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Abstract— Previous work has introduced probability distribu-

tions as first-class components in uncertain stream database sys-
tems. A lacking element is the fact of how accurate these proba-
bility distributions are. This indeed has a profound impact on the 
accuracy of query results presented to end users. While there is 
some previous work that studies unreliable intermediate query 
results in the tuple uncertainty model, to the best of our know-
ledge, we are the first to consider an uncertain stream database 
in which accuracy is taken into consideration all the way from 
the learned distributions based on raw data samples to the query 
results. We perform an initial study of various components in an 
accuracy-aware uncertain stream database system, including the 
representation of accuracy information and how to obtain query 
results’ accuracy. In addition, we propose novel predicates based 
on hypothesis testing for decision-making using data with limited 
accuracy. We augment our study with a comprehensive set of 
experimental evaluations. 

I. INTRODUCTION 

Recent research has extended stream databases to handle 
uncertain data in order to meet the requirements from ever-
increasing applications in sensor networks and ubiquitous 
computing (e.g., [19]). Handling probabilistic and uncertain 
data has been identified as one of the most important research 
directions in this research field [1]. Most previous work in 
probabilistic databases assumes that probability distributions 
are somehow obtained, and that we have “good” knowledge 
about the distributions. However, in reality, this is often not 
the case. 

Where do we obtain the probabilities in the first place? In 
many applications, probability distributions are learned from 
observations and measurements, a.k.a. samples. Such applica-
tions include sensor networks, ubiquitous computing, and 
scientific databases. Let us look at an example. 

Example 1 (accuracy of learned probability distributions).  
A few projects in both academia and industry (e.g., the CarTel 
project at MIT [24] and a product at INRIX [26]) provide traf-
fic-aware routing and traffic mitigation. The basic idea is to 
use sensors (including GPS, WiFi) installed in traveling ve-
hicles to measure real-time traffic delays on various roads in 
order to provide dynamic, accurate, and real-time traffic 
routing for travelers. Such a system uses the travel delays re-
ported in a recent time window to infer the probability distri-
bution of current delay at a road. Due to random factors, the 
best we can get is a distribution. In general, the more reports 
the system receives for a road, the more accurate the resulting 
distribution is. However, this number is constrained by how 

many test vehicles in the network are traveling on that par-
ticular road within the current time window. Figure 1 shows a 
snippet of the raw data that contains three observations for 
road 19 and fifty observations for road 20. 

   

 
 
 

For each of the two roads in Example 1, the database sys-
tem can learn the distributions of Delay attribute (around time 
8:50) using machine learning techniques, ranging from simple 
ones such as histograms to complex ones such as kernel me-
thods, maximum likelihood, and kNN [2]. By doing this, a 
stream database system transforms the three (fifty, respective-
ly) raw records of road 19 (20) into a single record with a dis-
tribution in the Delay field. Assuming that these fifty-three 
observations are equally trustworthy, clearly we can obtain a 
more accurate and reliable distribution for road 20 than for 
road 19. 

This issue of variable accuracy of probability distributions 
is a prominent issue in stream databases, where a timely deci-
sion based on query processing must be made. To the best of 
our knowledge, previous work in this area does not try to dif-
ferentiate two random variables (r.v.) in a stream database 
whose probability distributions have distinct levels of accura-
cy; simply modeling an r.v. with a probability distribution 
lacks this accuracy information. 

In previous work, once a distribution is learned, its accura-
cy information is lost. The consequence of being accuracy-
oblivious is that, in the end, the query results would also be 
accuracy-oblivious. Thus, the end user has no clue about how 
accurate or reliable the query results that she gets. For exam-
ple, based on the raw data in Figure 1, we generate one record 
for road 19 that contains a histogram distribution for the Delay 
attribute, and likewise one record for road 20. Consider a 
query “SELECT Road_ID FROM t WHERE Delay >2/3 50”, 
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Fig. 1  Original raw data samples from which probability distributions are 
learned and used in query processing for uncertain streams 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357251231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 2  Confidence intervals for (a) bin probabilities of histograms, and (b) 
 parameters of an arbitrary form of PDF ࣌ ,ࣆ

in which the predicate denotes that, with probability at least 
2/3, Delay is greater than 50. Based on their histograms, the 
system may determine that both roads have probability 2/3 
being greater than 50; thus both satisfy the predicate. Howev-
er, it is clear that the distribution of road 19 is more likely to 
be less accurate, and consequently, the decision on road 19 is 
less reliable than that on road 20. Hence, query results can 
easily have false positives or false negatives without the 
awareness of users. 

In general, there are mainly two possible reasons for which 
we get inaccurate distributions: (1) there are time constraints, 
e.g., the observations of an r.v. (i.e., samples) from which we 
learn a distribution are not produced fast enough for the que-
ries to be answered in time; or (2) the observations are expen-
sive to get (e.g., some experimental data in scientific applica-
tions). 

Reason (1) applies to Example 1. The time constraints are 
that we have to get fresh data (as traffic condition is highly 
variable) and that we have to provide a timely answer for the 
query. This issue is common for sensor network and ubiquit-
ous computing applications because of the limitations of the 
devices (e.g., power or location), because of the communica-
tion costs, and because of the time requirements on query re-
sults. 

Our Contributions.  We propose that an uncertain stream 
database should be accuracy-aware. Specifically, when a ran-
dom variable (i.e., a distribution) appears in a query result 
(e.g., a probabilistic field in the SELECT list), the system also 
returns its accuracy information in the form of confidence in-
tervals [11] of selected parameters of the distribution. In par-
ticular, for a histogram distribution, the probability of each bin 
becomes a confidence interval, instead of a fixed value. For 
other distributions such as Gaussian, the accuracy is embodied 
as a confidence interval on the mean value and a confidence 
interval on the variance. This is illustrated in Figure 2, where 
each interval indicated by a double arrow is a 95% confidence 
interval of the respective parameter. 

 
 

 
 
Clearly, the smaller an interval is, the more accurate the 

query result is. This gives a user a certain degree of confi-
dence on the results. A user may use such accuracy informa-
tion in a number of ways. For example, suppose the histogram 
distribution in Figure 2(a) is a temperature field in the result. 
Based on this result, the user can estimate the probability in-
terval that the temperature is greater than 80 degrees. Similar-
ly, she may also estimate the probability that the expectation is 

greater than 70 based on the interval of ߤ, etc. Clearly, such 
query results give a more complete picture of the state of the 
acquired data than the distributions alone. In fact, this enables 
online computation. When the intervals are sufficiently narrow 
to make a decision with enough confidence, we can stop ac-
quiring raw data/samples, which is a slow or expensive 
process, as in Example 1. 

We provide two ways to obtain the accuracy information: 
the analytical method and the bootstrap method from statistics 
[7, 5]. An analytical method has the advantage of little compu-
tational overhead, while a bootstrap method has the advantage 
of better accuracy for skewed distributions. For each of these 
two methods, we describe how to get query results’ accuracy 
information, in which the confidence intervals can be either 
for random variable fields in a result tuple or for a result 
tuple’s probability of being in the result set. 

Finally, to aid decision making when the data is probability 
distributions with limited accuracy, we propose a new type of 
predicate – called a significance predicate – that is based on 
the concept of hypothesis testing in statistics [15]. In addition, 
we devise an algorithm called COUPLED-TESTS to control 
both false positive and false negative error rates in making 
decisions based on significance predicates. In summary, our 
contributions include: 

 Defining and developing the concept of accuracy-
aware uncertain stream databases. 

 Proposing analytical methods to get accuracy informa-
tion for query results. 

 Devising bootstrap methods to obtain accuracy infor-
mation. 

 Proposing a new type of predicate, called significance 
predicate, for decision making and a COUPLED-
TESTS algorithm to control error rates. 

 Evaluating our work with a comprehensive set of expe-
riments on both real and synthetic datasets. 

The remainder of the paper is organized as follows. In Sec-
tion II, we present the form of the accuracy information that 
we propose, followed by the analytical methods to obtain the 
accuracy information. We then devise an alternative method 
based on bootstraps to get accuracy information in Section III. 
In Section IV, we show the novel predicate for decision mak-
ing using probability distributions with limited accuracy. We 
then perform extensive experiments in Section V. Finally, we 
discuss related work in Section VI, and conclude in Section 
VII. 

II. ANALYTICAL METHODS 

A. Some Background 

We briefly survey some background knowledge in order for 
the readers to better understand the paper. 

Probabilistic data.  We consider the general setting of an 
uncertain stream database where both tuple uncertainty and 
attribute uncertainty [18] may be present (it is also possible 
that the system has only one of them, as a special case). Let an 
uncertain stream database contains tuples {Ti} (݅ ൒ 1). A tuple 
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Ti has a membership probability pi, which is the probability 
that the tuple exists in the stream. 

A tuple Ti has a set of attributes {Aj} (1 ≤ j ≤ a). An attribute 
Aj of a tuple, in general, is a probability distribution, either 
continuous (e.g., Gaussians and histograms) or discrete. The 
distribution can be a single value with probability 1, in which 
case it is a traditional deterministic field. 

As in previous work, following the possible world seman-
tics [4], a SELECT query issued on a probabilistic database 
returns a result set with the same structures as formulated 
above (i.e., tuple uncertainty and attribute uncertainty).  For 
example, consider this query: SELECT ObjectID, Speed 
FROM stream WHERE Speed > 78 in which each field of the 
Speed attribute is a distribution (i.e., attribute uncertainty in 
the source data).  Now, the result has tuple uncertainty be-
cause a tuple may have a probability between 0 and 1 to be in 
the result.  The result also has attribute uncertainty because 
Speed is selected. 

Confidence intervals and samples.  We often need to esti-
mate a parameter (e.g., mean) of a random variable. For that 
we calculate two numbers that define an interval that will en-
close the estimated parameter with a high degree of confi-
dence. The resulting random interval is called a confidence 
interval, and the probability that it contains the estimated pa-
rameter is called its confidence coefficient (or confidence lev-
el) [11]. For instance, if a confidence interval has a confidence 
coefficient equal to .95, we call it a 95% confidence interval. 
One often uses random samples of a random variable to obtain 
a confidence interval of a parameter. We use the following 
definition. 

Definition 1 (sample, observation, statistic) [11]. The ran-
dom variables X1, …, Xn constitute a random sample on a 
random variable X if they are independent and each has the 
same distribution as X. We will abbreviate this by saying that 
X1, …, Xn are iid; i.e., independent and identically distributed. 
We say that the sample size is n, and call an instance of each 
Xi (1 ≤ i ≤ n) an observation. Any function T = T(X1, …, Xn) of 
the sample is called a statistic. The probability distribution of 
a statistic is called its sampling distribution. 

For instance, sample mean ( തܺ ൌ
ଵ

௡
∑ ௜ܺ
௡
௜ୀଵ ) and standard 

deviation are both statistics. The probability distribution of the 
mean over all samples of size n is the sampling distribution of 
mean. 

B. Accuracy Information 

We first extend the basic probabilistic stream database 
model to include accuracy information. Informally speaking, 
we measure and represent accuracy by giving confidence in-
tervals for some key parameters of a distribution. We have 
seen wide adoption of histogram representation of probability 
distributions in both the learning and the query processing 
phases due to its generality [2, 18, 12, 8]. Thus, we discuss the 
accuracy information specific to histograms, that for all distri-
butions in general, and that for tuple probability (e.g., in a 
query result). 

Histogram distributions. Recall that a histogram distribution 
has the form ሼሺܾ௜, ௜ሻ | 1݌ ൑ ݅ ൑ ܾሽ, denoting that the probabil-
ity of bucket ܾ௜ (which is a set of values) is ݌௜. We generalize 
this representation to be ሼሺܾ௜, ,௜ଵ݌ ,௜ଶ݌ ܿ௜ሻ| 1 ൑ ݅ ൑ ܾሽ, denoting 
that with confidence (i.e., probability) at least ܿ௜ (e.g., 95%), 
the true probability of ܾ௜ is in the interval ሾ݌௜ଵ,  ,௜ଶሿ. That is݌
we extend the parameter ݌௜, a statistic which we call a bin 
height, from a fixed value to a confidence interval. Note that 
the intervals only describe the marginal distributions of bin 
heights. There is correlation among them, but we do not need 
to consider it in this work; conceptually, there is an implicit 
normalization step in the end which ensures that the sum of 
bin heights is 1. 

All distributions. For an arbitrary distribution, we extend the 
parameters ߤ (expectation) and ߪଶ (variance) to confidence 
intervals ሺߤଵ, ,ଶߤ  ܿఓሻ and ሺߪଵ

ଶ, ଶߪ
ଶ, ܿఙሻ. They denote that with 

confidence at least ܿఓ (ܿఙ, respectively) the true ߤ ሺߪଶሻ is be-
tween ߤଵ ሺߪଵ

ଶሻ and ߤଶ ሺߪଶ
ଶሻ. Clearly, such accuracy informa-

tion applies to histogram distributions too, although we typi-
cally use more specific accuracy information (i.e., confidence 
intervals on bin heights) for histograms. 

The two forms of intervals and their usage are illustrated in 
Figure 2 and the paragraph thereafter in Section I. 

Tuple probability. Finally, a result tuple’s membership prob-
ability ݌ can be considered as a one-bin histogram, in which 
the bin probability is the tuple probability. Hence we can get 
its confidence interval ሺ݌ଵ,  .ଶሻ with confidence level ܿ as well݌
Implicitly, there is a second bin for this binary random varia-
ble (for the case that the tuple does not exist), but we do not 
need to consider it. 

The following two lemmas are used in our analytical me-
thods. 

Lemma 1.  Suppose a histogram distribution ሼሺܾ௜, ௜ሻ | 1݌ ൑
݅ ൑ ܾሽ is learned from a sample of size ݊. Then the accuracy 
of the distribution is represented by the following ܾ confidence 
intervals (one for each bin): ሼሺܾ௜, ,௜ଵ݌ ,௜ଶ݌ ܿ௜ሻ| 1 ൑ ݅ ൑ ܾሽ, 
where ݌௜ଵ and ݌௜ଶ are as follows. If ݊݌௜ ൒ 4 and ݊ሺ1 െ ௜ሻ݌ ൒
4, then ݌௜ଵ and ݌௜ଶ are: 

௜݌  േ ሺଵି௖೔ሻ/ଶටݖ
௣೔ሺଵି௣೔ሻ

௡
                                         (1) 

Otherwise, they are: 
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Here ݖሺଵି௖೔ሻ/ଶ  is the upper ሺ1 െ ܿ௜ሻ/2 percentile of the stan-
dard normal distribution. 

Proof:  Consider a single bucket i (1 ≤ i ≤ b). The number of 
observations that fall in this bucket follows a binomial distri-
bution B(n, pi’), where pi’ is the true probability of bucket bi. 
We can then use the estimation of population proportion [15]. 
When npi ≥ 4 and n(1−pi) ≥ 4, the approximation of this distri-
bution to a normal distribution is valid and we can deduce the 



confidence interval as in (1). Otherwise, we can use the Wil-
son score interval [22] instead, giving (2).                         □ 

Example 2 (accuracy of histogram distributions). Suppose 
we have a sample of size n = 20 and four buckets of a histo-
gram, each of which has 3, 4, 8, and 5 observations in it, re-
spectively. Thus, p1 = 0.15, p2 = 0.2, p3 = 0.4, and p4 = 0.25. 
We set ci = 0.9 (i.e., 90% confidence) for all i’s. Since np1 = 3 
< 4, we use (2) and get the probability interval for the first 
bucket as (0.062, 0.322). For the second bucket, we get 

0.2 േ ଴.଴ହටݖ
଴.ଶൈ଴.଼

ଶ଴
ൌ 0.2 േ 1.645 ൈ 0.089 ൌ 0.2 േ 0.15 by 

using (1) since np2 = 4 ≥ 4, which gives an interval (0.05, 
0.35). In the same manner, we get (0.22, 0.58) for the third 
bucket and (0.09, 0.41) for the fourth bucket. 

Lemma 1 indicates that the length of the intervals is (rough-
ly) inversely proportional to the square root of sample size. As 
the system collects more observations, the accuracy of distri-
butions improves. 

From the confidence interval estimation of mean and va-
riance based on samples [11], we have: 

Lemma 2 [11].  Consider an arbitrary distribution that is 
learned from a sample of size n. Let ݕത and ݏ be the sample 
mean and standard deviation, respectively. Then, when n < 
30, we have: 

ଵߤ ൌ തݕ െ ሺଵି௖ഋሻ/ଶݐ ∙
௦

√௡
ଶߤ    ,  ൌ തݕ ൅ ሺଵି௖ഋሻ/ଶݐ ∙

௦

√௡
         (3) 

where ݐሺଵି௖ഋሻ/ଶ is based on a Student’s t distribution with 

(n−1) degrees of freedom and is the upper ሺ1 െ ܿఓሻ/2 percen-
tile of this distribution. When n ≥ 30, we have: 

ଵߤ ൌ തݕ െ ሺଵି௖ഋሻ/ଶݖ ∙
௦

√௡
ଶߤ    ,  ൌ തݕ ൅ ሺଵି௖ഋሻ/ଶݖ ∙

௦

√௡
        (4) 

For any n, we further have: 

ଵߪ
ଶ ൌ

ሺ௡ିଵሻ௦మ

ఞሺభష೎഑ሻ/మ
మ ଶߪ      , 

ଶ ൌ
ሺ௡ିଵሻ௦మ

ఞሺభశ೎഑ሻ/మ
మ                             (5) 

where ߯ሺଵି௖഑ሻ/ଶ
ଶ  and ߯ሺଵା௖഑ሻ/ଶ

ଶ  are values of ߯ଶ that locate an 
area of ሺ1 െ ܿఙሻ/2 to the right and ሺ1 െ ܿఙሻ/2 to the left, 
respectively, of a chi-square distribution with (n−1) degrees of 
freedom. 

Note that for very skewed distributions (i.e., far from nor-
mal distributions), the intervals given by (3) and (5) will be 
less accurate than our alternative method of using bootstraps 
(Section III), which we will evaluate in the experiments (Sec-
tion V). 

Another remark is that the results of Lemmas 1 and 2 are 
consistent with the intuition that a result distribution with a 
greater variance requires a larger sample size for it to be 
equally “accurate” as one with smaller variance. For instance, 
in Lemma 2, Equations (3), (4), and (5) all have ݏ (sample 
standard deviation) as a factor of the interval length; for the 
same sample size, the distribution with a greater variance 
tends to have a greater ݏ, thus longer intervals. 

Example 3 (accuracy information for all distributions).  
Suppose we have 10 iid observations of the current traffic de-
lay of a road: 71, 56, 82, 74, 69, 77, 65, 78, 59, and 80. Then 

തݕ ൌ 71.1, ݏ ൌ 8.85. We look at 90% confidence intervals (i.e., 
ܿఓ ൌ ܿఙ ൌ 0.9). Since ݊ ൌ 10 ൏ 30, from (3), we have μ1 
=71.1 − t0.05(8.85/3.16). With 9 degrees of freedom, t0.05 = 
1.833, which gives μ1 = 65.97. Similarly, μ2 = 76.23. For the 
variance, we have σ1

2 = 9×78.32/16.919 = 41.66 and σ2
2 = 

211.99. 

C. Query Result Accuracy 

While Lemmas 1 and 2 provide us accuracy of source data, 
our goal is to provide users with accuracy of query results. We 
first provide some insights on how the sample sizes of input 
r.v.’s (i.e., source data) translate to the effective sample size of 
an output r.v. (i.e., query result). This has a profound impact 
on the accuracy of result distribution. 

Definition 2 (de facto sample). Consider an r.v. Y in query 
result. Let ܻ ൌ ݂ሺ ଵܺ, … , ܺௗሻ where ଵܺ, … , ܺௗ are input r.v.’s 
in source data, i.e., Y depends on ଵܺ, … , ܺௗ only. Let ݋ଵ,… ,  ௗ݋
be the observations for ଵܺ, … , ܺௗ, respectively.  We call 
݂ሺ݋ଵ,… , -ௗሻ a de facto observation (or, in short, a d.f. obser݋
vation) of Y. A maximum set of independent de facto observa-
tions of Y form a de facto sample (or, in short, a d.f. sample) 
of Y. 

D.f. observations and d.f. samples for query results are ana-
logous to observations and samples for source data. In es-
sence, a d.f. observation is an instance that we could truly ob-
serve if the output r.v. were directly observable. 

Lemma 3.  For an output r.v. ܻ ൌ ݂ሺ ଵܺ, … , ܺௗሻ where 
ଵܺ, … , ܺௗ are input r.v.’s as in Definition 2, the d.f. sample 

size of Y is ݊ ൌ minଵஸ௜ஸௗ ݊௜ , where ݊௜ is the sample size of 
௜ܺ  ሺ1 ൑ ݅ ൑ ݀ሻ. 

Proof:  Suppose Xj (1 ≤ j ≤ d) has the fewest number of obser-
vations among the d input r.v.’s, i.e., ௝݊ ൌ minଵஸ௜ஸௗ ݊௜. First, n 
is at most nj. This is because two independent d.f. observations 
of Y cannot use the same observation of Xj; otherwise they 
would be dependent. Since there are only nj observations of Xj, 
there cannot be more than nj independent d.f. observations of 
Y. 

Secondly, n is at least nj. This is because each time we take 
a distinct observation oi from each of the Xi’s (1 ≤ i ≤ d) and 
apply function f, we obtain a d.f. observation of Y. In total, we 
have nj such d.f. observations and they are independent be-
cause they use independent observations of Xi’s. Thus, n is at 
least nj. Combining the two parts, we have n = nj.             □ 

Note that a result tuple’s probability is determined by a 
boolean r.v. ܻ indicating whether the tuple exists in the result, 
and the ݂ function in Definition 2 is a boolean function. 

Example 4. Let us look at a simple example. Consider the 
following query: 

SELECT (A+B)/2 FROM S WHERE C > 80 

For a tuple ݐ in the result, suppose the A, B, and C attributes 
have sample sizes 15, 10, and 20, respectively. Then, for the 
field ଵܻ ൌ ሺܣ ൅  ሻ/2 in the result, its d.f. sample size isܤ



Fig. 3  Illustrating bootstrap resamples 

min ሺ15, 10ሻ ൌ 10. This result tuple ݐ also has a probability 
that exists in the result, as determined by a boolean r.v.: 

             ଶܻ ൌ ሼ
ܥ ݂݅    ,݁ݑݎݐ ൐ 80
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ݋

. 

That is, ଶܻ is a function on ܥ only, and hence its d.f. sample 
size is 20. 

Based on Lemmas 1 and 2, we immediately have the fol-
lowing theorem in place: 

Theorem 1.  Let ࣞ denote the distribution of a probabilistic 
field ܻ in a query result tuple as obtained by query processing 
over input source data. If ࣞ is a histogram distribution (an 
arbitrary distribution, respectively), then Lemma 1 (Lemma 2, 
respectively) determines its accuracy information, where we 
use the d.f. sample size of ܻ as the ݊ value, and use the mean 
and standard deviation of ࣞ as ݕത and ݏ, respectively. In addi-
tion, the accuracy of a result tuple probability is based on 
Lemma 1 by treating it as a one-bin histogram, where the bin 
probability is the result tuple probability. 

The d.f. sample size required by Theorem 1 is obtained us-
ing Lemma 3. An example follows. 

Example 5. Let us continue on Example 4. Suppose for the 
same result tuple in Example 4, the distribution that we have 
learned for C based on its sample of size 20 informs us that 
Prሾܥ ൐ 80ሿ ൌ 0.6. Then, Theorem 1 shows that we can use 
Lemma 1 by treating the boolean r.v. in Example 4 as a one-
bin histogram in which the bin probability is 0.6. Thus, based 
on Lemma 1, a 90% confidence interval of the tuple probabili-

ty is: 0.6 േ ଴.଴ହටݖ
଴.଺ൈ଴.ସ

ଶ଴
ൌ 0.6 േ 0.18, i.e., ሾ0.42, 0.78ሿ. Simi-

larly, we can compute the accuracy of the field (A+B)/2. 

Since any output random variable in a query result can be 
expressed as a function of input random variables in source 
data, Theorem 1 gives us an analytical method to calculate 
accuracy information of each random variable in a query re-
sult, including a probability distribution in a field and tuple 
probability. 

III. BOOTSTRAP METHODS 

A bootstrap [7, 5] is a statistical technique that has the ad-
vantage of being widely applicable, and it is often more accu-
rate than analytical method which are frequently based on 
assumptions of the underlying distributions. A bootstrap in-
volves a little extra computation; but the recent fast advance-
ment in processors (including multi-cores) and cluster/cloud 
computing has increased computing power tremendously, 
which makes the bootstrap a very useful technique. In this 
section, we devise an algorithm that uses bootstraps to obtain 
the accuracy information which we have proposed in the pre-
vious section. In the experiments (Section V), we actually find 
that our algorithm not only gives tighter confidence intervals 
than analytical methods, but it also incurs little extra computa-
tional overhead. We start with some background on bootstraps 
for the reader to understand our algorithm better. 

A. Bootstraps 

In statistics, the bootstrap (a.k.a. resampling) is a way of 
finding the sampling distribution from just one sample [7, 5]. 
There are two steps: 

(1) Resampling. Create many resamples by repeatedly 
sampling with replacement from one random sample. Suppose 
the sample is of size n. A resample is created by drawing an 
observation (with replacement) uniformly at random from the 
n observations of the sample, and repeating this process n 
times. Thus, the resample also has size n. 

(2) Bootstrap distribution. Over the many resamples 
created in (1), we compute the distribution of the statistic in 
question. This is called the bootstrap distribution. It is shown 
that a bootstrap distribution has approximately the same shape 
and spread as the sampling distribution, but it may be biased 
(its center is based on the original one sample). Thus, we can 
use the bootstrap distribution to derive a confidence interval 
for the statistic, instead of using the sampling distribution. 

Example 6.  We illustrate resampling in Figure 3. This exam-
ple comes from [16] and is based on real-world data (Veri-
zon’s repair times). The box on the top contains an original 
(true) sample of size 6 (i.e., 6 observations). Each of the three 
boxes at the bottom is a resample (sampling from the top box). 
Some values from the original are repeated in the resamples 
because each resample is formed by sampling with replace-
ment. Each resample is also of size 6. We calculate the statis-
tic of interest—the sample mean in this example—for the orig-
inal sample and each resample. The means in the resamples 
give the bootstrap distribution, while the mean in the original 
sample follows a sampling distribution. The bootstrap distri-
bution has approximately the same shape and spread as the 
sampling distribution, but has a biased center. 

 

 

 

B. Using Bootstraps to Get Accuracy Information 

Querying processing algorithms on uncertain streams can 
have two categories:  
 The ones that are based on Monte Carlo algorithms us-

ing samples (e.g., [13]); 
 Others that do not use samples, but directly operate on 

probability distributions (e.g., using Gaussian Mixture 
Models [19]). 

For the first category, the query processing algorithm al-
ready provides a sequence of values for an output random va-
riable. For the second category, we directly get a distribution 
for a random variable in query result; thus we sample from 
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this distribution and also get a sequence of values. In both 
cases, our bootstrap method will operate on this sequence of 
values and obtain accuracy information for the probability 
distribution of the output random variable – confidence inter-
vals of selected parameters, namely bin heights, ߤ, and ߪଶ. 
The algorithm is shown below. 

Algorithm BOOTSTRAP-ACCURACY-INFO ሺݒሾ∙ሿ, ݊,  ሻߙ

Input: ሼݒሾ݅ሿ | 0 ൑ ݅ ൑ ݉ െ 1ሽ: a sequence of values of an out-
put random variable ܻ as a result of query processing; 

           ݊: the d.f. sample size of ܻ; 
 confidence level of the intervals :ߙ           

Output: accuracy information of ܻ 

ݎ :1 ← ቔ
௠

௡
ቕ        // number of d.f. resamples 

2: for each ݅ ← ݎ ݋ݐ 0 െ 1 do        // each resample 

3:         for each ݆ ← ݊ ݋ݐ 0 െ 1 do 
ሾ݆ሿ݋                 :4 ← ሾ݅ݒ ∙ ݊ ൅ ݆ሿ       // n observations 
5:         end for 
6:         for each ݇ ←  do  // for each bin in histogram ܾ ݋ݐ 1

௞ሾ݅ሿ݌                  :7 ←
|ሼ௢ሾ௝ሿ|௢ሾ௝ሿ∈௕ೖሽ|

௡
   // frequency of bin k 

8:         end for 

തሾ݅ሿݕ         :9 ←
ଵ

௡
∙ ∑ ሾ݆ሿ௡ିଵ݋

௝ୀ଴         // sample mean 

ଶሾ݅ሿݏ         :10 ←
ଵ

௡ିଵ
∙ ∑ ሺ݋ሾ݆ሿ െ തሾ݅ሿሻଶ௡ିଵݕ

௝ୀ଴   //sample variance 

11: end for 
12: for each ݇ ←  do  // for each bin in histogram ܾ ݋ݐ 1
13:         output the ߙ interval within ሼ݌௞ሾ݅ሿ | 0 ൑ ݅ ൑ ݎ െ 1ሽ 

        based on percentiles 
14: end for 
15: output the ߙ intervals within ሼݕതሾ݅ሿ | 0 ൑ ݅ ൑ ݎ െ 1ሽ and 

ሼݏଶሾ݅ሿ | 0 ൑ ݅ ൑ ݎ െ 1ሽ, respectively, based on percentiles 

In line 1 of the BOOTSTRAP-ACCURACY-INFO algo-
rithm, we start with grouping the ݉ values of ܻ into ݎ groups, 
each of which has ݊ (d.f. sample size) values (݉ is sufficiently 
large so that the confidence intervals as output by the algo-
rithm converge). Thus, each group is a d.f. resample. For 
completeness, the algorithm computes the intervals for both 
histogram and arbitrary distributions; but in reality one only 
needs the confidence intervals specific to the distribution type. 
Lines 6 to 10 calculate the statistics (bin heights, mean ݕത and 
variance ݏଶ) within each resample. Then, over all ݎ resamples, 
we have a distribution for each of these statistics, which is the 
sampling distribution (Definition 1). Finally, we obtain the ߙ 
intervals (i.e., between 100ሺ1 െ ሻ/2 and 100ሺ1ߙ ൅ -ሻ/2 perߙ
centiles) for each bin height, ݕത and ݏଶ (lines 12 to 15). Let us 
look at an example. 

Example 7.  Suppose ݊ ൌ 15 and ݉ ൌ 300, giving ݎ ൌ 20 in 
line 1. Thus, the BOOTSTRAP-ACCURACY-INFO algorithm 
works with 20 d.f. resamples, each having size 15. For each 
statistic in question (i.e., a bin height, mean, or variance), we 
calculate a value for each d.f. resample, and these values form 
a sampling distribution over all 20 d.f. resamples. For in-
stance, consider how we get accuracy information for ߤ 

(mean). In line 9, we calculate the sample mean, one for each 
of the 20 d.f. resamples. The sample mean of a resample 
,തሾ݅ሿݕ) 0 ൑ ݅ ൑ 19) is the average of the 15 values within the 
resample. These 20 values (ݕതሾ݅ሿ, 0 ൑ ݅ ൑ 19) form a distribu-
tion ࣞ. Suppose the input parameter ߙ ൌ 0.9 (confidence lev-
el). Then we get two estimated values ߤଵ and ߤଶ from ࣞ such 
that the area (i.e., probability) to the left (right, respectively) 

of ߤଵ (ߤଶ, respectively) is 
ଵିఈ

ଶ
ൌ 0.05. Then, the 90% confi-

dence interval for ߤ returned by the algorithm is ሾߤଵ,  ଶሿ. Theߤ
confidence intervals for each bin height and variance are cal-
culated similarly. 

Based on Lemma 4 below, the Theorem 2 that follows es-
tablishes the correctness of our bootstrap algorithm. 

Lemma 4.  As in Definition 2, let ܻ ൌ ݂ሺ ଵܺ, … , ܺௗሻ, where 
ଵܺ, … , ܺௗ are input r.v.’s, and are arranged in an order such 

that ݊ଵ ൑ ݊ଶ ൑ ⋯ ൑ ݊ௗ. Here ݊௜ denotes the sample size of 
௜ܺ  ሺ1 ൑ ݅ ൑ ݀ሻ. Let ݊ be the d.f. sample size of ܻ. Then ܻ has 
ܿ ൌ ∏

௡೔!

ሺ௡೔ି௡ሻ!

ௗ
௜ୀଶ  d.f. samples, each of which has size ݊. 

Proof:  From Lemma 3, we have ݊ ൌ ݊ଵ. Now we take the 
vector of all ݊ observations from the sample of ଵܺ, and take a 
vector (i.e., a permutation) of n observations from each of 
ܺଶ,… , ܺௗ’s samples, we get a matrix M of input values with n 
rows and d columns. If we execute the query n times, using a 
row of M each time for the d input fields, we get n iid d.f. ob-
servations of Y, which form a d.f. sample of Y. Because the n 
input rows are iid, so are the d.f. observations of Y. It is then 
clear that all together there are: 

ܿ ൌෑ ܲሺ݊௜, ݊ሻ
ௗ

௜ୀଶ
ൌෑ

݊௜!

ሺ݊௜ െ ݊ሻ!

ௗ

௜ୀଶ
 

matrixes like M, as we are taking permutations from all but the 
first input field. Thus, there are c d.f. samples in total, each of 
which has size n.                                                                  □ 

Theorem 2. Algorithm BOOTSTRAP-ACCURACY-INFO re-
turns correct confidence intervals. 

Proof:  The sequence of values of the output random variable 
that are fed into the BOOTSTRAP-ACCURACY-INFO algo-
rithm can be considered as d.f. resamples based on the ܿ d.f. 
samples as shown in Lemma 4. Thus, BOOTSTRAP-
ACCURACY-INFO is a concurrent bootstrap from all c d.f. 
samples. Therefore, this bootstrap produces a probability dis-
tribution of a statistic (i.e., a bin height, or the mean/variance) 
that is a mixture distribution of multiple simple bootstrap dis-
tributions, each of which is based on a single d.f. sample. 
Bootstrapping from multiple samples is also an effective and 
valid method to obtain confidence intervals as rigorously stu-
died in statistics (e.g., [7]). Informally, the intuition is that the 
biases of simple bootstrap distributions are somewhat canceled 
out through mixing them together while the percentile confi-
dence interval of the mixture distribution is at least as wide as 
that of a single simple bootstrap distribution.                        □ 

In Section V, using both real and synthetic datasets, we eva-
luate the quality of the obtained confidence intervals. 



IV. SIGNIFICANCE PREDICATES 

When a stream database system is aware of the accuracy of 
the probability distributions that it learned from the environ-
ment, decision making using these distributions must also be 
based on this accuracy information. In database applications, 
decision making is through predicates. Unfortunately, none of 
the existing predicates in SQL or previously proposed proba-
bilistic database systems considers the accuracy information. 

In this section, we propose a novel type of predicate just for 
this purpose. The new type of predicate determines whether 
the truth of a statement about a probability distribution in the 
system is statistically significant (i.e., above a significance 
level), thus having the name significance predicates. The truth 
of a statement is statistically significant if it is unlikely to have 
occurred by chance alone. Significance predicates are based 
on the concept of hypothesis testing in statistics, which will be 
briefly surveyed next. 

A. Background on Hypothesis Testing 

We can make decisions about the truth or falsity of some 
statement about the parameters by hypothesis testing. Hypo-
thesis testing consists of four elements [15]: 
 null hypothesis, H0, about one or more population pa-

rameters, 
 alternative hypothesis, H1, that we will accept if we de-

cide to reject H0, 
 test statistic, computed from sample data, and 
 rejection region, indicating the values of the test statis-

tic that will imply rejection of the null hypothesis. 

The rejection region is usually based on a pre-determined 
significance level ߙ, such that the false positive rate (i.e., ac-
cepting ܪଵ when actually ܪ଴ is true) is below ߙ. 

B. Basic Significance Predicates in Our System 

Let us first look at a motivating example. 

Example 8. Consider two random variable fields X and Y of 
the attribute “temperature” of a stream. X’s distribution is 
learned from a raw sample of size 5: {82, 86, 105, 110, 119}. 
Suppose Y’s distribution has the same mean, and is learned 
from a raw sample of a much larger size, 100, among which 
40 observations are below the value 100 and 60 observations 
are above. 

Now consider two predicates P1 and P2. P1 is a probability 
threshold predicate [3]: temperature >0.5 100, requiring that 
with probability at least 0.5, temperature is greater than 100. 
Since X and Y’s distributions learned by the database should 
be faithful to their raw samples, they both have a probability 
of about 0.6 being greater than 100. Thus they both satisfy P1. 
P2 is E(temperature) > 97, where E(·) denotes the expectation 
of a random variable. Similarly, X and Y both satisfy P2. 

The predicate results in Example 8 clearly overlook the fact 
that an inference based on the X’s distribution and that based 
on Y’s distribution have very different confidence levels. We 
have much more confidence on the result based on Y’s distri-
butions than on X’s distribution, which is learned through a 

sample of only five observations – the predicate result is more 
likely to be by chance. 

We propose to add three most common significance predi-
cates into an uncertain stream database system as built-in 
functions. They are described as follows. 
 ࢚࢙ࢋࢀ࢓.  Its syntax is: 

,ሺܺݐݏ݁ܶ݉ ݈݊ܽ݁݋݋ܾ  ,݌݋ ܿ,  ሻߙ
where ܺ is a probabilistic field, ݌݋ is an operator, ܿ is a 
constant, and ߙ is the significance level (Sec. IV-A). 
-is short for mean test. It determines the relation ݐݏ݁ܶ݉
ship between the mean of ܺ and a constant. In the hypo-
thesis testing [15], the null hypothesis H0 is: E(X) = c, i.e., 
the expectation of X is c, and the alternative hypothesis H1 
is: E(X) op c, where op is one of “<”, “>”, and “<>”. 

 ࢚࢙ࢋࢀࢊ࢓.  Its syntax is: 
,ሺܺݐݏ݁ܶ݀݉ ݈݊ܽ݁݋݋ܾ   ܻ, ,݌݋ ܿ,  ሻߙ
where X and Y are two probabilistic fields whose means 
are to be tested, and op, c, and α are the same as 
in ݉ܶ݁ݐݏ݁ܶ݀݉ .ݐݏ is short for mean difference test. It de-
termines the relationship between the means of two fields. 
The null hypothesis H0 is: E(X) − E(Y) = c, while the al-
ternative hypothesis H1 is: E(X) − E(Y) op c, where op is 
one of “<”, “>”, and “<>”. The most common usage is 
ܿ ൌ 0, which just compares E(X) with E(Y). 

 ࢚࢙ࢋࢀ࢖.  Its syntax is: 
,݀݁ݎ݌ሺݐݏ݁ܶ݌ ݈݊ܽ݁݋݋ܾ   ߬,  ሻߙ
where ݀݁ݎ݌ is an arbitrary predicate as in a deterministic 
database, τ is a probability threshold, and α is the signific-
ance level. ݐݏ݁ܶ݌ is short for probability test. It deter-
mines whether the probability of the truth of a predicate is 
above a threshold. The null hypothesis H0 is: Prሾ݀݁ݎ݌ሿ ൌ
߬, while H1 is: Prሾ݀݁ݎ݌ሿ ൐ ߬. 

Probabilistic threshold queries are commonly used in the 
probabilistic database literature (e.g., [17]). A probabilistic 
threshold query is simply the alternative hypothesis ܪଵ in a 
ሿ݀݁ݎ݌Prሾ :ݐݏ݁ܶ݌ ൐ ߬. A ݐݏ݁ܶ݌ adds another level, the signi-
ficance level ߙ which controls false positive rates (Sec. IV-A). 

Example 9. We use pTest and mTest for the queries in Exam-
ple 8. We can turn P1 into pTest(“temperature > 100”, 0.5, 
0.05), which means that we test the original probability thre-
shold query temperature >0.5 100 with a significance level of 
5%. That is, the false positive rate (i.e., mistakenly accepting 
H1) is no more than 5%. Similarly, we can change P2 to 
mTest(temperature, “>”, 97, 0.05). It can be easily verified 
that with these new predicates, only the field Y would satisfy 
them, but X would not. 

For predicate evaluation, the mTest and mdTest follow the 
population mean tests in statistics [15]. Note that the query 
evaluation of these significance predicates uses hypothesis 
testing, which is very efficient by directly operating on the 
probability distributions using the accuracy information. We 
will verify this in the experiments. The mdTest is useful, for 
example, when we make assertions on whether the mean of 



one field is greater than another (i.e., whether the difference is 
greater than 0). Likewise, the pTest is based on the population 
proportion test. 

C. Significance Predicates with Coupled Tests 

While the basic significance predicates serve our purpose, 
there is a shortcoming. Hypothesis testing has type I errors 
(i.e., false positives) and type II errors (i.e., false negatives). 
The significance level α in the tests only controls the false 
positive rates. For example, for the mTest(t1.c1, “>”, 97, 0.05) 
in Example 9, only when H1 is actually false, are we sure that 
the error rate is no more than 0.05. That is: 

Prሾ݉ܶ݁ܧܷܴܶ ݏ݊ݎݑݐ݁ݎ ݐݏ | .1ݐሺܧ  ܿ1ሻ ൑ 97ሿ ൑ 0.05  

However, we have no control over the false negative rate, i.e., 
Prሾ݉ܶ݁ܧܵܮܣܨ ݏ݊ݎݑݐ݁ݎ ݐݏ | .1ݐሺܧ  ܿ1ሻ ൐ 97ሿ. It can be large, de-
pending on the sample size and the actual ܧሺ1ݐ. ܿ1ሻ value, etc. 

To cope with this problem, we propose a technique called 
coupled tests. Coupled tests are two correlated tests run within 
a significance predicate in order to control both the false posi-
tive rate and the false negative rate of the predicate. The key 
idea is as follows. Suppose originally we have an mTest to 
determine if ܧሾܺሿ ൐ ܿ. We couple this test with its inverse 
test, which is essentially an mTest that determines if ܧሾܺሿ ൏ ܿ. 
The original test rejects if this inverse test accepts. Therefore, 
the original mTest’s false negative error rate is the same as this 
inverse test’s false positive rate, which is controlled by the 
significance level of the inverse test. In this way, we can con-
trol both the false positive and the false negative error rate of 
the original test. The algorithm below achieves our goal. 

Algorithm COUPLED-TESTS ሺܲ, ,ଵߙ  ଶሻߙ
Input: ܲ: a basic significance predicate; 
 ;ଵ: maximum false positive error rateߙ           
 ଶ: maximum false negative error rateߙ           
Output: an answer from ሼܴܷܶܧ, ,ܧܵܮܣܨ  ሽܧܴܷܷܵܰ

1: ଵܶ ← ܲ.  the original hypothesis test //        ݐݏ݁ݐ
2: ଶܶ ← ଵܶ               // a copy of the same test 
3: if ଵܶ. ݌݋ ൌ

ᇱ൏൐ ′ then 
4:         ଵܶ. ݌݋ ←

ᇱ൏ ′ 
5:         ଶܶ. ݌݋ ←

ᇱ൐ ′ 
6:         ଵܶ. ߙ ←  ଵ/2ߙ
7:         ଶܶ. ߙ ←  ଵ/2ߙ
8: else 
9:         ଶܶ. ݌݋ ← ሺ݁ݏݎ݁ݒ݊݅ ଵܶ.  ሻ    //’>’ and ‘<’ are inverse݌݋
10:         ଵܶ. ߙ ←  ଵߙ
11:         ଶܶ. ߙ ←  ଶߙ
12: end if 
ݐ݈ݑݏ݁ݎ :13 ←  ݊ݑݎ ଵܶ 
14: if ݐ݈ݑݏ݁ݎ ൌ  then ܧܷܴܶ
15:         return ܴܷܶܧ 
16: else 
ݐ݈ݑݏ݁ݎ         :17 ←  ݊ݑݎ ଶܶ 
18:         if ݐ݈ݑݏ݁ݎ ൌ  then ܧܷܴܶ
19:                 return ሺܲ. .ݐݏ݁ݐ ݌݋ ൌᇱ൏൐ᇱሻ ? ܧܷܴܶ   ∶  ܧܵܮܣܨ
20:         else 
21:                 return ܷܷܴܰܵܧ 
22: end if   end if 

Since all three basic significance predicates described in 
Section IV-B have a hypothesis test component, we use ܲ.  ݐݏ݁ݐ
(line 1) to denote that test. The algorithm behaves differently 
if the ݌݋ parameter is ‘<>’ (lines 3 to 7); otherwise ଵܶ keeps 
the original ݌݋ while ଶܶ uses its inverse (‘>’ and ‘<’ are in-
verse of each other), as in line 9. Again in line 19, the algo-
rithm behaves differently (returning ܴܷܶܧ) if the original ݌݋ is 
‘<>’; otherwise it returns ܧܵܮܣܨ. The hypothesis tests (includ-
ing ܪ଴ and ܪଵ) are the same as in the basic significance predi-
cates. 

Note that we have changed the return value of the predicate 
from two states to three states (ܴܷܶܧܴܷܷܵܰ ,ܧܵܮܣܨ ,ܧ); only 
 .’<>‘ is ݌݋ may be returned when the ܧܴܷܷܵܰ and ܧܷܴܶ
Theorem 3 below shows the correctness of the algorithm. 

Theorem 3.  Algorithm COUPLED-TESTS has a false posi-
tive rate of no more than ߙଵ and a false negative rate of no 
more than ߙଶ. 

Proof:  Let us first consider the case when ܲ. .ݐݏ݁ݐ  is either ݌݋
′ ൐ ′ or ′ ൏ ′. ଵܶ is the original hypothesis test and has a type I 
error (false positive) rate of no more than ߙଵ. Similarly, ଶܶ has 
a false positive rate of no more than ߙଶ. Since ଶܶ.  is the ݌݋
inverse of ܲ. .ݐݏ݁ݐ  ,ܧܷܴܶ and when ଶܶ returns ,݌݋
COUPLED-TESTS returns ܧܵܮܣܨ, it follows that the false 
negative rate of COUPLED-TESTS is no more than ߙଶ. We 
next consider the case when ܲ. .ݐݏ݁ݐ ݌݋ ൌᇱ൏൐ ′. In this case, 
ଵܶ and ଶܶ have their ݌݋’s as ′ ൏ ′ and ′ ൐ ′ respectively, and 

they both have a significance level of ߙଵ/2 (lines 3 to 7). 
Since the algorithm does not return ܧܵܮܣܨ in this case, the 
false negative rate is 0. Moreover, COUPLED-TESTS returns 
 and thus, it has ,ܧܷܴܶ whenever either ଵܶ or ଶܶ returns ܧܷܴܶ
a false positive error whenever either ଵܶ or ଶܶ has a false posi-
tive error. Hence, due to union bound [11], the false positive 
error rate is no more than 

ఈభ

ଶ
൅

ఈభ

ଶ
ൌ  ଵ. This concludes theߙ

proof.                                                                              □ 

Power of Coupled Tests.  Note that there is still the notion of 
the power (denoted as γ) [11] of the coupled tests for P, al-
though it is not 1 − β (as in a single hypothesis test). For ex-
ample, by definition, the power of mTest (X, “>”, c, α1, α2) is 
Pr[ܧܷܴܶ ݊ݎݑݐ݁ݎ | E(X) > c]. As in standard statistics, γ is 
usually a function. As an example, for mTest, the power func-
tion γ(μ) is a function on μ, the actual expectation of the prob-
abilistic field. Clearly, the power of coupled tests is closely 
related to the number of ܷܷܴܰܵܧ return values; the fewer 
 values, the more powerful the tests are. We will ܧܴܷܷܵܰ
study the power function experimentally in Section V. 

V. EXPERIMENTS 

In this section, we study the following problems through a 
systematic experimental evaluation: 

 How does the accuracy information, as measured by 
confidence intervals of distribution parameters and de-
rived through analytical methods, change when we 
vary the sample sizes? 



 What are the miss rates of the confidence intervals? 
Are these confidence intervals robust when we vary the 
underlying distributions? 

 How does the accuracy information acquired via boot-
straps compare with that acquired via analytical me-
thods? 

 What is the impact to stream system throughput when 
using analytical or bootstrap methods to get accuracy 
information? 

 What are the error rates and powers of the significance 
predicates with and without the coupled-test technique? 
What is the performance overhead of significance pre-
dicates? 

A. Datasets and Setup 

We perform our experimental evaluations on the following 
datasets. 

 A real-world dataset collected by the CarTel project 
team [24]. It consists of measurements of actual traffic 
delays on roads in the greater Boston area performed 
by the CarTel vehicular testbed, a set of 28 taxis 
equipped with various sensors and a wireless network. 
This application is described in Example 1. 

 Some synthetic datasets generated using the R statistic-
al package [25]. We experiment with five types of 
common distributions: exponential (λ = 1), Gamma (k 
= 2, θ = 2.0), normal (μ = 1, σ2 = 1), uniform (0 to 1) 
and Weibull (λ = 1, k = 1). 

With synthetic datasets we can test our findings over more 
diverse distributions. We implemented all algorithms in the 
paper. The experiments were run on a 2.4 GHz Intel Core 2 
Quad CPU machine with 1 GB memory. 

B. Accuracy Information via Analytical Methods 

We examine the relationship between the size (݊) of the 
sample from which a distribution is learned and the confidence 
interval lengths in accuracy information. We first use the road-
delay real dataset. We randomly pick 100 road segments for 
which we have sufficiently large sample sizes (i.e., at least 
600) within a short time period. We consider the distribution 
that we get from the complete sample of such a road segment 
as its true distribution. We next pick a sample of a small size 

(e.g., n = 20) uniformly at random without replacement from 
the original large sample. Then we can not only obtain a dis-
tribution bundled with its accuracy information using this 
small sample, but we can also verify the validity of the confi-
dence intervals since we do have the true distribution. 

Figure 4(a) plots the relationship between sample size ݊ and 
90% confidence interval length of the ߤ parameter of the dis-
tribution. In order to see all three statistics bin heights, mean, 
and variance in the same plot, in Figure 4(b), an interval 
length is normalized through dividing it by the length when n 
= 10. Figures 4(a) and 4(b) show a decrease of interval lengths 
as n grows, for all three kinds of statistics − bin heights, mean, 
and variance. We next examine the qualities of these confi-
dence intervals. 

Clearly, the validity of a confidence interval is determined 
by whether the true value is really contained in the interval. 
When it is not contained, we call it a miss. Thus we use miss 
rate as a metric (clearly, the interval length in the previous 
experiment is also a metric since shorter intervals are more 
useful). 

Figure 4(c) shows the miss rates of the three types of accu-
racy information under different sample sizes. We can see that 
bin heights have the lowest miss rates, while variance has the 
highest. The mean parameter, however, has higher miss rates 
when ݊ is small. The reason is that the analytical method 
Lemma 1 (for bin heights) does not assume a particular shape 
of the underlying distributions. In Lemma 2, the interval 
lengths for ߤ when ݊ ൏ 30 and those for the variance all as-
sume that the underlying distributions are (at least approx-
imately) normal. When the actual population distribution de-
viates from this assumption, the validity of the confidence 
intervals decreases. 

We next experiment on synthetic datasets. We use the R 
statistical package [25] to generate samples for five types of 
common distributions: exponential, Gamma, normal, uniform 
and Weibull. Their parameters are described in Section V-A. 
Figure 4(d) shows the average miss rates for the intervals over 
three kinds of statistics (bin heights, mean, and variance) when 
n = 20. We can see that with all five types of distributions, the 
miss rates are relatively low (recall that they are 90% confi-
dence intervals; thus there is some inherent error). This veri-
fies the overall accuracy of analytical methods. 

               
                                          (a)                                                    (b)                                                 (c)                                                (d) 

Fig. 4 Experimental results: (a) sample size vs. interval length of ߤ, (b) n vs. normalized intervals, (c) miss rates vs. ݊, and (d) miss rates for various distribu-
tions 
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C. Comparison of Bootstrap and Analytical Methods, and 
Their Throughputs 

In this set of experiments, we compare the accuracy infor-
mation of the bootstrap methods and the analytical methods in 
query results. We also evaluate the execution overhead in pro-
ducing the accuracy information. The overhead is measured 
through the impact on the stream system throughput. Using 
the road delay dataset, we issue queries that ask for the total 
delays of a number of routes. On average, there are around 20 
road segments per route. Different road segments may have 
different sample sizes. 

Secondly, using the synthetic dataset, we test diverse distri-
butions and arbitrary queries. We generate a random query 
(expression) by assigning equal probabilities to six operators 
+, −, ×, /, SQRT(ABS(·)), and SQUARE. Together with the 
five types of distributions described in the previous experi-
ment, the query selects the result of the random expression. 

We first evaluate whether bootstraps give more accurate 
and better confidence intervals than analytical methods. For 
this, in Figure 5(a), we show the average ratio (averaging over 
bin heights, mean, and variance) between the confidence in-
terval lengths of bootstraps and those of analytical methods. 
We also show the miss rates of the confidence intervals of 
bootstraps. We obtain similar trends from the queries on the 
road-delay data and from the random queries on synthetic da-
ta. We thus show the average results from both datasets. Fig-
ure 5(a) indicates that bootstraps give slightly shorter confi-
dence interval lengths for bin heights. For mean and variance, 
however, bootstraps show significant advantage, with confi-

dence intervals shortened by about 40%. The miss rates, on 
the other hand, stay very low for bootstraps. The considerable 
improvement on mean and variance is due to the normality 
assumption of the analytical methods, which does not always 
hold true. Bootstraps are always robust to the skewness of the 
underlying query result distributions. 

To verify whether our analysis is correct, we also generate 
random queries for which we know the result is normal. Spe-
cifically, in the random generation process, we limit the distri-
butions to be only from normal distributions and the operators 
to be only + and −. Figure 5(b) shows the confidence interval 
length ratios between bootstraps and analytical methods. We 
can see that the difference between the two methods on mean 
and variance is less here, with bootstraps having around 20% 
shorter intervals. This is because when the underlying result 
distributions are indeed normal, analytical methods on mean 
and variance are also very accurate. 

We now examine the execution overhead of bootstraps and 
analytical methods for getting accuracy information. In a 
stream context, this is reflected in the impact on maximum 
throughputs with which the system is able to handle incoming 
stream tuples. In order to measure the maximum throughout, 
we synthetically generate data tuples. For each item, we gen-
erate 20 data points and the query processor learns a Gaussian 
distribution from them. The query is a simple count-based 
sliding window AVG query (e.g., [9]) with a window size of 
1000. Since the inputs are Gaussians, the query processor can 
compute the AVG result as a Gaussian distribution. For each 
such query result, we compute its accuracy information (on ߤ 
and ߪଶ) through analytical methods and through bootstraps. 
Figure 5(c) shows the throughputs of (1) query processing 

                

                                          (a)                                                (b)                                            (c)                                                  (d) 

                  

                                            (e)                                                  (f)                                                (g)                                                (h) 

Fig. 5 More experimental results: (a) bootstraps compared to analytical results, (b) Gaussian results, (c) maximum throughput impacts, (d) errors of a single 
significance predicate, (e) result of coupled tests, (f) maximum throughputs, (g) power vs. δ (mTest), and (h) power vs. τ (pTest). 
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only, (2) query processing and getting accuracy information 
via analytical methods, and (3) query processing and getting 
accuracy information via bootstraps. We can see that analyti-
cal methods have less overhead than bootstraps, but the 
throughput changes due to the overhead of applying analytical 
methods and bootstraps are both relatively small. Note that we 
have used a very simple query. A more expensive query would 
only make the throughput impact of getting accuracy informa-
tion less significant. These experiments also inform us that 
bootstraps in general give better quality accuracy information, 
while only having slightly more overhead compared to analyt-
ical methods. 

D. Significance Predicates 

We now study significance predicates using both real and 
synthetic datasets. For the road-delay real dataset, we choose 
100 pairs of routes and use mdTest predicates, i.e., a query 
asks whether the mean of the first route’s delay is greater than 
that of the second route. We intentionally choose pairs of 
routes whose true mean values are close, which makes com-
parisons using small sample sizes more challenging. In other 
words, we expect to see a large number of errors when sample 
sizes are small. For 100 pairs of routes, we perform 200 com-
parisons, with and without significance predicates (mdTest). 
In the first 100 tests, we make the null hypothesis H0 to be 
(actually) true and test false positives (type I errors) with vari-
ous sample sizes. This is done through arranging the order of 
each pair of routes such that E(X) ≤ E(Y) yet the predicate is 
“E(X) > E(Y)”. In the second 100 tests, we make the alterna-
tive hypothesis H1 to be true to test false negatives. This is 
similarly done through arranging the order of each pair such 
that E(X) > E(Y) instead. For comparison, we also check the 
number of errors when we do not use significance predicates 
(i.e., merely E(X) > E(Y) as in previous work). 

We show the results in Figures 5(d) and 5(e). In Figure 
5(d), we do not use our coupled tests technique, but only use a 
single hypothesis test. We set the significance level of the test 
α = 0.05. The figure verifies that the false positive rate is be-
low 5%. However, with a single test, the false negative rate is 
not really under the control of the user; it is a function of the 
sample size and the actual E(X) and E(Y) values. From Figure 
5(d), we also see that, as sample size increases, errors de-
crease. 

By contrast, in Figure 5(e), we show the result with our 
coupled tests. The user can specify both types of error rates (in 
this case, both 0.05), and when the system cannot make a de-
cision that respects these error rates, it returns the result UN-
SURE. We can see that the number of unsure comparisons 
decreases as sample size increases, and that the actual number 
of errors strictly follows the error rate specification. 

Following the setup in Section V-C (Figure 5(c)) for testing 
stream throughput, we issue the same count-based sliding 
window AVG query, followed by significance predicates with 
coupled-tests using mTests (whether the mean is greater than a 
value), mdTests (whether the mean is greater than the one in 
the previous window), and pTests (whether the average is 
greater than a constant with probability at least 0.8), respec-
tively. Figure 5(f) shows the throughputs of no significance 

predicates (first bar) and each of the other three cases. It is 
clear that significance predicates have little overhead (even 
less than computing the accuracy information) since they are 
efficient hypothesis testing on the distributions. 

We next use synthetic datasets, with the same five types of 
distributions, and study mTest and pTest. We have mTest (X, 
op, c, α1, α2), where op is “>”, c = (1 + δ)μ, and α1 = α2 = 0.05. 
Here μ is the true expectation of X and we use a sample of size 
20. Since E(X) > (1 + δ)μ is false for any δ > 0, any error of 
this test is a false positive. We have verified that the error rates 
are well below 0.05, and omit the figure. 

An important aspect of significance predicates is the power 
of the test. Even with our test-coupling technique, the power 
of the test is directly related to the number of UNSURE results 
(the higher the power, the fewer the unsure results). We now 
observe the relationship between the power of the COUPLED-
TESTS algorithm and the δ value in the mTest within. The 
result is in Figure 5(g). As δ increases, the difference between 
the actual E(X) and the value to be compared with increases, 
which makes the test easier. Thus, we see an increase in the 
power. Also observe the interesting fact that the test power 
increases faster with the uniform and Gamma distributions. 
The reason for the uniform (0, 1) distribution is because it has 
a very small variance (1/12) compared to other distributions 
which have variances of at least 1. The reason for the Gamma 
distribution (k = 2, θ = 2.0) is because the probability decreas-
es much faster as δ increases than other distributions; thus it is 
easier to determine the test result as δ increases. 

We finally use pTest (pred, τ, α1, α2), where pred is simply 
X > v and α1 = α2 = 0.05. To produce false positives, we 
choose v such that the true Pr (X > v) is τ (1 − δ). Likewise, for 
false negatives, we choose v such that the true Pr (X > v) is τ 
(1 + δ). We fix δ = 0.3 and vary the τ parameter. We find that 
the two types of error rates are well below α1 and α2 values. 
We study the relationship between the power of the test and 
the τ parameter, with the result shown in Figure 5(h). As τ 
increases, the difference between the true Pr (X > v) and τ in-
creases, which makes the comparison an easier decision (i.e., 
higher power). Moreover, because the decision of Pr (X > v) ≤ 
τ (using a sample) is based on quantiles, it is independent of 
the actual distribution. Thus, we see that, for all five distribu-
tions, the power of the test increases at about the same rate. 

VI. RELATED WORK 

There have been a number of projects on probabilistic data-
bases, including Orion [18], MystiQ [4], Trio [21], and MCDB 
[12]. Previous work that deals with uncertain data streams 
(like ours) includes [3, 6, 8, 12, 19]. However, to the best of 
our knowledge, none of that work considers the accuracy of 
the probability distributions acquired; they all assume that 
distributions are already obtained in the first place and com-
pletely trust them. 

A related concept in AI is the so-called imprecise probabili-
ties [20, 23]. The basic idea there is to use a probability inter-
val to represent the really available knowledge, and provides 
tools to model and work with weaker states of information. 
We study this in databases and propose a novel technique of 



using confidence intervals on the parameters of distributions 
to model the uncertainty of distributions, which has not been 
explored in AI. 

Koch and Gotz [14, 10] study the reliability of query re-
sults, which bears some similarity to our work. However, they 
have a different motivation, and solve a different problem with 
a different approach. Their goal is to provide a compositional 
framework for queries over unreliable data resulted from ap-
proximate query processing (e.g., Monte Carlo algorithms). 
[14, 10] use a discrete model that only deals with tuple confi-
dence. By contrast, we solve the accuracy of probability dis-
tributions and decision making starting from learning distribu-
tions based on samples to query results, as required by many 
data stream and sensor networks applications. In addition, [14, 
10] only consider the basic positive relational algebra (with an 
extension of the repair-key construct), while we handle arbi-
trary (extended) SQL queries, which are more powerful and 
are suitable for stream databases. 

Finally, Perez et al. study the evaluation of probabilistic 
threshold queries in MCDB [17]. However, like others, they 
assume the input probability distributions are accurate and get 
samples from them for query processing, which is completely 
different from the problem that we solve in this work. 

VII. CONCLUSIONS AND FUTURE WORK 

While probability distributions are introduced into stream 
databases to make noisy data more useful, what is lacking is 
the important information of how accurate such distributions 
are. We propose and perform a first study on an accuracy-
aware uncertain stream database in a general setting that can 
have continuous distributions. We gauge the accuracy of data 
and query results both analytically and through efficient boot-
straps. Moreover, we propose a new type of predicate for deci-
sion making in this context.  We have performed extensive 
experiments on real and synthetic datasets to validate our 
schemes and algorithms. 

As future work, we plan to study the idea of using samples 
of different weights to quantify the accuracy of probability 
distributions that are learned from them. For instance, obser-
vations that are obtained more recently can have more weights 
in determining the accuracy information. 
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