
Accuracy-Aware Uncertain Stream Databases
Tingjian Ge, Fujun Liu

Department of Computer Science
University of Kentucky

ge@cs.uky.edu, fujun.liu@uky.edu

Abstract— Previous work has introduced probability distribu-

tions as first-class components in uncertain stream database sys-
tems. A lacking element is the fact of how accurate these proba-
bility distributions are. This indeed has a profound impact on the
accuracy of query results presented to end users. While there is
some previous work that studies unreliable intermediate query
results in the tuple uncertainty model, to the best of our know-
ledge, we are the first to consider an uncertain stream database
in which accuracy is taken into consideration all the way from
the learned distributions based on raw data samples to the query
results. We perform an initial study of various components in an
accuracy-aware uncertain stream database system, including the
representation of accuracy information and how to obtain query
results’ accuracy. In addition, we propose novel predicates based
on hypothesis testing for decision-making using data with limited
accuracy. We augment our study with a comprehensive set of
experimental evaluations.

I. INTRODUCTION

Recent research has extended stream databases to handle
uncertain data in order to meet the requirements from ever-
increasing applications in sensor networks and ubiquitous
computing (e.g., [19]). Handling probabilistic and uncertain
data has been identified as one of the most important research
directions in this research field [1]. Most previous work in
probabilistic databases assumes that probability distributions
are somehow obtained, and that we have “good” knowledge
about the distributions. However, in reality, this is often not
the case.

Where do we obtain the probabilities in the first place? In
many applications, probability distributions are learned from
observations and measurements, a.k.a. samples. Such applica-
tions include sensor networks, ubiquitous computing, and
scientific databases. Let us look at an example.

Example 1 (accuracy of learned probability distributions).
A few projects in both academia and industry (e.g., the CarTel
project at MIT [24] and a product at INRIX [26]) provide traf-
fic-aware routing and traffic mitigation. The basic idea is to
use sensors (including GPS, WiFi) installed in traveling ve-
hicles to measure real-time traffic delays on various roads in
order to provide dynamic, accurate, and real-time traffic
routing for travelers. Such a system uses the travel delays re-
ported in a recent time window to infer the probability distri-
bution of current delay at a road. Due to random factors, the
best we can get is a distribution. In general, the more reports
the system receives for a road, the more accurate the resulting
distribution is. However, this number is constrained by how

many test vehicles in the network are traveling on that par-
ticular road within the current time window. Figure 1 shows a
snippet of the raw data that contains three observations for
road 19 and fifty observations for road 20.

For each of the two roads in Example 1, the database sys-
tem can learn the distributions of Delay attribute (around time
8:50) using machine learning techniques, ranging from simple
ones such as histograms to complex ones such as kernel me-
thods, maximum likelihood, and kNN [2]. By doing this, a
stream database system transforms the three (fifty, respective-
ly) raw records of road 19 (20) into a single record with a dis-
tribution in the Delay field. Assuming that these fifty-three
observations are equally trustworthy, clearly we can obtain a
more accurate and reliable distribution for road 20 than for
road 19.

This issue of variable accuracy of probability distributions
is a prominent issue in stream databases, where a timely deci-
sion based on query processing must be made. To the best of
our knowledge, previous work in this area does not try to dif-
ferentiate two random variables (r.v.) in a stream database
whose probability distributions have distinct levels of accura-
cy; simply modeling an r.v. with a probability distribution
lacks this accuracy information.

In previous work, once a distribution is learned, its accura-
cy information is lost. The consequence of being accuracy-
oblivious is that, in the end, the query results would also be
accuracy-oblivious. Thus, the end user has no clue about how
accurate or reliable the query results that she gets. For exam-
ple, based on the raw data in Figure 1, we generate one record
for road 19 that contains a histogram distribution for the Delay
attribute, and likewise one record for road 20. Consider a
query “SELECT Road_ID FROM t WHERE Delay >2/3 50”,

Segment_ID Length Date Time Delay Speed limit

19

19

19

20

20

…
…

…

50 observations

200

200

200

150

150

2010-06-25 8:50

2010-06-25

2010-06-25

2010-06-25

2010-06-25

8:51

8:51

8:49

8:51

56

38

97

72

59

25

25

25

30

30

Road ID

Fig. 1 Original raw data samples from which probability distributions are
learned and used in query processing for uncertain streams

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357251231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2 Confidence intervals for (a) bin probabilities of histograms, and (b)
 parameters of an arbitrary form of PDF ࣌ ,ࣆ

in which the predicate denotes that, with probability at least
2/3, Delay is greater than 50. Based on their histograms, the
system may determine that both roads have probability 2/3
being greater than 50; thus both satisfy the predicate. Howev-
er, it is clear that the distribution of road 19 is more likely to
be less accurate, and consequently, the decision on road 19 is
less reliable than that on road 20. Hence, query results can
easily have false positives or false negatives without the
awareness of users.

In general, there are mainly two possible reasons for which
we get inaccurate distributions: (1) there are time constraints,
e.g., the observations of an r.v. (i.e., samples) from which we
learn a distribution are not produced fast enough for the que-
ries to be answered in time; or (2) the observations are expen-
sive to get (e.g., some experimental data in scientific applica-
tions).

Reason (1) applies to Example 1. The time constraints are
that we have to get fresh data (as traffic condition is highly
variable) and that we have to provide a timely answer for the
query. This issue is common for sensor network and ubiquit-
ous computing applications because of the limitations of the
devices (e.g., power or location), because of the communica-
tion costs, and because of the time requirements on query re-
sults.

Our Contributions. We propose that an uncertain stream
database should be accuracy-aware. Specifically, when a ran-
dom variable (i.e., a distribution) appears in a query result
(e.g., a probabilistic field in the SELECT list), the system also
returns its accuracy information in the form of confidence in-
tervals [11] of selected parameters of the distribution. In par-
ticular, for a histogram distribution, the probability of each bin
becomes a confidence interval, instead of a fixed value. For
other distributions such as Gaussian, the accuracy is embodied
as a confidence interval on the mean value and a confidence
interval on the variance. This is illustrated in Figure 2, where
each interval indicated by a double arrow is a 95% confidence
interval of the respective parameter.

Clearly, the smaller an interval is, the more accurate the

query result is. This gives a user a certain degree of confi-
dence on the results. A user may use such accuracy informa-
tion in a number of ways. For example, suppose the histogram
distribution in Figure 2(a) is a temperature field in the result.
Based on this result, the user can estimate the probability in-
terval that the temperature is greater than 80 degrees. Similar-
ly, she may also estimate the probability that the expectation is

greater than 70 based on the interval of ߤ, etc. Clearly, such
query results give a more complete picture of the state of the
acquired data than the distributions alone. In fact, this enables
online computation. When the intervals are sufficiently narrow
to make a decision with enough confidence, we can stop ac-
quiring raw data/samples, which is a slow or expensive
process, as in Example 1.

We provide two ways to obtain the accuracy information:
the analytical method and the bootstrap method from statistics
[7, 5]. An analytical method has the advantage of little compu-
tational overhead, while a bootstrap method has the advantage
of better accuracy for skewed distributions. For each of these
two methods, we describe how to get query results’ accuracy
information, in which the confidence intervals can be either
for random variable fields in a result tuple or for a result
tuple’s probability of being in the result set.

Finally, to aid decision making when the data is probability
distributions with limited accuracy, we propose a new type of
predicate – called a significance predicate – that is based on
the concept of hypothesis testing in statistics [15]. In addition,
we devise an algorithm called COUPLED-TESTS to control
both false positive and false negative error rates in making
decisions based on significance predicates. In summary, our
contributions include:

 Defining and developing the concept of accuracy-
aware uncertain stream databases.

 Proposing analytical methods to get accuracy informa-
tion for query results.

 Devising bootstrap methods to obtain accuracy infor-
mation.

 Proposing a new type of predicate, called significance
predicate, for decision making and a COUPLED-
TESTS algorithm to control error rates.

 Evaluating our work with a comprehensive set of expe-
riments on both real and synthetic datasets.

The remainder of the paper is organized as follows. In Sec-
tion II, we present the form of the accuracy information that
we propose, followed by the analytical methods to obtain the
accuracy information. We then devise an alternative method
based on bootstraps to get accuracy information in Section III.
In Section IV, we show the novel predicate for decision mak-
ing using probability distributions with limited accuracy. We
then perform extensive experiments in Section V. Finally, we
discuss related work in Section VI, and conclude in Section
VII.

II. ANALYTICAL METHODS

A. Some Background

We briefly survey some background knowledge in order for
the readers to better understand the paper.

Probabilistic data. We consider the general setting of an
uncertain stream database where both tuple uncertainty and
attribute uncertainty [18] may be present (it is also possible
that the system has only one of them, as a special case). Let an
uncertain stream database contains tuples {Ti} (݅ ൒ 1). A tuple

80
value

probability

value

probability

μ

σ

(a) (b)

Ti has a membership probability pi, which is the probability
that the tuple exists in the stream.

A tuple Ti has a set of attributes {Aj} (1 ≤ j ≤ a). An attribute
Aj of a tuple, in general, is a probability distribution, either
continuous (e.g., Gaussians and histograms) or discrete. The
distribution can be a single value with probability 1, in which
case it is a traditional deterministic field.

As in previous work, following the possible world seman-
tics [4], a SELECT query issued on a probabilistic database
returns a result set with the same structures as formulated
above (i.e., tuple uncertainty and attribute uncertainty). For
example, consider this query: SELECT ObjectID, Speed
FROM stream WHERE Speed > 78 in which each field of the
Speed attribute is a distribution (i.e., attribute uncertainty in
the source data). Now, the result has tuple uncertainty be-
cause a tuple may have a probability between 0 and 1 to be in
the result. The result also has attribute uncertainty because
Speed is selected.

Confidence intervals and samples. We often need to esti-
mate a parameter (e.g., mean) of a random variable. For that
we calculate two numbers that define an interval that will en-
close the estimated parameter with a high degree of confi-
dence. The resulting random interval is called a confidence
interval, and the probability that it contains the estimated pa-
rameter is called its confidence coefficient (or confidence lev-
el) [11]. For instance, if a confidence interval has a confidence
coefficient equal to .95, we call it a 95% confidence interval.
One often uses random samples of a random variable to obtain
a confidence interval of a parameter. We use the following
definition.

Definition 1 (sample, observation, statistic) [11]. The ran-
dom variables X1, …, Xn constitute a random sample on a
random variable X if they are independent and each has the
same distribution as X. We will abbreviate this by saying that
X1, …, Xn are iid; i.e., independent and identically distributed.
We say that the sample size is n, and call an instance of each
Xi (1 ≤ i ≤ n) an observation. Any function T = T(X1, …, Xn) of
the sample is called a statistic. The probability distribution of
a statistic is called its sampling distribution.

For instance, sample mean (തܺ ൌ
ଵ

௡
∑ ௜ܺ
௡
௜ୀଵ) and standard

deviation are both statistics. The probability distribution of the
mean over all samples of size n is the sampling distribution of
mean.

B. Accuracy Information

We first extend the basic probabilistic stream database
model to include accuracy information. Informally speaking,
we measure and represent accuracy by giving confidence in-
tervals for some key parameters of a distribution. We have
seen wide adoption of histogram representation of probability
distributions in both the learning and the query processing
phases due to its generality [2, 18, 12, 8]. Thus, we discuss the
accuracy information specific to histograms, that for all distri-
butions in general, and that for tuple probability (e.g., in a
query result).

Histogram distributions. Recall that a histogram distribution
has the form ሼሺܾ௜, ௜ሻ | 1݌ ൑ ݅ ൑ ܾሽ, denoting that the probabil-
ity of bucket ܾ௜ (which is a set of values) is ݌௜. We generalize
this representation to be ሼሺܾ௜, ,௜ଵ݌ ,௜ଶ݌ ܿ௜ሻ| 1 ൑ ݅ ൑ ܾሽ, denoting
that with confidence (i.e., probability) at least ܿ௜ (e.g., 95%),
the true probability of ܾ௜ is in the interval ሾ݌௜ଵ, ,௜ଶሿ. That is݌
we extend the parameter ݌௜, a statistic which we call a bin
height, from a fixed value to a confidence interval. Note that
the intervals only describe the marginal distributions of bin
heights. There is correlation among them, but we do not need
to consider it in this work; conceptually, there is an implicit
normalization step in the end which ensures that the sum of
bin heights is 1.

All distributions. For an arbitrary distribution, we extend the
parameters ߤ (expectation) and ߪଶ (variance) to confidence
intervals ሺߤଵ, ,ଶߤ ܿఓሻ and ሺߪଵ

ଶ, ଶߪ
ଶ, ܿఙሻ. They denote that with

confidence at least ܿఓ (ܿఙ, respectively) the true ߤ ሺߪଶሻ is be-
tween ߤଵ ሺߪଵ

ଶሻ and ߤଶ ሺߪଶ
ଶሻ. Clearly, such accuracy informa-

tion applies to histogram distributions too, although we typi-
cally use more specific accuracy information (i.e., confidence
intervals on bin heights) for histograms.

The two forms of intervals and their usage are illustrated in
Figure 2 and the paragraph thereafter in Section I.

Tuple probability. Finally, a result tuple’s membership prob-
ability ݌ can be considered as a one-bin histogram, in which
the bin probability is the tuple probability. Hence we can get
its confidence interval ሺ݌ଵ, .ଶሻ with confidence level ܿ as well݌
Implicitly, there is a second bin for this binary random varia-
ble (for the case that the tuple does not exist), but we do not
need to consider it.

The following two lemmas are used in our analytical me-
thods.

Lemma 1. Suppose a histogram distribution ሼሺܾ௜, ௜ሻ | 1݌ ൑
݅ ൑ ܾሽ is learned from a sample of size ݊. Then the accuracy
of the distribution is represented by the following ܾ confidence
intervals (one for each bin): ሼሺܾ௜, ,௜ଵ݌ ,௜ଶ݌ ܿ௜ሻ| 1 ൑ ݅ ൑ ܾሽ,
where ݌௜ଵ and ݌௜ଶ are as follows. If ݊݌௜ ൒ 4 and ݊ሺ1 െ ௜ሻ݌ ൒
4, then ݌௜ଵ and ݌௜ଶ are:

௜݌ േ ሺଵି௖೔ሻ/ଶටݖ
௣೔ሺଵି௣೔ሻ

௡
 (1)

Otherwise, they are:

2
(1) / 2

2

(1)21
(1) / 2 (1) / 22 4

21
(1) / 21

ci i i

i i

i

zp p
i c cn n n

cn

p z z

z


 



  


 (2)

Here ݖሺଵି௖೔ሻ/ଶ is the upper ሺ1 െ ܿ௜ሻ/2 percentile of the stan-
dard normal distribution.

Proof: Consider a single bucket i (1 ≤ i ≤ b). The number of
observations that fall in this bucket follows a binomial distri-
bution B(n, pi’), where pi’ is the true probability of bucket bi.
We can then use the estimation of population proportion [15].
When npi ≥ 4 and n(1−pi) ≥ 4, the approximation of this distri-
bution to a normal distribution is valid and we can deduce the

confidence interval as in (1). Otherwise, we can use the Wil-
son score interval [22] instead, giving (2). □

Example 2 (accuracy of histogram distributions). Suppose
we have a sample of size n = 20 and four buckets of a histo-
gram, each of which has 3, 4, 8, and 5 observations in it, re-
spectively. Thus, p1 = 0.15, p2 = 0.2, p3 = 0.4, and p4 = 0.25.
We set ci = 0.9 (i.e., 90% confidence) for all i’s. Since np1 = 3
< 4, we use (2) and get the probability interval for the first
bucket as (0.062, 0.322). For the second bucket, we get

0.2 േ ଴.଴ହටݖ
଴.ଶൈ଴.଼

ଶ଴
ൌ 0.2 േ 1.645 ൈ 0.089 ൌ 0.2 േ 0.15 by

using (1) since np2 = 4 ≥ 4, which gives an interval (0.05,
0.35). In the same manner, we get (0.22, 0.58) for the third
bucket and (0.09, 0.41) for the fourth bucket.

Lemma 1 indicates that the length of the intervals is (rough-
ly) inversely proportional to the square root of sample size. As
the system collects more observations, the accuracy of distri-
butions improves.

From the confidence interval estimation of mean and va-
riance based on samples [11], we have:

Lemma 2 [11]. Consider an arbitrary distribution that is
learned from a sample of size n. Let ݕത and ݏ be the sample
mean and standard deviation, respectively. Then, when n <
30, we have:

ଵߤ ൌ തݕ െ ሺଵି௖ഋሻ/ଶݐ ∙
௦

√௡
ଶߤ , ൌ തݕ ൅ ሺଵି௖ഋሻ/ଶݐ ∙

௦

√௡
 (3)

where ݐሺଵି௖ഋሻ/ଶ is based on a Student’s t distribution with

(n−1) degrees of freedom and is the upper ሺ1 െ ܿఓሻ/2 percen-
tile of this distribution. When n ≥ 30, we have:

ଵߤ ൌ തݕ െ ሺଵି௖ഋሻ/ଶݖ ∙
௦

√௡
ଶߤ , ൌ തݕ ൅ ሺଵି௖ഋሻ/ଶݖ ∙

௦

√௡
 (4)

For any n, we further have:

ଵߪ
ଶ ൌ

ሺ௡ିଵሻ௦మ

ఞሺభష೎഑ሻ/మ
మ ଶߪ ,

ଶ ൌ
ሺ௡ିଵሻ௦మ

ఞሺభశ೎഑ሻ/మ
మ (5)

where ߯ሺଵି௖഑ሻ/ଶ
ଶ and ߯ሺଵା௖഑ሻ/ଶ

ଶ are values of ߯ଶ that locate an
area of ሺ1 െ ܿఙሻ/2 to the right and ሺ1 െ ܿఙሻ/2 to the left,
respectively, of a chi-square distribution with (n−1) degrees of
freedom.

Note that for very skewed distributions (i.e., far from nor-
mal distributions), the intervals given by (3) and (5) will be
less accurate than our alternative method of using bootstraps
(Section III), which we will evaluate in the experiments (Sec-
tion V).

Another remark is that the results of Lemmas 1 and 2 are
consistent with the intuition that a result distribution with a
greater variance requires a larger sample size for it to be
equally “accurate” as one with smaller variance. For instance,
in Lemma 2, Equations (3), (4), and (5) all have ݏ (sample
standard deviation) as a factor of the interval length; for the
same sample size, the distribution with a greater variance
tends to have a greater ݏ, thus longer intervals.

Example 3 (accuracy information for all distributions).
Suppose we have 10 iid observations of the current traffic de-
lay of a road: 71, 56, 82, 74, 69, 77, 65, 78, 59, and 80. Then

തݕ ൌ 71.1, ݏ ൌ 8.85. We look at 90% confidence intervals (i.e.,
ܿఓ ൌ ܿఙ ൌ 0.9). Since ݊ ൌ 10 ൏ 30, from (3), we have μ1
=71.1 − t0.05(8.85/3.16). With 9 degrees of freedom, t0.05 =
1.833, which gives μ1 = 65.97. Similarly, μ2 = 76.23. For the
variance, we have σ1

2 = 9×78.32/16.919 = 41.66 and σ2
2 =

211.99.

C. Query Result Accuracy

While Lemmas 1 and 2 provide us accuracy of source data,
our goal is to provide users with accuracy of query results. We
first provide some insights on how the sample sizes of input
r.v.’s (i.e., source data) translate to the effective sample size of
an output r.v. (i.e., query result). This has a profound impact
on the accuracy of result distribution.

Definition 2 (de facto sample). Consider an r.v. Y in query
result. Let ܻ ൌ ݂ሺ ଵܺ, … , ܺௗሻ where ଵܺ, … , ܺௗ are input r.v.’s
in source data, i.e., Y depends on ଵܺ, … , ܺௗ only. Let ݋ଵ,… , ௗ݋
be the observations for ଵܺ, … , ܺௗ, respectively. We call
݂ሺ݋ଵ,… , -ௗሻ a de facto observation (or, in short, a d.f. obser݋
vation) of Y. A maximum set of independent de facto observa-
tions of Y form a de facto sample (or, in short, a d.f. sample)
of Y.

D.f. observations and d.f. samples for query results are ana-
logous to observations and samples for source data. In es-
sence, a d.f. observation is an instance that we could truly ob-
serve if the output r.v. were directly observable.

Lemma 3. For an output r.v. ܻ ൌ ݂ሺ ଵܺ, … , ܺௗሻ where
ଵܺ, … , ܺௗ are input r.v.’s as in Definition 2, the d.f. sample

size of Y is ݊ ൌ minଵஸ௜ஸௗ ݊௜ , where ݊௜ is the sample size of
௜ܺ ሺ1 ൑ ݅ ൑ ݀ሻ.

Proof: Suppose Xj (1 ≤ j ≤ d) has the fewest number of obser-
vations among the d input r.v.’s, i.e., ௝݊ ൌ minଵஸ௜ஸௗ ݊௜. First, n
is at most nj. This is because two independent d.f. observations
of Y cannot use the same observation of Xj; otherwise they
would be dependent. Since there are only nj observations of Xj,
there cannot be more than nj independent d.f. observations of
Y.

Secondly, n is at least nj. This is because each time we take
a distinct observation oi from each of the Xi’s (1 ≤ i ≤ d) and
apply function f, we obtain a d.f. observation of Y. In total, we
have nj such d.f. observations and they are independent be-
cause they use independent observations of Xi’s. Thus, n is at
least nj. Combining the two parts, we have n = nj. □

Note that a result tuple’s probability is determined by a
boolean r.v. ܻ indicating whether the tuple exists in the result,
and the ݂ function in Definition 2 is a boolean function.

Example 4. Let us look at a simple example. Consider the
following query:

SELECT (A+B)/2 FROM S WHERE C > 80

For a tuple ݐ in the result, suppose the A, B, and C attributes
have sample sizes 15, 10, and 20, respectively. Then, for the
field ଵܻ ൌ ሺܣ ൅ ሻ/2 in the result, its d.f. sample size isܤ

Fig. 3 Illustrating bootstrap resamples

min ሺ15, 10ሻ ൌ 10. This result tuple ݐ also has a probability
that exists in the result, as determined by a boolean r.v.:

 ଶܻ ൌ ሼ
ܥ ݂݅ ,݁ݑݎݐ ൐ 80
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ݋

.

That is, ଶܻ is a function on ܥ only, and hence its d.f. sample
size is 20.

Based on Lemmas 1 and 2, we immediately have the fol-
lowing theorem in place:

Theorem 1. Let ࣞ denote the distribution of a probabilistic
field ܻ in a query result tuple as obtained by query processing
over input source data. If ࣞ is a histogram distribution (an
arbitrary distribution, respectively), then Lemma 1 (Lemma 2,
respectively) determines its accuracy information, where we
use the d.f. sample size of ܻ as the ݊ value, and use the mean
and standard deviation of ࣞ as ݕത and ݏ, respectively. In addi-
tion, the accuracy of a result tuple probability is based on
Lemma 1 by treating it as a one-bin histogram, where the bin
probability is the result tuple probability.

The d.f. sample size required by Theorem 1 is obtained us-
ing Lemma 3. An example follows.

Example 5. Let us continue on Example 4. Suppose for the
same result tuple in Example 4, the distribution that we have
learned for C based on its sample of size 20 informs us that
Prሾܥ ൐ 80ሿ ൌ 0.6. Then, Theorem 1 shows that we can use
Lemma 1 by treating the boolean r.v. in Example 4 as a one-
bin histogram in which the bin probability is 0.6. Thus, based
on Lemma 1, a 90% confidence interval of the tuple probabili-

ty is: 0.6 േ ଴.଴ହටݖ
଴.଺ൈ଴.ସ

ଶ଴
ൌ 0.6 േ 0.18, i.e., ሾ0.42, 0.78ሿ. Simi-

larly, we can compute the accuracy of the field (A+B)/2.

Since any output random variable in a query result can be
expressed as a function of input random variables in source
data, Theorem 1 gives us an analytical method to calculate
accuracy information of each random variable in a query re-
sult, including a probability distribution in a field and tuple
probability.

III. BOOTSTRAP METHODS

A bootstrap [7, 5] is a statistical technique that has the ad-
vantage of being widely applicable, and it is often more accu-
rate than analytical method which are frequently based on
assumptions of the underlying distributions. A bootstrap in-
volves a little extra computation; but the recent fast advance-
ment in processors (including multi-cores) and cluster/cloud
computing has increased computing power tremendously,
which makes the bootstrap a very useful technique. In this
section, we devise an algorithm that uses bootstraps to obtain
the accuracy information which we have proposed in the pre-
vious section. In the experiments (Section V), we actually find
that our algorithm not only gives tighter confidence intervals
than analytical methods, but it also incurs little extra computa-
tional overhead. We start with some background on bootstraps
for the reader to understand our algorithm better.

A. Bootstraps

In statistics, the bootstrap (a.k.a. resampling) is a way of
finding the sampling distribution from just one sample [7, 5].
There are two steps:

(1) Resampling. Create many resamples by repeatedly
sampling with replacement from one random sample. Suppose
the sample is of size n. A resample is created by drawing an
observation (with replacement) uniformly at random from the
n observations of the sample, and repeating this process n
times. Thus, the resample also has size n.

(2) Bootstrap distribution. Over the many resamples
created in (1), we compute the distribution of the statistic in
question. This is called the bootstrap distribution. It is shown
that a bootstrap distribution has approximately the same shape
and spread as the sampling distribution, but it may be biased
(its center is based on the original one sample). Thus, we can
use the bootstrap distribution to derive a confidence interval
for the statistic, instead of using the sampling distribution.

Example 6. We illustrate resampling in Figure 3. This exam-
ple comes from [16] and is based on real-world data (Veri-
zon’s repair times). The box on the top contains an original
(true) sample of size 6 (i.e., 6 observations). Each of the three
boxes at the bottom is a resample (sampling from the top box).
Some values from the original are repeated in the resamples
because each resample is formed by sampling with replace-
ment. Each resample is also of size 6. We calculate the statis-
tic of interest—the sample mean in this example—for the orig-
inal sample and each resample. The means in the resamples
give the bootstrap distribution, while the mean in the original
sample follows a sampling distribution. The bootstrap distri-
bution has approximately the same shape and spread as the
sampling distribution, but has a biased center.

B. Using Bootstraps to Get Accuracy Information

Querying processing algorithms on uncertain streams can
have two categories:
 The ones that are based on Monte Carlo algorithms us-

ing samples (e.g., [13]);
 Others that do not use samples, but directly operate on

probability distributions (e.g., using Gaussian Mixture
Models [19]).

For the first category, the query processing algorithm al-
ready provides a sequence of values for an output random va-
riable. For the second category, we directly get a distribution
for a random variable in query result; thus we sample from

3.12 0 1.57 19.67 0.22 2.20

mean = 4.46

one original sample

0 2.20 2.20 2.20 19.67 1.57

mean = 4.64

1.57 0.22 19.67 0 0.22 3.12

mean = 4.13

0.22 3.12 1.57 3.12 2.20 0.22

mean = 1.74

resample 1 resample 2 resample 3

this distribution and also get a sequence of values. In both
cases, our bootstrap method will operate on this sequence of
values and obtain accuracy information for the probability
distribution of the output random variable – confidence inter-
vals of selected parameters, namely bin heights, ߤ, and ߪଶ.
The algorithm is shown below.

Algorithm BOOTSTRAP-ACCURACY-INFO ሺݒሾ∙ሿ, ݊, ሻߙ

Input: ሼݒሾ݅ሿ | 0 ൑ ݅ ൑ ݉ െ 1ሽ: a sequence of values of an out-
put random variable ܻ as a result of query processing;

 ݊: the d.f. sample size of ܻ;
 confidence level of the intervals :ߙ

Output: accuracy information of ܻ

ݎ :1 ← ቔ
௠

௡
ቕ // number of d.f. resamples

2: for each ݅ ← ݎ ݋ݐ 0 െ 1 do // each resample

3: for each ݆ ← ݊ ݋ݐ 0 െ 1 do
ሾ݆ሿ݋ :4 ← ሾ݅ݒ ∙ ݊ ൅ ݆ሿ // n observations
5: end for
6: for each ݇ ← do // for each bin in histogram ܾ ݋ݐ 1

௞ሾ݅ሿ݌ :7 ←
|ሼ௢ሾ௝ሿ|௢ሾ௝ሿ∈௕ೖሽ|

௡
 // frequency of bin k

8: end for

തሾ݅ሿݕ :9 ←
ଵ

௡
∙ ∑ ሾ݆ሿ௡ିଵ݋

௝ୀ଴ // sample mean

ଶሾ݅ሿݏ :10 ←
ଵ

௡ିଵ
∙ ∑ ሺ݋ሾ݆ሿ െ തሾ݅ሿሻଶ௡ିଵݕ

௝ୀ଴ //sample variance

11: end for
12: for each ݇ ← do // for each bin in histogram ܾ ݋ݐ 1
13: output the ߙ interval within ሼ݌௞ሾ݅ሿ | 0 ൑ ݅ ൑ ݎ െ 1ሽ

 based on percentiles
14: end for
15: output the ߙ intervals within ሼݕതሾ݅ሿ | 0 ൑ ݅ ൑ ݎ െ 1ሽ and

ሼݏଶሾ݅ሿ | 0 ൑ ݅ ൑ ݎ െ 1ሽ, respectively, based on percentiles

In line 1 of the BOOTSTRAP-ACCURACY-INFO algo-
rithm, we start with grouping the ݉ values of ܻ into ݎ groups,
each of which has ݊ (d.f. sample size) values (݉ is sufficiently
large so that the confidence intervals as output by the algo-
rithm converge). Thus, each group is a d.f. resample. For
completeness, the algorithm computes the intervals for both
histogram and arbitrary distributions; but in reality one only
needs the confidence intervals specific to the distribution type.
Lines 6 to 10 calculate the statistics (bin heights, mean ݕത and
variance ݏଶ) within each resample. Then, over all ݎ resamples,
we have a distribution for each of these statistics, which is the
sampling distribution (Definition 1). Finally, we obtain the ߙ
intervals (i.e., between 100ሺ1 െ ሻ/2 and 100ሺ1ߙ ൅ -ሻ/2 perߙ
centiles) for each bin height, ݕത and ݏଶ (lines 12 to 15). Let us
look at an example.

Example 7. Suppose ݊ ൌ 15 and ݉ ൌ 300, giving ݎ ൌ 20 in
line 1. Thus, the BOOTSTRAP-ACCURACY-INFO algorithm
works with 20 d.f. resamples, each having size 15. For each
statistic in question (i.e., a bin height, mean, or variance), we
calculate a value for each d.f. resample, and these values form
a sampling distribution over all 20 d.f. resamples. For in-
stance, consider how we get accuracy information for ߤ

(mean). In line 9, we calculate the sample mean, one for each
of the 20 d.f. resamples. The sample mean of a resample
,തሾ݅ሿݕ) 0 ൑ ݅ ൑ 19) is the average of the 15 values within the
resample. These 20 values (ݕതሾ݅ሿ, 0 ൑ ݅ ൑ 19) form a distribu-
tion ࣞ. Suppose the input parameter ߙ ൌ 0.9 (confidence lev-
el). Then we get two estimated values ߤଵ and ߤଶ from ࣞ such
that the area (i.e., probability) to the left (right, respectively)

of ߤଵ (ߤଶ, respectively) is
ଵିఈ

ଶ
ൌ 0.05. Then, the 90% confi-

dence interval for ߤ returned by the algorithm is ሾߤଵ, ଶሿ. Theߤ
confidence intervals for each bin height and variance are cal-
culated similarly.

Based on Lemma 4 below, the Theorem 2 that follows es-
tablishes the correctness of our bootstrap algorithm.

Lemma 4. As in Definition 2, let ܻ ൌ ݂ሺ ଵܺ, … , ܺௗሻ, where
ଵܺ, … , ܺௗ are input r.v.’s, and are arranged in an order such

that ݊ଵ ൑ ݊ଶ ൑ ⋯ ൑ ݊ௗ. Here ݊௜ denotes the sample size of
௜ܺ ሺ1 ൑ ݅ ൑ ݀ሻ. Let ݊ be the d.f. sample size of ܻ. Then ܻ has
ܿ ൌ ∏

௡೔!

ሺ௡೔ି௡ሻ!

ௗ
௜ୀଶ d.f. samples, each of which has size ݊.

Proof: From Lemma 3, we have ݊ ൌ ݊ଵ. Now we take the
vector of all ݊ observations from the sample of ଵܺ, and take a
vector (i.e., a permutation) of n observations from each of
ܺଶ,… , ܺௗ’s samples, we get a matrix M of input values with n
rows and d columns. If we execute the query n times, using a
row of M each time for the d input fields, we get n iid d.f. ob-
servations of Y, which form a d.f. sample of Y. Because the n
input rows are iid, so are the d.f. observations of Y. It is then
clear that all together there are:

ܿ ൌෑ ܲሺ݊௜, ݊ሻ
ௗ

௜ୀଶ
ൌෑ

݊௜!

ሺ݊௜ െ ݊ሻ!

ௗ

௜ୀଶ

matrixes like M, as we are taking permutations from all but the
first input field. Thus, there are c d.f. samples in total, each of
which has size n. □

Theorem 2. Algorithm BOOTSTRAP-ACCURACY-INFO re-
turns correct confidence intervals.

Proof: The sequence of values of the output random variable
that are fed into the BOOTSTRAP-ACCURACY-INFO algo-
rithm can be considered as d.f. resamples based on the ܿ d.f.
samples as shown in Lemma 4. Thus, BOOTSTRAP-
ACCURACY-INFO is a concurrent bootstrap from all c d.f.
samples. Therefore, this bootstrap produces a probability dis-
tribution of a statistic (i.e., a bin height, or the mean/variance)
that is a mixture distribution of multiple simple bootstrap dis-
tributions, each of which is based on a single d.f. sample.
Bootstrapping from multiple samples is also an effective and
valid method to obtain confidence intervals as rigorously stu-
died in statistics (e.g., [7]). Informally, the intuition is that the
biases of simple bootstrap distributions are somewhat canceled
out through mixing them together while the percentile confi-
dence interval of the mixture distribution is at least as wide as
that of a single simple bootstrap distribution. □

In Section V, using both real and synthetic datasets, we eva-
luate the quality of the obtained confidence intervals.

IV. SIGNIFICANCE PREDICATES

When a stream database system is aware of the accuracy of
the probability distributions that it learned from the environ-
ment, decision making using these distributions must also be
based on this accuracy information. In database applications,
decision making is through predicates. Unfortunately, none of
the existing predicates in SQL or previously proposed proba-
bilistic database systems considers the accuracy information.

In this section, we propose a novel type of predicate just for
this purpose. The new type of predicate determines whether
the truth of a statement about a probability distribution in the
system is statistically significant (i.e., above a significance
level), thus having the name significance predicates. The truth
of a statement is statistically significant if it is unlikely to have
occurred by chance alone. Significance predicates are based
on the concept of hypothesis testing in statistics, which will be
briefly surveyed next.

A. Background on Hypothesis Testing

We can make decisions about the truth or falsity of some
statement about the parameters by hypothesis testing. Hypo-
thesis testing consists of four elements [15]:
 null hypothesis, H0, about one or more population pa-

rameters,
 alternative hypothesis, H1, that we will accept if we de-

cide to reject H0,
 test statistic, computed from sample data, and
 rejection region, indicating the values of the test statis-

tic that will imply rejection of the null hypothesis.

The rejection region is usually based on a pre-determined
significance level ߙ, such that the false positive rate (i.e., ac-
cepting ܪଵ when actually ܪ଴ is true) is below ߙ.

B. Basic Significance Predicates in Our System

Let us first look at a motivating example.

Example 8. Consider two random variable fields X and Y of
the attribute “temperature” of a stream. X’s distribution is
learned from a raw sample of size 5: {82, 86, 105, 110, 119}.
Suppose Y’s distribution has the same mean, and is learned
from a raw sample of a much larger size, 100, among which
40 observations are below the value 100 and 60 observations
are above.

Now consider two predicates P1 and P2. P1 is a probability
threshold predicate [3]: temperature >0.5 100, requiring that
with probability at least 0.5, temperature is greater than 100.
Since X and Y’s distributions learned by the database should
be faithful to their raw samples, they both have a probability
of about 0.6 being greater than 100. Thus they both satisfy P1.
P2 is E(temperature) > 97, where E(·) denotes the expectation
of a random variable. Similarly, X and Y both satisfy P2.

The predicate results in Example 8 clearly overlook the fact
that an inference based on the X’s distribution and that based
on Y’s distribution have very different confidence levels. We
have much more confidence on the result based on Y’s distri-
butions than on X’s distribution, which is learned through a

sample of only five observations – the predicate result is more
likely to be by chance.

We propose to add three most common significance predi-
cates into an uncertain stream database system as built-in
functions. They are described as follows.
 ࢚࢙ࢋࢀ࢓. Its syntax is:

,ሺܺݐݏ݁ܶ݉ ݈݊ܽ݁݋݋ܾ ,݌݋ ܿ, ሻߙ
where ܺ is a probabilistic field, ݌݋ is an operator, ܿ is a
constant, and ߙ is the significance level (Sec. IV-A).
-is short for mean test. It determines the relation ݐݏ݁ܶ݉
ship between the mean of ܺ and a constant. In the hypo-
thesis testing [15], the null hypothesis H0 is: E(X) = c, i.e.,
the expectation of X is c, and the alternative hypothesis H1
is: E(X) op c, where op is one of “<”, “>”, and “<>”.

 ࢚࢙ࢋࢀࢊ࢓. Its syntax is:
,ሺܺݐݏ݁ܶ݀݉ ݈݊ܽ݁݋݋ܾ ܻ, ,݌݋ ܿ, ሻߙ
where X and Y are two probabilistic fields whose means
are to be tested, and op, c, and α are the same as
in ݉ܶ݁ݐݏ݁ܶ݀݉ .ݐݏ is short for mean difference test. It de-
termines the relationship between the means of two fields.
The null hypothesis H0 is: E(X) − E(Y) = c, while the al-
ternative hypothesis H1 is: E(X) − E(Y) op c, where op is
one of “<”, “>”, and “<>”. The most common usage is
ܿ ൌ 0, which just compares E(X) with E(Y).

 ࢚࢙ࢋࢀ࢖. Its syntax is:
,݀݁ݎ݌ሺݐݏ݁ܶ݌ ݈݊ܽ݁݋݋ܾ ߬, ሻߙ
where ݀݁ݎ݌ is an arbitrary predicate as in a deterministic
database, τ is a probability threshold, and α is the signific-
ance level. ݐݏ݁ܶ݌ is short for probability test. It deter-
mines whether the probability of the truth of a predicate is
above a threshold. The null hypothesis H0 is: Prሾ݀݁ݎ݌ሿ ൌ
߬, while H1 is: Prሾ݀݁ݎ݌ሿ ൐ ߬.

Probabilistic threshold queries are commonly used in the
probabilistic database literature (e.g., [17]). A probabilistic
threshold query is simply the alternative hypothesis ܪଵ in a
ሿ݀݁ݎ݌Prሾ :ݐݏ݁ܶ݌ ൐ ߬. A ݐݏ݁ܶ݌ adds another level, the signi-
ficance level ߙ which controls false positive rates (Sec. IV-A).

Example 9. We use pTest and mTest for the queries in Exam-
ple 8. We can turn P1 into pTest(“temperature > 100”, 0.5,
0.05), which means that we test the original probability thre-
shold query temperature >0.5 100 with a significance level of
5%. That is, the false positive rate (i.e., mistakenly accepting
H1) is no more than 5%. Similarly, we can change P2 to
mTest(temperature, “>”, 97, 0.05). It can be easily verified
that with these new predicates, only the field Y would satisfy
them, but X would not.

For predicate evaluation, the mTest and mdTest follow the
population mean tests in statistics [15]. Note that the query
evaluation of these significance predicates uses hypothesis
testing, which is very efficient by directly operating on the
probability distributions using the accuracy information. We
will verify this in the experiments. The mdTest is useful, for
example, when we make assertions on whether the mean of

one field is greater than another (i.e., whether the difference is
greater than 0). Likewise, the pTest is based on the population
proportion test.

C. Significance Predicates with Coupled Tests

While the basic significance predicates serve our purpose,
there is a shortcoming. Hypothesis testing has type I errors
(i.e., false positives) and type II errors (i.e., false negatives).
The significance level α in the tests only controls the false
positive rates. For example, for the mTest(t1.c1, “>”, 97, 0.05)
in Example 9, only when H1 is actually false, are we sure that
the error rate is no more than 0.05. That is:

Prሾ݉ܶ݁ܧܷܴܶ ݏ݊ݎݑݐ݁ݎ ݐݏ | .1ݐሺܧ ܿ1ሻ ൑ 97ሿ ൑ 0.05

However, we have no control over the false negative rate, i.e.,
Prሾ݉ܶ݁ܧܵܮܣܨ ݏ݊ݎݑݐ݁ݎ ݐݏ | .1ݐሺܧ ܿ1ሻ ൐ 97ሿ. It can be large, de-
pending on the sample size and the actual ܧሺ1ݐ. ܿ1ሻ value, etc.

To cope with this problem, we propose a technique called
coupled tests. Coupled tests are two correlated tests run within
a significance predicate in order to control both the false posi-
tive rate and the false negative rate of the predicate. The key
idea is as follows. Suppose originally we have an mTest to
determine if ܧሾܺሿ ൐ ܿ. We couple this test with its inverse
test, which is essentially an mTest that determines if ܧሾܺሿ ൏ ܿ.
The original test rejects if this inverse test accepts. Therefore,
the original mTest’s false negative error rate is the same as this
inverse test’s false positive rate, which is controlled by the
significance level of the inverse test. In this way, we can con-
trol both the false positive and the false negative error rate of
the original test. The algorithm below achieves our goal.

Algorithm COUPLED-TESTS ሺܲ, ,ଵߙ ଶሻߙ
Input: ܲ: a basic significance predicate;
 ;ଵ: maximum false positive error rateߙ
 ଶ: maximum false negative error rateߙ
Output: an answer from ሼܴܷܶܧ, ,ܧܵܮܣܨ ሽܧܴܷܷܵܰ

1: ଵܶ ← ܲ. the original hypothesis test // ݐݏ݁ݐ
2: ଶܶ ← ଵܶ // a copy of the same test
3: if ଵܶ. ݌݋ ൌ

ᇱ൏൐ ′ then
4: ଵܶ. ݌݋ ←

ᇱ൏ ′
5: ଶܶ. ݌݋ ←

ᇱ൐ ′
6: ଵܶ. ߙ ← ଵ/2ߙ
7: ଶܶ. ߙ ← ଵ/2ߙ
8: else
9: ଶܶ. ݌݋ ← ሺ݁ݏݎ݁ݒ݊݅ ଵܶ. ሻ //’>’ and ‘<’ are inverse݌݋
10: ଵܶ. ߙ ← ଵߙ
11: ଶܶ. ߙ ← ଶߙ
12: end if
ݐ݈ݑݏ݁ݎ :13 ← ݊ݑݎ ଵܶ
14: if ݐ݈ݑݏ݁ݎ ൌ then ܧܷܴܶ
15: return ܴܷܶܧ
16: else
ݐ݈ݑݏ݁ݎ :17 ← ݊ݑݎ ଶܶ
18: if ݐ݈ݑݏ݁ݎ ൌ then ܧܷܴܶ
19: return ሺܲ. .ݐݏ݁ݐ ݌݋ ൌᇱ൏൐ᇱሻ ? ܧܷܴܶ ∶ ܧܵܮܣܨ
20: else
21: return ܷܷܴܰܵܧ
22: end if end if

Since all three basic significance predicates described in
Section IV-B have a hypothesis test component, we use ܲ. ݐݏ݁ݐ
(line 1) to denote that test. The algorithm behaves differently
if the ݌݋ parameter is ‘<>’ (lines 3 to 7); otherwise ଵܶ keeps
the original ݌݋ while ଶܶ uses its inverse (‘>’ and ‘<’ are in-
verse of each other), as in line 9. Again in line 19, the algo-
rithm behaves differently (returning ܴܷܶܧ) if the original ݌݋ is
‘<>’; otherwise it returns ܧܵܮܣܨ. The hypothesis tests (includ-
ing ܪ଴ and ܪଵ) are the same as in the basic significance predi-
cates.

Note that we have changed the return value of the predicate
from two states to three states (ܴܷܶܧܴܷܷܵܰ ,ܧܵܮܣܨ ,ܧ); only
 .’<>‘ is ݌݋ may be returned when the ܧܴܷܷܵܰ and ܧܷܴܶ
Theorem 3 below shows the correctness of the algorithm.

Theorem 3. Algorithm COUPLED-TESTS has a false posi-
tive rate of no more than ߙଵ and a false negative rate of no
more than ߙଶ.

Proof: Let us first consider the case when ܲ. .ݐݏ݁ݐ is either ݌݋
′ ൐ ′ or ′ ൏ ′. ଵܶ is the original hypothesis test and has a type I
error (false positive) rate of no more than ߙଵ. Similarly, ଶܶ has
a false positive rate of no more than ߙଶ. Since ଶܶ. is the ݌݋
inverse of ܲ. .ݐݏ݁ݐ ,ܧܷܴܶ and when ଶܶ returns ,݌݋
COUPLED-TESTS returns ܧܵܮܣܨ, it follows that the false
negative rate of COUPLED-TESTS is no more than ߙଶ. We
next consider the case when ܲ. .ݐݏ݁ݐ ݌݋ ൌᇱ൏൐ ′. In this case,
ଵܶ and ଶܶ have their ݌݋’s as ′ ൏ ′ and ′ ൐ ′ respectively, and

they both have a significance level of ߙଵ/2 (lines 3 to 7).
Since the algorithm does not return ܧܵܮܣܨ in this case, the
false negative rate is 0. Moreover, COUPLED-TESTS returns
 and thus, it has ,ܧܷܴܶ whenever either ଵܶ or ଶܶ returns ܧܷܴܶ
a false positive error whenever either ଵܶ or ଶܶ has a false posi-
tive error. Hence, due to union bound [11], the false positive
error rate is no more than

ఈభ

ଶ
൅

ఈభ

ଶ
ൌ ଵ. This concludes theߙ

proof. □

Power of Coupled Tests. Note that there is still the notion of
the power (denoted as γ) [11] of the coupled tests for P, al-
though it is not 1 − β (as in a single hypothesis test). For ex-
ample, by definition, the power of mTest (X, “>”, c, α1, α2) is
Pr[ܧܷܴܶ ݊ݎݑݐ݁ݎ | E(X) > c]. As in standard statistics, γ is
usually a function. As an example, for mTest, the power func-
tion γ(μ) is a function on μ, the actual expectation of the prob-
abilistic field. Clearly, the power of coupled tests is closely
related to the number of ܷܷܴܰܵܧ return values; the fewer
 values, the more powerful the tests are. We will ܧܴܷܷܵܰ
study the power function experimentally in Section V.

V. EXPERIMENTS

In this section, we study the following problems through a
systematic experimental evaluation:

 How does the accuracy information, as measured by
confidence intervals of distribution parameters and de-
rived through analytical methods, change when we
vary the sample sizes?

 What are the miss rates of the confidence intervals?
Are these confidence intervals robust when we vary the
underlying distributions?

 How does the accuracy information acquired via boot-
straps compare with that acquired via analytical me-
thods?

 What is the impact to stream system throughput when
using analytical or bootstrap methods to get accuracy
information?

 What are the error rates and powers of the significance
predicates with and without the coupled-test technique?
What is the performance overhead of significance pre-
dicates?

A. Datasets and Setup

We perform our experimental evaluations on the following
datasets.

 A real-world dataset collected by the CarTel project
team [24]. It consists of measurements of actual traffic
delays on roads in the greater Boston area performed
by the CarTel vehicular testbed, a set of 28 taxis
equipped with various sensors and a wireless network.
This application is described in Example 1.

 Some synthetic datasets generated using the R statistic-
al package [25]. We experiment with five types of
common distributions: exponential (λ = 1), Gamma (k
= 2, θ = 2.0), normal (μ = 1, σ2 = 1), uniform (0 to 1)
and Weibull (λ = 1, k = 1).

With synthetic datasets we can test our findings over more
diverse distributions. We implemented all algorithms in the
paper. The experiments were run on a 2.4 GHz Intel Core 2
Quad CPU machine with 1 GB memory.

B. Accuracy Information via Analytical Methods

We examine the relationship between the size (݊) of the
sample from which a distribution is learned and the confidence
interval lengths in accuracy information. We first use the road-
delay real dataset. We randomly pick 100 road segments for
which we have sufficiently large sample sizes (i.e., at least
600) within a short time period. We consider the distribution
that we get from the complete sample of such a road segment
as its true distribution. We next pick a sample of a small size

(e.g., n = 20) uniformly at random without replacement from
the original large sample. Then we can not only obtain a dis-
tribution bundled with its accuracy information using this
small sample, but we can also verify the validity of the confi-
dence intervals since we do have the true distribution.

Figure 4(a) plots the relationship between sample size ݊ and
90% confidence interval length of the ߤ parameter of the dis-
tribution. In order to see all three statistics bin heights, mean,
and variance in the same plot, in Figure 4(b), an interval
length is normalized through dividing it by the length when n
= 10. Figures 4(a) and 4(b) show a decrease of interval lengths
as n grows, for all three kinds of statistics − bin heights, mean,
and variance. We next examine the qualities of these confi-
dence intervals.

Clearly, the validity of a confidence interval is determined
by whether the true value is really contained in the interval.
When it is not contained, we call it a miss. Thus we use miss
rate as a metric (clearly, the interval length in the previous
experiment is also a metric since shorter intervals are more
useful).

Figure 4(c) shows the miss rates of the three types of accu-
racy information under different sample sizes. We can see that
bin heights have the lowest miss rates, while variance has the
highest. The mean parameter, however, has higher miss rates
when ݊ is small. The reason is that the analytical method
Lemma 1 (for bin heights) does not assume a particular shape
of the underlying distributions. In Lemma 2, the interval
lengths for ߤ when ݊ ൏ 30 and those for the variance all as-
sume that the underlying distributions are (at least approx-
imately) normal. When the actual population distribution de-
viates from this assumption, the validity of the confidence
intervals decreases.

We next experiment on synthetic datasets. We use the R
statistical package [25] to generate samples for five types of
common distributions: exponential, Gamma, normal, uniform
and Weibull. Their parameters are described in Section V-A.
Figure 4(d) shows the average miss rates for the intervals over
three kinds of statistics (bin heights, mean, and variance) when
n = 20. We can see that with all five types of distributions, the
miss rates are relatively low (recall that they are 90% confi-
dence intervals; thus there is some inherent error). This veri-
fies the overall accuracy of analytical methods.

 (a) (b) (c) (d)

Fig. 4 Experimental results: (a) sample size vs. interval length of ߤ, (b) n vs. normalized intervals, (c) miss rates vs. ݊, and (d) miss rates for various distribu-
tions

0 20 40 60 80
3

4

5

6

7

8

Sample size

In
te

rv
a

l l
e

n
g

th
 o

f 

0 20 40 60 80
0.2

0.4

0.6

0.8

1

Sample size

N
o

rm
a

liz
e

d
 in

te
rv

a
l l

e
n

g
th

Bin heights
Mean
Variance

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Sample size

M
is

s
ra

te

 Bin heights

Mean

Variance

exp. gammanormaluniform weibull
0

0.02

0.04

0.06

0.08

0.1

Distribution

M
is

s
ra

te

C. Comparison of Bootstrap and Analytical Methods, and
Their Throughputs

In this set of experiments, we compare the accuracy infor-
mation of the bootstrap methods and the analytical methods in
query results. We also evaluate the execution overhead in pro-
ducing the accuracy information. The overhead is measured
through the impact on the stream system throughput. Using
the road delay dataset, we issue queries that ask for the total
delays of a number of routes. On average, there are around 20
road segments per route. Different road segments may have
different sample sizes.

Secondly, using the synthetic dataset, we test diverse distri-
butions and arbitrary queries. We generate a random query
(expression) by assigning equal probabilities to six operators
+, −, ×, /, SQRT(ABS(·)), and SQUARE. Together with the
five types of distributions described in the previous experi-
ment, the query selects the result of the random expression.

We first evaluate whether bootstraps give more accurate
and better confidence intervals than analytical methods. For
this, in Figure 5(a), we show the average ratio (averaging over
bin heights, mean, and variance) between the confidence in-
terval lengths of bootstraps and those of analytical methods.
We also show the miss rates of the confidence intervals of
bootstraps. We obtain similar trends from the queries on the
road-delay data and from the random queries on synthetic da-
ta. We thus show the average results from both datasets. Fig-
ure 5(a) indicates that bootstraps give slightly shorter confi-
dence interval lengths for bin heights. For mean and variance,
however, bootstraps show significant advantage, with confi-

dence intervals shortened by about 40%. The miss rates, on
the other hand, stay very low for bootstraps. The considerable
improvement on mean and variance is due to the normality
assumption of the analytical methods, which does not always
hold true. Bootstraps are always robust to the skewness of the
underlying query result distributions.

To verify whether our analysis is correct, we also generate
random queries for which we know the result is normal. Spe-
cifically, in the random generation process, we limit the distri-
butions to be only from normal distributions and the operators
to be only + and −. Figure 5(b) shows the confidence interval
length ratios between bootstraps and analytical methods. We
can see that the difference between the two methods on mean
and variance is less here, with bootstraps having around 20%
shorter intervals. This is because when the underlying result
distributions are indeed normal, analytical methods on mean
and variance are also very accurate.

We now examine the execution overhead of bootstraps and
analytical methods for getting accuracy information. In a
stream context, this is reflected in the impact on maximum
throughputs with which the system is able to handle incoming
stream tuples. In order to measure the maximum throughout,
we synthetically generate data tuples. For each item, we gen-
erate 20 data points and the query processor learns a Gaussian
distribution from them. The query is a simple count-based
sliding window AVG query (e.g., [9]) with a window size of
1000. Since the inputs are Gaussians, the query processor can
compute the AVG result as a Gaussian distribution. For each
such query result, we compute its accuracy information (on ߤ
and ߪଶ) through analytical methods and through bootstraps.
Figure 5(c) shows the throughputs of (1) query processing

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Fig. 5 More experimental results: (a) bootstraps compared to analytical results, (b) Gaussian results, (c) maximum throughput impacts, (d) errors of a single
significance predicate, (e) result of coupled tests, (f) maximum throughputs, (g) power vs. δ (mTest), and (h) power vs. τ (pTest).

interval len. ratio miss rate
0

0.2

0.4

0.6

0.8

1

Metric

V
a

lu
e

Bin heights

Mean
Variance

interval len. ratio miss rate
0

0.2

0.4

0.6

0.8

1

Metric

V
a

lu
e

Bin heights

Mean
Variance

QP only analyticalbootstrap
0

2

4

6

8

10
x 10

5

T
hr

ou
gh

pu
t

(t
up

le
s/

se
co

nd
)

0 20 40 60 80
0

50

100

150

200

Sample size

C
o

u
n

t

False positives

False negatives
Errors without sig. pred.

0 20 40 60 80
0

20

40

60

80

100

120

140

160

Sample size

C
o

u
n

t

 False positives

False negatives

Unsure comparisons

Errors w ithout our w ork

no pred.mTest mdTest pTest
0

2

4

6

8

10
x 10

5

Method

T
hr

ou
gh

pu
t

(t
up

le
s/

se
co

nd
)

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1


P

o
w

e
r

o
f t

h
e

 te
st

Exponential

Gamma

Normal

Uniform

Weibull

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1



P
o

w
e

r
o

f t
h

e
 te

st

Exponential

Gamma

Normal

Uniform

Weibull

only, (2) query processing and getting accuracy information
via analytical methods, and (3) query processing and getting
accuracy information via bootstraps. We can see that analyti-
cal methods have less overhead than bootstraps, but the
throughput changes due to the overhead of applying analytical
methods and bootstraps are both relatively small. Note that we
have used a very simple query. A more expensive query would
only make the throughput impact of getting accuracy informa-
tion less significant. These experiments also inform us that
bootstraps in general give better quality accuracy information,
while only having slightly more overhead compared to analyt-
ical methods.

D. Significance Predicates

We now study significance predicates using both real and
synthetic datasets. For the road-delay real dataset, we choose
100 pairs of routes and use mdTest predicates, i.e., a query
asks whether the mean of the first route’s delay is greater than
that of the second route. We intentionally choose pairs of
routes whose true mean values are close, which makes com-
parisons using small sample sizes more challenging. In other
words, we expect to see a large number of errors when sample
sizes are small. For 100 pairs of routes, we perform 200 com-
parisons, with and without significance predicates (mdTest).
In the first 100 tests, we make the null hypothesis H0 to be
(actually) true and test false positives (type I errors) with vari-
ous sample sizes. This is done through arranging the order of
each pair of routes such that E(X) ≤ E(Y) yet the predicate is
“E(X) > E(Y)”. In the second 100 tests, we make the alterna-
tive hypothesis H1 to be true to test false negatives. This is
similarly done through arranging the order of each pair such
that E(X) > E(Y) instead. For comparison, we also check the
number of errors when we do not use significance predicates
(i.e., merely E(X) > E(Y) as in previous work).

We show the results in Figures 5(d) and 5(e). In Figure
5(d), we do not use our coupled tests technique, but only use a
single hypothesis test. We set the significance level of the test
α = 0.05. The figure verifies that the false positive rate is be-
low 5%. However, with a single test, the false negative rate is
not really under the control of the user; it is a function of the
sample size and the actual E(X) and E(Y) values. From Figure
5(d), we also see that, as sample size increases, errors de-
crease.

By contrast, in Figure 5(e), we show the result with our
coupled tests. The user can specify both types of error rates (in
this case, both 0.05), and when the system cannot make a de-
cision that respects these error rates, it returns the result UN-
SURE. We can see that the number of unsure comparisons
decreases as sample size increases, and that the actual number
of errors strictly follows the error rate specification.

Following the setup in Section V-C (Figure 5(c)) for testing
stream throughput, we issue the same count-based sliding
window AVG query, followed by significance predicates with
coupled-tests using mTests (whether the mean is greater than a
value), mdTests (whether the mean is greater than the one in
the previous window), and pTests (whether the average is
greater than a constant with probability at least 0.8), respec-
tively. Figure 5(f) shows the throughputs of no significance

predicates (first bar) and each of the other three cases. It is
clear that significance predicates have little overhead (even
less than computing the accuracy information) since they are
efficient hypothesis testing on the distributions.

We next use synthetic datasets, with the same five types of
distributions, and study mTest and pTest. We have mTest (X,
op, c, α1, α2), where op is “>”, c = (1 + δ)μ, and α1 = α2 = 0.05.
Here μ is the true expectation of X and we use a sample of size
20. Since E(X) > (1 + δ)μ is false for any δ > 0, any error of
this test is a false positive. We have verified that the error rates
are well below 0.05, and omit the figure.

An important aspect of significance predicates is the power
of the test. Even with our test-coupling technique, the power
of the test is directly related to the number of UNSURE results
(the higher the power, the fewer the unsure results). We now
observe the relationship between the power of the COUPLED-
TESTS algorithm and the δ value in the mTest within. The
result is in Figure 5(g). As δ increases, the difference between
the actual E(X) and the value to be compared with increases,
which makes the test easier. Thus, we see an increase in the
power. Also observe the interesting fact that the test power
increases faster with the uniform and Gamma distributions.
The reason for the uniform (0, 1) distribution is because it has
a very small variance (1/12) compared to other distributions
which have variances of at least 1. The reason for the Gamma
distribution (k = 2, θ = 2.0) is because the probability decreas-
es much faster as δ increases than other distributions; thus it is
easier to determine the test result as δ increases.

We finally use pTest (pred, τ, α1, α2), where pred is simply
X > v and α1 = α2 = 0.05. To produce false positives, we
choose v such that the true Pr (X > v) is τ (1 − δ). Likewise, for
false negatives, we choose v such that the true Pr (X > v) is τ
(1 + δ). We fix δ = 0.3 and vary the τ parameter. We find that
the two types of error rates are well below α1 and α2 values.
We study the relationship between the power of the test and
the τ parameter, with the result shown in Figure 5(h). As τ
increases, the difference between the true Pr (X > v) and τ in-
creases, which makes the comparison an easier decision (i.e.,
higher power). Moreover, because the decision of Pr (X > v) ≤
τ (using a sample) is based on quantiles, it is independent of
the actual distribution. Thus, we see that, for all five distribu-
tions, the power of the test increases at about the same rate.

VI. RELATED WORK

There have been a number of projects on probabilistic data-
bases, including Orion [18], MystiQ [4], Trio [21], and MCDB
[12]. Previous work that deals with uncertain data streams
(like ours) includes [3, 6, 8, 12, 19]. However, to the best of
our knowledge, none of that work considers the accuracy of
the probability distributions acquired; they all assume that
distributions are already obtained in the first place and com-
pletely trust them.

A related concept in AI is the so-called imprecise probabili-
ties [20, 23]. The basic idea there is to use a probability inter-
val to represent the really available knowledge, and provides
tools to model and work with weaker states of information.
We study this in databases and propose a novel technique of

using confidence intervals on the parameters of distributions
to model the uncertainty of distributions, which has not been
explored in AI.

Koch and Gotz [14, 10] study the reliability of query re-
sults, which bears some similarity to our work. However, they
have a different motivation, and solve a different problem with
a different approach. Their goal is to provide a compositional
framework for queries over unreliable data resulted from ap-
proximate query processing (e.g., Monte Carlo algorithms).
[14, 10] use a discrete model that only deals with tuple confi-
dence. By contrast, we solve the accuracy of probability dis-
tributions and decision making starting from learning distribu-
tions based on samples to query results, as required by many
data stream and sensor networks applications. In addition, [14,
10] only consider the basic positive relational algebra (with an
extension of the repair-key construct), while we handle arbi-
trary (extended) SQL queries, which are more powerful and
are suitable for stream databases.

Finally, Perez et al. study the evaluation of probabilistic
threshold queries in MCDB [17]. However, like others, they
assume the input probability distributions are accurate and get
samples from them for query processing, which is completely
different from the problem that we solve in this work.

VII. CONCLUSIONS AND FUTURE WORK

While probability distributions are introduced into stream
databases to make noisy data more useful, what is lacking is
the important information of how accurate such distributions
are. We propose and perform a first study on an accuracy-
aware uncertain stream database in a general setting that can
have continuous distributions. We gauge the accuracy of data
and query results both analytically and through efficient boot-
straps. Moreover, we propose a new type of predicate for deci-
sion making in this context. We have performed extensive
experiments on real and synthetic datasets to validate our
schemes and algorithms.

As future work, we plan to study the idea of using samples
of different weights to quantify the accuracy of probability
distributions that are learned from them. For instance, obser-
vations that are obtained more recently can have more weights
in determining the accuracy information.

ACKNOWLEDGMENT

This work was supported in part by the NSF, under the
grant IIS-1017452. The authors gratefully acknowledge Sam
Madden and Arvind Thiagarajan for the CarTel dataset, and
the anonymous referees for their insightful comments.

REFERENCES
[1] R. Agrawal et al. The Claremont report on database research.

In ACM SIGMOD Record, V.37, 3, 2008.

[2] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2007.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating proba-
bilistic queries over imprecise data. In SIGMOD, 2003.

[4] N. Dalvi and D. Suciu. Efficient query evaluation on probabilis-
tic databases. In VLDB, 2004.

[5] Davison, A., Hinkley, D. Bootstrap Methods and Their Applica-
tion. Cambridge University Press, 1997.

[6] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, W.
Hong. Model-driven data acquisition in sensor networks. In
VLDB, 2004.

[7] B. Efron. Bootstrap Methods: Another Look at the Jackknife.
In Annals of Statistics, Volume 7, 1: 1-26, 1979.

[8] T. Ge and S. Zdonik. Handling Uncertain Data in Array Data-
base Systems. In ICDE, 2008.

[9] L. Golab. Sliding Window Query Processing over Data Streams.
Ph.D. Thesis, David R. Cheriton School of Computer Science,
University of Waterloo, 2006.

[10] M. Gotz, C. Koch. A Compositional Framework for Complex
Queries over Uncertain Data. In ICDT, 2009.

[11] R. Hogg, J. McKean, and A. Craig. Introduction to Mathemati-
cal Statistics. Sixth Edition. Prentice Hall. 2005.

[12] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, P. Haas.
MCDB: A Monte Carlo Approach to Managing Uncertain Data.
In SIGMOD’08.

[13] B. Kanagal and A. Deshpande. Online Filtering, Smoothing and
Probabilistic Modeling of Streaming data. In ICDE, 2008.

[14] C. Koch. Approximating Predicates and Expressive Queries on
Probabilistic Databases. In PODS, 2008.

[15] Mendenhall, W., and Sincich, T. Statistics for Engineering and
the Sciences. Fourth Edition. Prentice-Hall, Inc. 1994.

[16] D. Moore, G. McCabe and B. Craig. Introduction to the Practice
of Statistics, 6th Edition, W. H. Freeman, 2007.

[17] L. Perez, S. Arumugam, C. Jermaine. Evaluation of Probabilistic
Threshold Queries in MCDB. SIGMOD, 2010.

[18] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch, J.
Neville, R. Cheng. Database Support for Probabilistic Attributes
and Tuples. In ICDE, 2008.

[19] T. Tran, L. Peng, B. Li, Y. Diao, A. Liu. PODS: A New Model
and Processing Algorithms for Uncertain Data Streams. In
SIGMOD, 2010.

[20] Walley, P. Statistical Reasoning with Imprecise Probabilities.
Chapman and Hall, 1991.

[21] J. Widom. Trio: A System for Integrated Management of Data,
Accuracy, and Lineage. In CIDR, 2005.

[22] Wilson, E. B. Probable inference, the law of succession, and
statistical inference. J. of American Statistical Assoc., 1927.

[23] W. Zhao, A. Dekhtyar, J. Goldsmith. Databases for interval
probabilities. In Intl. J. of Intelligent Systems. V 19, 2004.

[24] MIT Cartel: http://cartel.csail.mit.edu/doku.php.

[25] The R Project for Statistical Computing: www.r-project.org.

[26] http://www.inrix.com/.

