model can be viewed as
a conditional Markov random field (MRF) with independence assumptions akin to those made in
factors of a chain graph model [6]. The assumptions encoded in our model permit identification of
the full data law, and allow estimation based on the pseudo likelihood approach of [2].

Our paper is organized as follows. We discuss relevant preliminaries on graphical models in Section
2. We fix additional notation and discuss some prior work on missing data in Section 3. We introduce
our missingness model, and identification results based on it in Section 4, and discuss estimation in
Section 5. We illustrate the use of our model with a simple simulation study in Section 6, and give
a data analysis application in Section 7. Finally, we illustrate the difference between our model and
a seemingly similar non-identified model via a parameter counting argument in Section 8, and give
our conclusions in Section 9.

2 Chain Graph Models

We briefly review statistical chain graph models. A simple mixed graph is a graph where every
vertex pair is connected by at most one edge, and there are two types of possible edges: directed and
undirected. Chain graphs are mixed graphs with the property that for every edge cycle in the graph,
there is no way to assign an orientation to undirected edges in any cycle to form a directed cycle [6].

For a graph G with a vertex set V, and any subset A ⊆ V, define the induced subgraph GA to be
a graph with the vertex set A and all edges in G between elements in A. Given a graph G, define
the augmented or moral graph Ga to be an undirected graph obtained from adding a new undirected
edge between any unconnected vertices W1,W2 if a path of the form W1 → ◦ − ◦ . . . ◦ −◦ ← W2

exists in G (note the path may only contain a single intermediate vertex), and then replacing all
directed edges in G by undirected edges.

A clique in an undirected graph is a set of vertices where any pair of vertices are neighbors. A
maximal clique is a clique such that no superset of it forms a clique. Given an undirected graph G,
denote the set of maximal cliques in G by C(G). A block in a simple mixed graph G is any connected
component formed by undirected edges in a graph obtained from G dropping all directed edges.
Given a simple mixed graph G, denote the set of blocks in G by B(G).

A chain graph model is defined by the following factorization

p(V) =
∏

B∈B(G)

p(B | paG(B)), (1)

where for each B,

p(B | paG(B)) =
1

Z(paG(B))

∏
C∈C((GB∪paG(B))a)

φC(C), (2)

and φC(C) are called potential functions and map value configurations of variables in C to real
numbers, which are meant to denote an “affinity” of the model towards that particular value config-
uration. The chain graph factorization implies Markov properties, described in detail in [6].

3 Preliminaries, and Prior Work on Missing Data

We will consider data sets on random variables L ≡ L1, . . . Lk, drawn from a full data law p(L).
Associated with each random variable Li is a binary missingness indicatorRi, where Li is observed
if and only if Ri = 1. Define a vector (lj , rj) ≡ (lj1, . . . l

j
k, r

j
1, . . . r

j
k) to be the jth realization of
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p(L,R). Define (l∗)j ≡ {lji | rj = 1} ⊆ lj . In missing data settings, for every j, we only get to
observe the vector of values ((l∗)j , rj), and we wish to make inferences using the true realizations
(lj , rj) from the underlying law. Doing this entails building a bridge between the observed and the
underlying realizations, and this bridge is provided by assumptions made on p(L,R).

If we can assume that for any i, p(Ri | L) = p(Ri), in other words, every missing value is de-
termined by an independent biased coin flip, then data is said to be missing completely at random
(MCAR) [15]. In this simple setting, it is known that any estimator for complete data remains con-
sistent if applied to just the complete cases. A more complex assumption, known as missing at
random (MAR) [15], states that for every i, p(Ri | L) = p(Ri | L∗). In other words, every missing
value is determined by a biased coin flip that is independent of missing data values conditional on
the observed data values. In this setting, a variety of adjustments lead to consistent estimators.

The most interesting patterns of missingness, and the most relevant in practice, are those that do
not obey either of the above two assumptions, in which case data is said to be missing not at ran-
dom (MNAR). Conventional wisdom in MNAR settings is that without strong parametric modeling
assumptions, many functions of the full data law are not identified from the observed data law.
Nevertheless, a series of recent papers [8, 7, 17], which represented missing data mechanisms as
graphical models, and exploited techniques developed in causal inference, have shown that the full
data law may be non-parametrically identified under MNAR.

In this approach, the full data law is assumed to factorize with respect to a directed acyclic graph
(DAG) [11]. Assumptions implied by this factorization are then used to derive functions of p(L)
in terms of p(R,L∗). We illustrate the approach using Fig. 1 (a),(b) and (c). Here nodes in green
are assumed to be completely observed. In Fig. 1 (a), the Markov factorization is p(R2, L1, L2) =
p(R2 | L1)p(L2 | L1)p(L1). It is easy to verify using d-separation [11] in this DAG that p(R2 |
L1, L2) = p(R2 | L1). Since L1 is always observed, this setting is MAR, and we get the following
p(L1, L2) = p(L2|L1)p(L1) = p(L2|L1, R2 = 1)p(L1) = p(R2 = 1,L∗)/p(R2 = 1|L1), where
the last expression is a functional of p(R,L∗), and so the full data law p(L) is non-parametrically
identified from the observed data law p(R,L∗).

The ratio form of the identifying functional suggests the following simple IPW estimator for E[L2],
known as the Horvitz-Thompson estimator [4]. We estimate p(R2 | L1) either directly if L1 is
discrete and low dimensional, or using maximum likelihood fitting of a model for p(R2 | L1;β),
for instance a logistic regression model. We then average observed values of L2, but compensate for
the fact that observed and missing values of L2 systematically differ using the inverse of the fitted
probability of the case being observed, conditional on L1, or Ê[L2] = N−1

∑
n:rn=1 L

n
2/p(R2 =

1 | ln1 ; β̂). Under our missingness model, this estimator is clearly unbiased. Under a number of
additional fairly mild conditions, this estimator is also consistent.

A more complicated graph, shown in Fig. 1 (b), implies the following factorization

p(L1, L2, R1, R2) = p(R1 | L2)p(R2 | L1)p(L1 | L2)p(L2). (3)

Using d-separation in this DAG, we see that in cases where any values are missing, neither MCAR
nor MAR assumptions hold under this model. Thus, in this example, data is MNAR. However, the
conditional independence constraints implied by the factorization (3) imply the following

p(L1, L2) =
p(R1 = 1, R2 = 1,L∗)

p(R1 = 1 | L∗2, R2 = 1) · p(R2 = 1 | L∗1, R1 = 1)
.

As before, all terms on the right hand side are functions of p(R,L∗), and so p(L) is non-
parametrically identified from p(R,L∗). This example was discussed in [8].

The form of the identifying functional suggests a simple generalization of the IPW estimator from
the previous example for E[L2]. As before, we fit models p(R1 | L∗2;β1) and p(R2 | L∗1;β2) by
MLE. We take the empirical average of the observed values of L2, but reweigh them by the inverses
of both of the estimated probabilities, using complete cases only:

1

N

∑
n:rn1 =rn2 =1

ln2 ·
1

p(r1 = 1 | ln2 ; β̂1) · p(r1 = 1 | ln1 ; β̂2)
.

This estimator is also consistent, with the proof a simple generalization of that for Horvitz-
Thompson. More generally, it has been shown in [8] that in DAGs where no R variable has a
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Figure 1: (a) A graphical model for MAR data. (b),(c) Graphical model for MNAR data where
identification of the full data law is possible. (d) The no self-censoring model for k = 3. (e)
A missingness model seemingly similar to (d), where the full data law is not identified. (f) An
undirected graph representing an independence model Markov equivalent to the independence model
represented by a chain graph in (d).

child, and the edge Li → Ri does not exist for any i, we get:

p(L) =
p(L∗,R = 1)∏

Ri
p(Ri | paG(Ri),R{i|Li∈paG(Ri)} = 1)

.

This identifying functional implies consistent IPW estimators can be derived that are similar to
estimators in the above examples.

The difficulty with this result is that it assumes missingness indicators are disconnected. This as-
sumption means we cannot model persistent dropout or loss to followup (where Ri = 0 at one time
point implies Ri = 0 at all following time points), or complex patterns of non-monotone missing
data (where data is missing intermittently, but missingness also exhibits complex dependence struc-
ture). This kind of dependence is represented by connectingR variables in the graph. Unfortunately,
this often leads to non-identification – the functional of the full data law not being a function of the
observed data law. For instance, if we add an edgeR1 → R2 to Fig. 1 (b), it is known that p(L1, L2)
is not identified from p(R,L∗). Intuition for this is presented in Section 8.

A classical approach to missingness with connected R variables assumes sequential ignorability,
and monotone missingness (where there exists an ordering on variables such that every unit that’s
missing earlier in the ordering remains missing later in the ordering) [12]. However, this approach
does not easily generalize to data missing in non-monotone patterns and not at random.

Nevertheless, if a sufficient number of edges are missing in the graph, identification sometimes
is possible even if R variables are dependent, and monotonicity and MAR do not hold. In par-
ticular, techniques from causal inference have been using to derive complex identification results
in this setting [7, 17]. For instance, it has been shown that in Fig. 1 (c), p(L1, L2, L3, L4) =
p(L∗,R=1)

p̃1·p̃2
, where p̃1 = qL4

(R1 = 1 | L2, R2 = 1), p̃2 =
qL4

(L1|R2=1,R1=1)qL4
(R2=1)∑

R2
qL4

(L1|R2,R1=1)qL4
(R2)

and

qL4(R1, R2, L1, L2, L3) = p(L1, L2, R1, R2 | L3, L4)p(L3). See [17] for details. Unfortunately,
it is often difficult to give a practical missing data setting which exhibits the particular pattern of
missing edges that permits identification. In addition, a full characterization of identifiability of
functionals of the full data law under MNAR is an open problem. In the next sections, we generalize
the graphical model approach to missing data from DAGs to a particular type of chain graph. Our
model is able to encode fairly general settings where data is missing non-monotonically and not at
random, while also permitting identification of the full data law under fairly mild assumptions.

4 The No Self-Censoring Missingness Model

Having given the necessary preliminaries, we are ready to define our missingness model for data
missing non-monotonically and not at random. Our desiderata for such a model are as follows.
First, in order for our model to be useful in as wide a variety of missing data settings as possible,
we want to avoid imposing any assumptions on the underlying full data law. Second, since we wish
to consider arbitrary non-monotonic missingness patterns, we want to allow arbitrary relationships
between missingness indicators. Finally, since we wish to allow data to be missing not at random,
we want to allow as much dependence of missingness indicators on the underlying data, even if
missing, as possible.
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However, a completely unrestricted relationship between underlying variables and missingness in-
dicators can easily lead to non-identification. For instance in any graph where the edge Li → Ri

exists, the marginal distribution p(Li) is not in general a function of the observed data law. Thus, we
do not allow variables to drive their own missingness status, and thus edges of the form Li → Ri.
However, we allow a variable to influence its own missingness status indirectly.

Surprisingly, the restrictions given so far essentially characterize independences defining our pro-
posed model. Consider the following chain graph on vertices L1, . . . Lk, R1, . . . Rk. The vertices
L1, . . . , Lk form a complete DAG, meaning that the full data law p(L1, . . . , Lk) has no restrictions.
The vertices R1, . . . Rk form a k-clique, meaning arbitrary dependence structure between R vari-
ables is allowed. In addition, for every i, paG(Ri) ≡ L \ {Li}, which restricts a variable Li from
directly causing its own missingness status Ri. The resulting graph is always a chain graph. An
example (for k = 3) is shown in Fig. 1 (c). The factorizations (1) and (2) for chain graphs of this
form imply a particular set of independence constraints.

Lemma 1 Let G be a chain graph with vertex set R ∪ L, where B(G) = {R, {L1}, . . . {Lk}}, and
for every i, paG(Li) = {L1, . . . Li−1}, paG(Ri) = L \ {Li}. Then for every i, and every p(L,R)
that factorizes according to G, the only conditional independences implied by this factorization on
p(L,R) are (∀i) (Ri ⊥⊥ Li | R \ {Ri},L \ {Li}). 1

Proof: This follows by the global Markov property results for chain graphs, found in [6]. �

This set of independences in p(R,L) can be represented not only by a chain graph, but also by
an undirected graph where every pair vertices except Ri and Li (for every i) are connected. Such a
graph, interpreted as a Markov random field, would imply the same set of conditional independences
as those in Lemma 1. An example of such a graph for k = 3 is shown in Fig. 1 (f). The reason we
emphasize viewing the model using chain graphs is because the only independence restrictions we
place are on the conditional distribution p(R | L); these restrictions resemble those found in factors
of (1), and not in classical conditional Markov random fields, where every variable in R would
depend on every variable in L. We call the missingness model with this independence structure the
no self-censoring model, due to the fact that no variable Li is allowed to directly censor itself via
setting Ri to 0. We now show that under relatively benign assumptions, we can identify the full data
law p(L) in this model.

Lemma 2 If p(R = 1 | L) is identified from the observed data distribution p(L∗,R = 1), then
p(L) is identified from p(L∗,R = 1) via p(L∗,R = 1)/p(R = 1 | L).

Proof: Trivially follows by the chain rule of probability, and the fact that L = L∗ if R = 1. �

To obtain identification, we use a form of the log conditional pseudo-likelihood (LCPL) function,
first considered (in joint form) in [2]. Define, for any parameterization p(R | L;α), where |R| = k,

logPL(α) =

k∑
i=1

∑
j:Lj\{Lj

i}⊆(L∗)j
log p(Ri = rji | R

j \ {Rj
i} = rj ,Lj ;α).

In subsequent discussion we will assume that if p1(R | L;α0) 6= p2(R | L;α) then α0 6= α.

Lemma 3 Under the no self-censoring model, in the limit of infinite data sampled from p(R,L),
where only L∗,R is observed, logPL(α) is maximized at the true parameter values α0.

Proof: The proof follows that for the standard pseudo-likelihood in [9]. The difference between the
LCPL functions evaluated at α0 and α can be expressed as a sum of conditional relative entropies,
which is always non-negative. The fact that every term in the LCPL function is a function of the
observed data follows by Lemma 1. �

We will restrict attention to function classes which satisfy standard assumptions needed to derive
consistent estimators [10], namely compactness of the parameter space, dominance, and (twice)
differentiability with respect to α, which implies continuity.

1A ⊥⊥ B | C is notation found in [3], meaning A is independent of B given C.
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Corollary 1 Under the no self-censoring model of missingness, and assumptions above, the estima-
tor of α maximizing the LCPL function is weakly consistent.

Proof: Follows by Lemma 3, and the argument in [9] via equation (9), Lemma 1 and Theorem 1. �

5 Estimation

Since all variables in R are binary, and our model for p(R | L) is a type of conditional MRF, a
log-linear parameterization is natural. We thus adapt the following class of parameterizations:

p(R = r | L = l) =
1

Z(l)
exp

 ∑
R†⊆P(R)\{∅}

rR† · fR†(lL\L† ;αR†)

 (4)

where L† ≡ {Li | Ri ∈ R†}, P(R) is the powerset of R, and for every R†, fR† is a function
parameterized by αR† , mapping values of L\L† to an |R†|-way interaction. Let α ≡ {αR† | R† ⊆
P(R) \ {∅}}. We now show our class of parameterizations gives the right independence structure.

Lemma 4 For an arbitrary p(L), and a conditional distribution p(R | L) parameterized as in (4),
the set of independences in Lemma 1 hold in the joint distribution p(L,R) = p(R | L)p(L).

Proof: For any Ri ∈ R, and values r, l, such that rRi = 1,

p(rRi
| rR\{Ri}, lL) =

exp
{∑

Ri∈R†⊆P(R)\{∅} rR† · fR†(lL\L† ;αR†)
}

1 + exp
{∑

Ri∈R†⊆P(R)\{∅} rR† · fR†(lL\L† ;αR†)
} .

By definition of fR† , this functional is not a function of Li, which gives our result. �

As expected with a log-linear conditional MRF, the distribution p(Ri | R \ {Ri},L) resembles the
logistic regression model. Under twice differentiability of fR† , first and second derivatives of the
LCPL function have a straightforward derivation, which we omit in the interests of space. Just as
with the logistic model, the estimating equations cannot be solved in closed form, but iterative algo-
rithms are straightforward to construct. For sufficiently simple fR† , the Newton-Raphson algorithm
may be employed. Note that every conditional model for Ri is fit only using rows where L \ {Li}
are observed. Thus, the fitting procedure fails in datasets with few enough samples that for some
Ri, no such rows exist. We leave extensions of our model that deal with this issue to future work.

Finally, we use our fitted model p(R | L; α̂), as a joint IPW for estimating functions of p(L). For
instance, if L1, . . . Lk−1 represents intermediate outcomes, and Lk the final outcome of a longitu-
dinal study with intermittent MNAR dropout represented by our model, and we are interested in the
expected final outcome, E[Lk], we would extend IPW estimators discussed in Section 3 as follows:
Ê[Lk] = N−1

∑
n:rn=1 l

n
k/p(R = 1 | ln; α̂). Estimation of more complex functionals of p(L)

proceeds similarly, though it may employ marginal structural models if L is high-dimensional. Con-
sistency of these estimators follows, under the usual assumptions, by standard arguments for IPW
estimators, and Corollary 1.

6 A Simple Simulation Study

To verify our results, we implemented our estimator for a simple model in the class of param-
eterizations (4) that satisfy the assumptions needed for deriving the true parameter by maximiz-
ing the LCPL function. Fig. 2 shows our results. For the purposes of illustration, we chose
the model in Fig. 1 (d) with functions fR† defined as follows. For every edge (Li, Rj) in the
graph, define a parameter wij , and a parameter w∅. Define every function fR† to be of the form∑

i:Li∈L\L†,j:Rj∈R† wijLi(1). The values of L1, L2, L3 were drawn from a multivariate normal
distribution with parameters µ = (1, 1, 1),Σ = I+1. We generated a series of datasets with sample
size 100 to 1000, and compared differences between the true means E[Li(1)] and the unadjusted
(complete case) MLE estimate of E[Li(1)] (blue), and IPW adjusted estimate of E[Li(1)] (red), for
i = 1, 2, 3. The true difference is, of course, 0. Confidence intervals at the 95% level were comput-
ing using case resampling bootstrap (50 iterations). The confidence intervals generally overlapped
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Figure 2: (a),(b),(c) Results of estimating E[L1(1)], E[L2(1)] and E[L3(1)], respectively, from a
model in Fig. 1 (d). Y axis is parameter value, and X axis is sample size. Confidence intervals are
reported using case resampling bootstrap at 95% level. Confidence interval size does not necessarily
shrink with sample size – a known issue with IPW estimators.

0, while complete case analysis did not. We noted that confidence intervals did not always shrink
with increased sample size – a known difficulty with IPW estimators.

Aside from the usual difficulties with IPW estimators, which are known to suffer from high variance,
our estimator only reweighs observed cases, which may in general be a small fraction of the overall
dataset as k grows (in our simulations only 50-60% of cases were complete). Furthermore, esti-
mating weights by maximizing pseudo-likelihood is known to be less efficient than by maximizing
likelihood, since all variability of variables in the conditioning sets is ignored.

7 Analysis Application

To illustrate the performance of our model in a practical setting where data is missing not at random,
we report an analysis of a survey dataset for HIV-infected women in Botswana, also analyzed in [18].
The goal is to estimate an association between maternal exposure to highly active anti-retroviral
therapy (HAART) during pregnancy and a premature birth outcome among HIV-infected women
in Botswana. The overall data consisted of 33148 obstetrical records from 6 cites in Botswana.
Here we restricted to a subset of HIV positive women (n = 9711). We considered four features: the
outcome (preterm delivery), with 6.7% values missing, and two risk factors – whether the CD4 count
(a measure of immune system health) was lower than 200 cells per µL (53.1% missing), and whether
HAART was continued from before pregnancy (69.0% missing). We also included hypertension – a
common comorbidity of HIV (6.5% missing). In this dataset missing at random is not a reasonable
assumption, and what’s more missingness patterns are not monotonic.

We used a no-self censoring model with fR†(.) of the same form as in section 6. The results
are shown in Fig. 3, which contain the complete case analysis (CC), the no self-censoring model
(NSCM), and a version of the discrete choice model in [18] (DCM). We reported the odds ratios
(ORs) with a 95% confidence interval, obtained by bootstrap. Note that CC and DCM confidence
intervals for the OR overlap 1, indicating a weak or non-existent effect. The confidence interval for
the NSCM indicates a somewhat non-intuitive inverse relationship for low CD4 count and premature
birth, which we believe may be due to assumptions of the NSCM not being met with a limited set
of four variables we considered. In fact, the dataset was sufficiently noisy that an expected positive
relationship was not found by any method.

8 Parameter Counting

Parameter counting may be used to give an intuition for why p(L) is identified under the no
self-censoring model, but not under a very similar missingness model where undirected edges
between R variables are replaced by directed edges under some ordering (see Fig. 1 (d) and
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Low CD4 Count Cont HAART
CC 0.782 (0.531, 1.135) 1.142 (0.810, 1.620)

NSCM 0.651 (0.414, 0.889) 1.032 (0.670, 1.394)
DCM 1.020 (0.742, 1.397) 1.158 (0.869, 1.560)

Figure 3: Analyses of the HIV pregnancy Botswana dataset. CC: complete case analysis, NSCM:
the no self-censoring model with a linear parameterization, DCM: a member of the discrete choice
model family described in [18].

(e) for an example for k = 3.) Assume |L| = k, where L variables are discrete with d lev-
els. Then the observed data law may be parameterized by 2k − 1 parameters for p(R), and by
dk−|R

†|−1 parameters for each p(L∗ | R† = 1,R \ R† = 0), where R† 6= ∅, for a total of
2k − 1 +

∑
R†⊆P(R)\{∅}

(
k
|R†|
)
(d|R

†| − 1) = (d + 1)k − 1. The no-censoring model needs

dk − 1 parameters for p(L), and
∑

R†∈P(R)\{∅}
(

k
|R†|
)
dk−|R

†| for p(R | L), yielding a total of
dk − 1 + (d+ 1)k − dk = (d+ 1)k − 1, which means the model is just-identified, and imposes no
restrictions on the observed data law under our assumptions on L. However, the DAG model needs
dk−1 parameters for p(L), and

∑k
i=1(dk−1 ·2i−1) for p(R | L), for a total of dk−1+dk−1 ·(2k−1).

The following Lemma implies the DAG version of the no self-censoring model is not identified.

Lemma 5 dk−1 · (2k − 1) > (d+ 1)k − dk for k ≥ 2, d ≥ 2.

Proof: For k = 2, we have 3d > 2d + 1, which holds for any d > 1. If our result holds for k, then
2k > (d+ 1)k/dk−1− d+ 1. Then the inequality holds for k+ 1, since 2 > (d+ 1)/d for d > 1. �

Just identification under the independence structure given in Lemma 1 was used in [16] (indepen-
dently of this paper) to derive a parameterization of the model that uses the observed data law. This
paper, by contrast, only models the missingness process represented by p(R | L), and does not
model the observed data law p(L∗) at all.

9 Conclusions

In this paper, we have presented a graphical missingness model based on chain graphs for data
missing non-monotonically and not at random. Specifically, our model places no restrictions on the
underlying full data law, and on the dependence structure of missingness indicators, and allows a
high degree of interdependence between the underlying unobserved variables and missingness indi-
cators. Nevertheless, under our model, and fairly mild assumptions, the full data law is identified.
Our estimator is an inverse probability weighting estimator with the weights being joint probabilities
of the data being observed, conditional on all variables. The weights are fitted by maximizing the
log conditional pseudo likelihood function, first derived in joint form in [2].

We view our work as an alternative to existing and newly developed methods for MNAR data
[13, 18, 16], and an attempt to bridge the gap between the existing rich missing data literature
on identification and estimation strategies for MAR data (see [14] for further references), and newer
work which gave an increasingly sophisticated set of identification conditions for MNAR data using
missingness graphs [8, 7, 17]. The drawbacks of existing MAR methods is that most missingness
patterns of practical interest are not MAR, the drawbacks of the missingness graph literature is that
it has not yet considered estimation, and used assumptions on missingness that, while MNAR, are
difficult to justify in practice (for example Fig. 1 (c) implies a complicated identifying functional
under MNAR, but places a marginal independence restriction (L1 ⊥⊥ L2) on the full data law).

Our work remedies both of these shortcomings. On the one hand, we assume a very general, and
thus easier to justify in practice, missingness model for MNAR data. On the other, we don’t just
consider an identification problem for our model, but give a class of IPW estimators for functions
of the observed data law. Addressing statistical and computational challenges posed by our class of
estimators, and making them practical for analysis of high dimensional MNAR data is our next step.

8



References
[1] Heejung Bang and James M. Robins. Doubly robust estimation in missing data and causal inference

models. Biometrics, 61:962–972, 2005.

[2] Julian Besag. Statistical analysis of lattice data. The Statistician, 24(3):179–195, 1975.

[3] A. Philip Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society,
41:1–31, 1979.

[4] D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a finite
universe. Journal of the American Statistical Association, 47:663–685, 1952.

[5] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML-01), pages 282 – 289. Morgan Kaufmann, 2001.

[6] Steffan L. Lauritzen. Graphical Models. Oxford, U.K.: Clarendon, 1996.

[7] Karthika Mohan and Judea Pearl. Graphical models for recovering probabilistic and causal queries from
missing data. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 1520–1528. Curran Associates, Inc., 2014.

[8] Karthika Mohan, Judea Pearl, and Jin Tian. Graphical models for inference with missing data. In C.J.C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 26, pages 1277–1285. Curran Associates, Inc., 2013.

[9] A. Mozeika, O. Dikmen, and J. Piili. Consistent inference of a general model using the pseudolikelihood
method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics., 90, 2014.

[10] Whitney Newey and Daniel McFadden. Chapter 35: Large sample estimation and hypothesis testing. In
Handbook of Econometrics, Vol.4, pages 2111–2245. Elsevier Science, 1994.

[11] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan and Kaufmann, San Mateo, 1988.

[12] James M. Robins. A new approach to causal inference in mortality studies with sustained exposure
periods – application to control of the healthy worker survivor effect. Mathematical Modeling, 7:1393–
1512, 1986.

[13] James M. Robins. Non-response models for the analysis of non-monotone non-ignorable missing data.
Statistics in Medicine, 16:21–37, 1997.

[14] James M. Robins and Mark van der Laan. Unified Methods for Censored Longitudinal Data and Causal-
ity. Springer-Verlag New York, Inc., 2003.

[15] D. B. Rubin. Causal inference and missing data (with discussion). Biometrika, 63:581–592, 1976.

[16] Mauricio Sadinle and Jerome P. Reiter. Itemwise conditionally independent nonresponse modeling for
incomplete multivariate data. https://arxiv.org/abs/1609.00656, 2016. Working paper.

[17] Ilya Shpitser, Karthika Mohan, and Judea Pearl. Missing data as a causal and probabilistic problem.
In Proceedings of the Thirty First Conference on Uncertainty in Artificial Intelligence (UAI-15), pages
802–811. AUAI Press, 2015.

[18] Eric J. Tchetgen Tchetgen, Linbo Wang, and BaoLuo Sun. Discrete choice models for nonmonotone
nonignorable missing data: Identification and inference. https://arxiv.org/abs/1607.02631,
2016. Working paper.

9

https://arxiv.org/abs/1609.00656
https://arxiv.org/abs/1607.02631

