
AN LSI IMPLEMENTATION OF AN ADAPTIVE GENETIC ALGORITHM
WITH ON-THE-FLY CROSSOVER OPERATOR SELECTION

Shin’ichi Wakabayashi Tetsushi Koide Naoyoshi Toshine
Mutsuaki Goto Yoshikatsu Nakayama Koichi Hatta

Faculty of Engineering, Hiroshima University
4 -1 Kagamiyama 1 chome, Higashi-Hiroshima 739-8527 JAPAN

Tel.: +81-824-24-7678 Fax.: +81-824-22-7195 E-mail: wakaba@computer.org

ABSTRACT

This paper describes an LSI implementation of a genetic algo-
rithm (GA), called the Genetic Algorithm Accelerator (GAA)
chip. The GAA chip is an LSI implementation of a GA, in
which two types of crossover operators are supported, and the
operator to be actually used in the algorithm is not fixed in ad-
vance, but dynamically selected for each pair of chromosomes
in the algorithm execution. The GAA chip has been designed
with the Verilog HDL and simulated with some benchmark func-
tions. According to the simulation, the GAA chip will run with
50MHz clock in maximum. The chip has been fabricated with
the CMOS 0.5 �m standard cell technology.

1. INTRODUCTION

Genetic algorithms (GAs) [3] are known as one of robust heuris-
tic algorithms for complex optimization problems in various
fields of engineering. GA provides robust capability of explor-
ing in the solution space of a given problem. There are two noto-
rious problems on GAs to realize their performance. One is the
parameter tuning. Since a GA has many parameters including
types of genetic operators, it is difficult to set parameters to ap-
propriate values so as to draw out a maximum capability of GA.
The other problem of GAs is the computation time. We often
encounter the case that a GA requires large amount of computa-
tion time, and due to the limitation of computation time, a GA
produces poor solutions.

To solve the former problem, adaptive GAs have been inves-
tigated [1]. An adaptive GA is the GA, for which some param-
eters including the types of genetic operators are not fixed in
advance, but are determined during the execution of the algo-
rithm. The authors have also proposed an adaptive GA, which
selects a crossover operator in an adaptive manner during the
execution of the algorithm, since the crossover has in general a
large effect on the performance of a GA [4]. In the proposed
adaptive strategy, an appropriate crossover operator among two
types of crossover operators are automatically selected for each
pair of chromosomes (individuals) to be crossed over. To realize
this mechanism, a new measure called the elite degree has been
proposed. The elite degree was devised to show the potential
proficiency of an individual in the particular generation.

To reduce the execution time of GA, there are some ideas in-
cluding parallel and/or distributed processing of GAs and hard-
ware implementation of GAs [5, 6, 7, 9, 10]. As hardware im-
plementation of a GA, Scott et al. proposed a hardware-based
genetic algorithm (HGA), which was implemented on a set of
field-programmable gate arrays (FPGAs) [7]. The HGA is based
on the standard Simple Genetic Algorithm (SGA) [3]. Sano et
al. proposed a SIMD GA-machine, which was designed to im-
plement on FPGAs [6]. The basic algorithm of [6] is also the
SGA, which was modified to be executed on a SIMD parallel
computer. Yoshida et al. also proposed a hardware-based GA,

called the Genetic Algorithm Processor (GAP) [10]. The GAP is
based on a steady-state GA, which does not have the generation.

This paper presents an LSI implementation of an adaptive
genetic algorithm, called the Genetic Algorithm Accelerator
(GAA) chip. The GAA is a hardware implementation of an
adaptive genetic algorithm, which we have proposed in [4]. The
GAA has two types of crossover operators, that is, two-point
crossover and uniform crossover, and it dynamically selects one
of them to apply it to a pair of chromosomes (individuals) to
be crossed according to the status of chromosomes. In [4], we
have shown that the adaptive GA outperformed both the SGA
and adaptive GAs with other crossover selection strategies. We
modified this original adaptive GA so that it is easy to implement
it as hardware.

This paper is organized as follows. Section 2 will give an
overview of GAs and the adaptive strategy of crossover selection
adopted in the GAA. Section 3 will present the architecture of
the GAA. Section 4 will describe the LSI implementation of the
GAA, and finally Section 5 will give some conclusion.

2. AN ADAPTIVE GENETIC ALGORITHM

A genetic algorithm (GA) is a general framework of heuristics
for numerical/combinatorial optimization problems. A GA is
based on natural selection and evolution process of life, and
is known as a robust, powerful, and problem-independent opti-
mization technique. In the normal GA, the crossover operator to
be used in the algorithm is determined in advance, and is fixed
during the algorithm execution. However, we often encounter
the case that more than one crossover operators could be used to
the given problem, and the characteristics of those operators are
different. For example, there are many problems for which both
of two-point and uniform crossover operators could be applied.
However, the properties of those operators are different. The
former has a nondestructive nature of potential good schemata
of a chromosome, whereas the latter has a high ability to explore
the solution space [2]. So, to fix the type of crossover operator
in advance might loose the potential capability of GAs.

To resolve the problem above mentioned, we have proposed
an adaptive strategy of crossover selection [4]. The following
is the mechanism of on-the-fly selection of crossover operators,
which is adopted in the GAA.

Assume that the problem to be solved is a maximization prob-
lem. Let PT = fxT1 ; x

T
2 ; � � � ; x

T
ng be a set of chromosomes of

the generationT , wherexTi is an i-th chromosome in the popula-
tion. Let f (xTi) be the value of fitness of chromosome xTi , and
ave f (P T) and max f (P T) be the average and the maximum
values of fitness values of all chromosomes in the population
P T .

Now, we define chromosome xTi 2 PT as an elite if the fol-
lowing condition holds.

f (xTi) � ave f (PT) +

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357251589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�� (max f (PT) � ave f (PT)) (1)

where � is the elite decision factor, and in the current design of
GAA, � can be set to 0:25 or 0:5.

Next, we define the elite degree of chromosome xTi . Let
Anc(xTi ; j), (j � 1), be a set of ancestors of chromosome xTi
in the generation T � j. Let Elite(xTi ; j) � Anc(xTi ; j) be a
subset of Anc(xTi ; j) such that each chromosome in Elite(xTi ; j)
is an elite in the generation T � j. Then, the elite degree of xTi ,
denoted E deg(xTi), is defined as follows.

E deg(xTi) =

Plmax
j=1 fjElite(xTi ; j)j � �jgPlmax
j=1 fjAnc(xTi ; j)j � �jg

(2)

�(0 < � � 1) is the elite influence factor, and lmax is the
range of elite degree calculation. In the current design of GAA,
lmax is set to 4, and for each chromosome data, the number of
elite chromosomes of previous generations, i.e., jElite(xTi ; j)j,
1 � j � 4, are kept in the memory. The whole calculation
of expression (2) is realized with the table look-up. Note that,
as lmax = 4, 14 bits are required to be used as address bits of
this table look-up. The contents of the table is precomputed and
stored by the external CPU.

Crossover selection based on the elite degree will be done in
the GAA as follows. Let

E1(xTi) =

�
1 if xTi is an elite.
0 otherwise.

Assume that xTi and xTj are selected to be crossed over. Then,
let

E deg2(xTi ; x
T
j) = E deg(xTi) + E deg(xTj) +

E1(xTi) + E1(xTj) (3)

If E deg2(xTi ; x
T
j) � Tcross, then a two-point crossover op-

erator will be applied since the parents are expected to have good
schemata, and two-point crossover is less destructive than uni-
form crossover. If E deg2(xTi ; x

T
j) < Tcross, then a uniform

crossover operator will be applied to explore the solution space
more widely to find better chromosomes (solutions). We call
Tcross the elite threshold. In the GAA, Tcross is a user-defined
parameter.

Except the crossover selection, which was explained above,
the GAA implements the generation-based standard GA with the
roulette wheel selection and elitist strategy.

3. THE GAA

3.1. Overview
The Genetic Algorithm Accelerator (GAA) is an LSI implemen-
tation of a GA with adaptive selection of crossover operators ex-
plained in Section 2. To make the GAA general-purpose, eval-
uation of fitness of each chromosome is not implemented in the
GAA chip. Since the fitness function depends on the problem to
be solved, we assume that fitness evaluation will be done outside
the GAA chip, and it might be implemented on reprogrammable
FPGAs or a microprocessor.

The GAA chip can be used as a co-processor of the main CPU
of a personal computer (PC) or workstation. The GAA chip can
be connected to the local bus of a PC with a small amount of
interface logic. All computations except the fitness calculation
can be done by the GAA chip. The fitness calculation may be
performed with the CPU of the PC. Since the CPU only needs to
calculate the fitness of each chromosome, the total computation
time will be much reduced.

Table 1. Specifications of the GAA chip.

Population sizey 64, 128
Crossovery 2-point, uniform, adaptive
Generationy 512, 1024, 2048, 4096
Selection roulette selection + elitist strategy
Crossover ratey 0=256 � 255=256
Mutation ratey 0=4096 � 255=4096
Elite thresholdy 0:0 � 4:0
Elite decision factory 0:25, 0:5
Elite influence factory table look-up
]bits of an individual 64 bits
Fitness 16 bits

The GAA chip can be also used as a hardware-based GA Sys-
tem. The GAA chip with the reprogrammable hardware devices
such as FPGAs is implemented as one system. FPGAs are used
to calculate the fitness function of the given problem. The logic
of FPGAs are described with a hardware description language
such as Verilog, which will be synthesized, and loaded from the
host machine. Since all computations will be done by hardware,
computation time can be drastically reduced.

3.2. Specifications of the GAA
Specifications of the GAA chip are summarized in Table 1. In
the table, the items with y show the user programmable param-
eters.

System Memory Interface

Crossover &
Mutation

Selection

Random Number
Generator

PC Interface

Control

Fitness Evaluation
Module Interface

Average Fitness
Calculation

Population
Data

Elite Degree
Calculation
Table

Fitness
Evaluation
Module

PC

GAA Chip

System Memory

Figure 1. Overall design of the GAA.

3.3. Overall Design
Figure 1 shows the overall design of the GAA. The GAA con-
sists of three modules as follows.

(1) GAA chip.
The GAA chip is the main module of the whole system, and

performs all operations except the fitness calculation. The GAA
chip itself consists of several submodules (units), which will be
explained in detail in the next subsection.

(2) System Memory (SM).
The 32Kword static RAM is attached to the GAA chip, where

1 word = 16 bits. This memory is used to keep the information
of each chromosome. Information of each chromosome consists
of (a) code (64bits), (b) fitness value (16bits), and (c) family tree
information (15bits). The family tree information of a chromo-
some is used to calculate the elite degree. The system memory
is also used as the data table for the calculation of the elite de-
gree. Initial values of the system memory are set by the external
CPU.

(3) Fitness Evaluation Module (FEM).
Fitness of each individual will be evaluated by this module.

The FEM may be implemented on FPGAs or a CPU. Each time a
pair of chromosomes are created by the Crossover and Mutation

Unit in the GAA chip, data of chromosomes are passed to the
FEM through the FEM Interface. Since the FEM receives two
chromosome data, parallel processing of fitness evaluation may
be achieved if the FEM is designed to calculate the values of
fitness function for two data in parallel.

3.4. The GAA Chip
The GAA chip consists of the following submodules (units).

(1) Crossover and Mutation Unit (CMU).
This unit is used to mate two chromosomes with specified

crossover operators. The resultant chromosomes thus produced
will be modified with the mutation operators. Let p cross and
p mutate be the crossover and mutation rates given by the user,
and pop represent the population size. Then, (pop� p cross)=2
pairs of chromosomes are randomly selected and mated with the
user specified crossover operators. If the adaptive crossover is
specified, the GAA calculates the elite degree of each chromo-
some by accessing the System Memory to read the precomputed
value of the elite degree.

This unit runs in parallel with the external Fitness Evaluation
Module (FEM). Two newly created chromosomes after mating
are passed to the FEM. After passing the chromosome data, the
CMU continues its function. Every 149 clock cycles, the CMU
will passes the chromosome data to the external FEM. So, if
the fitness calculation in the FEM can be done in less than 149
clock cycles, the execution of the FEM is completely overlapped
with the execution of CMU, and no clock cycles dedicated to the
fitness evaluation is required.

(2) Selection Unit (SU).
The roulette wheel selection and elitist strategy are realized

in this unit. The roulette wheel selection is the procedure to re-
produce the chromosomes of a new generation. The number of
chromosomes reproduced from one chromosome depends on its
fitness value, that is, the expected number of copies of a chro-
mosome xTi is represented by f (xTi)=ave f (PT). Since the di-
vision requires a large amount of hardware resources, in the SU,
we implement the roulette wheel selection with subtraction and
comparison operations.

The GAA adopts the elitist strategy, i.e., we always keep the
best chromosome ever produced in the previous generations.

(3) Average Fitness Calculation Unit (AFCU).
The values of ave f (PT) and max f (PT) are calculated in

each generation.

(4) Random Number Generator (RNG).
Pseudorandom numbers are generated by using a cellular au-

tomaton based algorithm [8]. A random number is a 24 bit inte-
ger. The initial value can be set by the user.

(5) System Memory Interface (SMI).
The System Memory Interface provides the interface function

between the GAA chip and the System Memory. The data width
is 16 bits, and the address width is 15 bits.

(6) Fitness Evaluation Module Interface (FEMI).
This unit provides the interface function between the GAA

chip and the Fitness Evaluation Module. The interface is based
on handshaking, and any design of the FEM can be attached to
the GAA chip through the FEMI.

(7) PC Interface (PCI).
This unit provides the interface function between the GAA

chip and the PC. The PC can control the behavior of the GAA.
For example, if the PC wants to start the GAA, the PC simply
sends the GO signal. When the GAA finishes, then the DONE
signal will be sent back to the PC.

(8) Control Unit (CU).
This unit controls the overall behavior of the GAA chip.

The whole circuit was designed as a single-phase clock syn-
chronized circuit.

4. LSI IMPLEMENTATION

4.1. Chip Design
The GAA chip has been designed with the Verilog HDL, and
synthesized with the Synopsis Design Compiler. The layout de-
sign has been done with the Cadence Cell Ensemble. The chip
has been fabricated as a 4:8mm2 standard cell chip with 0:5�m
CMOS technology with two metal layers. Table 2 shows the
synthesis result of the chip. A cell in this table means a basic
gate such as AND, OR, etc., a compound gate such as AND-OR-
INV, and a latch such as D-FF. The number of pins only shows
the number of signal pins of the chip. The post layout simulation
showed that the chip will be able to run with a 50 MHz clock.
The GAA chip was realized as a 120 pin PGA. Figure 2 shows
the chip image of the GAA chip.

Table 2. Synthesis result of the GAA chip.

Number of pins 76
Number of nets 5915
Number of cells 5890
Clock frequency 50MHz

Figure 2. Chip image of the GAA chip.

Table 3. GAA v.s. GENESIS 5.0.

crossover best/gen. GAA GENESIS
2-point best 0:0 0:0

gen. 161 207
uniform best 0:0 0:0

gen. 86 184
adaptive best 0:0 0:0

gen. 82 46

4.2. Evaluation
To evaluate the GAA chip, we performed several simulation ex-
periments. First, we compared the GAA with a general-purpose
GA software, called GENESIS, which is a well-known free soft-
ware of GA package. We compared the GAA with GENESIS
by solving several benchmark test functions. Among results ob-
tained from the experiment, due to the limitation of space, we
only show the results for DeJong’s test function f3 in Table 3.
The value of optimal solution is 0:0. In the simulation, we ex-
ecuted the GAA and GENESIS in 10 times, and compared the

crossover rate

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1

ex
ec

ut
io

n
tim

e

[µs]
Ultra SPARC(170MHz)

GAA(40MHz)

Figure 3. Execution time v.s. crossover rate.

0

200

400

600

800

1000

1200

1400

ex
ec

ut
io

n
tim

e

0 10 20 30 40 50 60

clock [MHz]

fitness evaluation time 1 µsec
 5 µsec
 10 µsec

[µs]

Figure 4. Execution time v.s. clock frequency.

best results in those 10 runs as well as the average number of
generations, in which the best results were found. As a crossover
operator, we used three types of crossover operators including
the proposed adaptive one. Two other operators were 2-point
and uniform crossover operators. In the table, “best” shows the
best result in 10 runs. “gen.” shows the average number of gen-
erations to obtain best results.

From Table 3, we found that, for any case, the GAA obtained
optimal solutions. For both GAA and GENESIS, when the pro-
posed adaptive crossover operator was used, the final best solu-
tions were found in a smallest number of generations compared
with the cases with other crossover operators. From the view-
point of ability as an optimization procedure, there is no signifi-
cant difference between GAA and GENESIS. From experiments
with other test functions, the same conclusion was obtained.

Next, we show the relationship between the execution time
and the crossover rate. Execution time of the GAA as well as a
software GA depends on the crossover rate. In this experiment,
we made a software version of the GAA, whose function is the
same as the GAA, and compared it with the GAA chip. Figure 3
shows the experimental results. From this graph, we see that the
execution time depends on the crossover rate. Furthermore, the
GAA chip with 40MHz clock is 2 to 4 times faster than a 170
MHz UltraSPARC processor.

The final simulation results show the relationship between the
execution time and clock frequency. Figure 4 shows the exe-
cution time per one generation. Note that the execution time
depends on both the clock frequency and the fitness evaluation
time of the external fitness evaluation module. In this graph, we
consider the three cases. In the first case, the fitness evaluation

of one pair of chromosomes is assumed to require 1 microsec-
ond. In the second and third cases, 5 and 10 microseconds are
needed. From this graph, if the clock frequency is greater than
15 MHz, the execution time also depends on the fitness evalua-
tion time.

We also made an experimental board, on which the GAA
system was constructed, and connected with a PC. A test pro-
gram was also developed to control the GAA system as well as
to serve as an external device to compute the fitness function.
We observed that the chip was successfully working when the
clock frequency was 10 MHz. In the current design of the board,
SRAMs with the access time of 85 nanoseconds are used as Sys-
tem Memory, that determines the clock frequency of the board.
So, if we use faster SRAMs, the board may work with 20 MHz
or higher clock.

5. CONCLUSION

This paper presented an LSI implementation of an adaptive GA.
The chip was fabricated with 4.8 mm2 CMOS standard cell
technology. Test results showed that all the functions of the chip
was successfully implemented.

As future work, there are several extensions of this work.
First, more adaptive mechanisms for parameter tuning can be
incorporated into the chip. We have already proposed an adap-
tive selection method of the mutation rate of GAs. Introducing
the adaptive tuning of more parameters may improve the quali-
ties of solutions as well as reduce the computation time. Second,
more parallel processing can be introduced to the chip. For ex-
ample, to reduce the computation time, crossover and mutation
can be run in parallel for more than one pairs of chromosomes.

ACKNOWLEDGMENT

The VLSI chip in this study has been fabricated in the chip fabri-
cation program of VLSI Design and Education Center(VDEC),
the University of Tokyo with the collaboration by NTT Elec-
tronics Corporation and Dai Nippon Printing Corporation. This
research is supported in part by Grant-in-Aid for Scientific Re-
search (C) (No. 10680356) from the Ministry of Education, Sci-
ence, Sports and Culture of Japan.

REFERENCES
[1] L. Davis: “Adapting operator probabilities in genetic algorithms,”

Proc. 3rd International Conference on Genetic Algorithms, pp.61–
69 (1989).

[2] L. Davis (eds.): Handbook of Genetic Algorithms, Van Nostrand
Reinhold (1991).

[3] D. E. Goldberg: Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley Publishing Co. (1989).

[4] K. Hatta, K. Matsuda, S. Wakabayashi, and T. Koide: “On-the-
fly crossover adaptation of genetic algorithms,” Proc. IEE/IEEE
Genetic Algorithms in Engineering Systems: Innovations and Ap-
plications, pp.197–202 (1997).

[5] D. Patrick, P. Green and T. York: “A distributed genetic algorithm
environment for UNIX workstation clusters,” Proc. IEE/IEEE Ge-
netic Algorithms in Engineering Systems: Innovations and Appli-
cations, pp.69–74 (1997).

[6] M. Sano, T. Inoue and Y. Takahashi: “A design of the SIMD GA-
machine with FPGA,” IPSJ SIG Notes, 97-ARC-125-6 (1997), in
Japanese.

[7] S. D. Scott, A. Samal and S. Seth: “HGA: A hardware-based ge-
netic algorithm,” Proc. ACM/SIGDA 3rd International Symposium
on FPGA, pp.53–59 (1995).

[8] M. Serra, T. Slater, J. C. Muzi and D. M. Miller: “The analysis of
one-dimensional linear cellular automata and their aliasing prop-
erties,” IEEE Trans. CAD, 9, 7, pp.767–788 (1990).

[9] J. Stender (eds.): Parallel Genetic Algorithms: Theory and Appli-
cations, IOS Press (1993).

[10] N. Yoshida, T. Moriki and T. Yasuoka: “Design of genetic algo-
rithm VLSI using SFL,” 10th PARTHENON Workshop, pp.63–70
(1997), in Japanese.

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

