
TYPE CLASSES IN HASKELL

CORDELIA HALL, KEVIN HAMMOND, SIMON PEYTON JONES, PHILIP WADLER

UNIVERSITY OF GLASGOW

Abstract. This paper de�nes a set of type inference rules for resolving overload-

ing introduced by type classes. Programs including type classes are transformed

into ones which may be typed by the Hindley-Milner inference rules. In contrast

to an other work on type classes, the rules presented here relate directly to user

programs. An innovative aspect of this work is the use of second-order lambda

calculus to record type information in the program.

1. Introduction

A funny thing happened on the way to Haskell [HPW91]. The goal of the Haskell commit-

tee was to design a standard lazy functional language, applying existing, well-understood

methods. To the committee's surprise, it emerged that there was no standard way to

provide overloaded operations such as equality (==), arithmetic (+), and conversion to a

string (show).

Languages such as Miranda

1

[Tur85] and Standard ML [MTH, MT91] o�er di�ering solu-

tions to these problems. The solutions di�er not only between languages, but within a

language. Miranda uses one technique for equality (it is de�ned on all types { including

abstract types on which it should be unde�ned!), another for arithmetic (there is only

one numeric type), and a third for string conversion. Standard ML uses the same tech-

nique for arithmetic and string conversion (overloading must be resolved at the point of

appearance), but a di�erent one for equality (type variables that range only over equality

types).

The committee adopted a completely new technique, based on a proposal by Wadler,

which extends the familiar Hindley-Milner system [Mil78] with type classes. Type classes

provide a uniform solution to overloading, including providing operations for equality,

arithmetic, and string conversion. They generalise the idea of equality types from Standard

ML, and subsume the approach to string conversion used in Miranda. This system was

originally described by Wadler and Blott [WB89, Blo91], and a similar proposal was made

independently by Kaes [Kae88].

The type system of Haskell is certainly its most innovative feature, and has provoked

much discussion. There has been closely related work by Rouaix [Rou90] and Comack and

Wright [CW90], and work directly inspired by type classes includes Nipkow and Snelting

This work is supported by the GRASP Project. Authors' address: Computing Science Dept,

Glasgow University, Glasgow, Scotland. Email: fcvh, kh, simonpj, wadlerg@uk.ac.glasgow.dcs

1

Miranda is a trademark of Research Software Limited.

1



2 HALL, HAMMOND, PEYTON JONES, WADLER

[NS91], Volpano and Smith [VS91], and Jones [Jon92]. There has also been a good deal

of tra�c concerning type classes on the Haskell mailing list.

The original type inference rules given in [WB89] were deliberately rather spare, and were

not intended to re
ect the Haskell language precisely. As a result, there has been some

confusion as to precisely how type classes in Haskell are de�ned.

1.1. Contributions of this paper. This paper spells out the precise de�nition of type

classes in Haskell. These rules arose from a practical impetus: our attempts to build a

compiler for Haskell. The rules were written to provide a precise speci�cation of what

type classes were, but we found that they also provided a blueprint for how to implement

them.

This paper presents a simpli�ed subset of the rules we derived. We intend to publish the

full set of rules as a formal static semantics of Haskell [PW91]. The full static semantics

contains over 30 judgement forms and over 100 rules. The reader will be pleased to know

that this paper simpli�es the rules considerably, while maintaining their essence in so far

as type classes are concerned. The full rules are more complex because they deal with

many additional syntactic features such as type declarations, pattern matching, and list

comprehensions.

The static analysis phase of our Haskell compiler is now nearly complete. It was de-

rived by adopting directly the rules in the static semantics, which was generally a very

straightforward task. In our earlier prototype compiler, and also in the prototype com-

pilers constructed at Yale and Chalmers, subtleties with types caused major problems.

Writing down the rules has enabled us to discover bugs in the various prototypes, and to

ensure that similar errors cannot arise in our new compiler.

We have been inspired in our work by the formal semantics of Standard ML prepared by

Milner, Tofte, and Harper [MTH, MT91]. We have deliberately adopted many of the same

techniques they use for mastering complexity.

The industrial grade rules given here provide a useful complement to the more theoretical

approaches of Wadler and Blott [WB89, Blo91], Nipkow and Snelting [NS91], and Jones

[Jon92]. A number of simplifying assumptions made in those papers are not made here.

Unlike [WB89], it is not assumed that each class has exactly one operation. Unlike [NS91],

it is not assumed that the intersection of every pair of classes must be separately declared.

Unlike [Jon92], we deal directly with instance and class declarations. Each of those papers

emphasises one aspect or another of the theory, while this paper stresses what we learned

from practice.

A further contribution of this work is the use of explicit polymorphism in the target

language, as described in the next section.

1.2. A target language with explicit polymorphism. As in [WB89, NS91, Jon92],

the rules given here specify a translation from a source language with type classes to a

target language without them. The translation implements type classes by introducing

extra parameters to overloaded functions, which are instantiated at the calling point with

dictionaries that de�ne the overloaded operations.

The target language used here di�ers in that all polymorphism has been made explicit.

In [WB89, NS91, Jon92], the target language resembles the implicitly typed polymorphic



TYPE CLASSES IN HASKELL 3

lambda calculus of Hindley and Milner [Hin69, Mil78, DM82]. Here, the target language

resembles the explicitly typed second-order polymorphic lambda calculus of Girard and

Reynolds [Gir72, Rey74]. It has constructs for type abstraction and application, and each

bound variable is labeled with its type.

The reason for using this as our target language is that it makes it easy to extract a

type from any subterm. This greatly eases later stages of compilation, where certain

optimisations depend on knowing a subterm's type. An alternative might be to annotate

each subterm with its type, but our method has three advantages.

� It uses less space. Types are stored in type applications and with each bound

variable, rather than at every subterm.

� It eases subsequent transformation. A standard and productive technique for com-

piling functional languages is to apply various transformations at intermediate

phases [Pey87]. With annotations, each transformation must carefully preserve

annotations on all subterms and add new annotations where required. With poly-

morphic lambda calculus, the usual transformation rules { e.g., �-reduction for

type abstractions { preserve type information in a simple and e�cient way.

� It provides greater generality. Our back end can deal not only with languages

based on Hindley-Milner types (such as Haskell) but also languages based on the

more general Girard-Reynolds types (such as Ponder).

The use of explicit polymorphism in our target language is one of the most innovative

aspects of this work. Further, this technique is completely independent of type classes {

it applies just as well to any language based on Hindley-Milner types.

1.3. Structure of the paper. This paper does not assume prior knowledge of type

classes. However, the introduction given here is necessarily cursory; for further motivating

examples, see the original paper by Wadler and Blott [WB89]. For a comparison of the

Hindley-Milner and Girard-Reynolds systems, see the excellent summary by Reynolds

[Rey85]. For a practicum on Hindley-Milner type inference, see the tutorials by Cardelli

[Car87] or Hancock [Han87].

The remainder of this paper is organised as follows. Section 2 introduces type classes

and our translation method. Section 3 describes the various notations used in presenting

the inferences rules. The syntax of types, the source language, and the target language

is given, and the various forms of environment used are discussed. Section 4 presents

the inference rules. Rules are given for types, expressions, dictionaries, class declarations,

instance declarations, and programs.

2. Type Classes

This section introduces type classes and de�nes the required terminology. Some simple

examples based on equality and comparison operations are introduced. Some overloaded

function de�nitions are given and we show how they translate. The examples used here

will appear as running examples through the rest of the paper.

2.1. Classes and instances. A class declaration provides the names and type signa-

tures of the class operations:

class Eq a where



4 HALL, HAMMOND, PEYTON JONES, WADLER

(==) :: a -> a -> Bool

This declares that type a belongs to the class Eq if there is an operation (==) of type

a -> a -> Bool. That is, a belongs to Eq if equality is de�ned for it.

An instance declaration provides amethod that implements each class operation at a given

type:

instance Eq Int where

(==) = primEqInt

instance Eq Char where

(==) = primEqChar

This declares that type Int belongs to class Eq, and that the implementation of equality

on integers is given by primEqInt, which must have type Int -> Int -> Bool. Similarly

for characters.

We can now write 2+2 == 4, which returns True; or 'a' == 'b', which returns False.

As usual, x == y abbreviates (==) x y. In our examples, we assume all numerals have

type Int.

Functions that use equality may themselves be overloaded:

member = \ x ys -> not (null ys) && (x == head ys || member x (tail ys))

This uses Haskell notation for lambda expressions: \ x ys -> e stands for �x: �ys. e.

In practice we would use pattern matching rather than null, head, and tail, but here

we avoid pattern matching, since we give typing rules for expressions only. Extending to

pattern matching is easy, but adds unnecessary complication.

The type system infers the most general possible signature for member:

member :: (Eq a) => a -> [a] -> Bool

The phrase (Eq a) is called a context of the type { it limits the types that a can range over

to those belonging to class Eq. As usual, [a] denotes the type of lists with elements of type

a. We can now inquire whether (member 1 [2,3]) or (member 'a' ['c','a','t']),

but not whether (member sin [cos,tan]), since there is no instance of equality over

functions. A similar e�ect is achieved in Standard ML by using equality type variables;

type classes can be viewed as generalising this behaviour.

Instance declarations may themselves contain overloaded operations, if they are provided

with a suitable context:

instance (Eq a) => Eq [a] where

(==) = \ xs ys -> (null xs && null ys)

|| ( not (null xs) && not (null ys)

&& head xs == head ys

&& tail xs == tail ys)

This declares that for every type a belonging to class Eq, the type [a] also belongs to

class Eq, and gives an appropriate de�nition for equality over lists. Note that head xs ==



TYPE CLASSES IN HASKELL 5

head ys uses equality at type a, while tail xs == tail ys recursively uses equality at

type [a]. We can now ask whether ['c','a','t'] == ['d','o','g'].

Every entry in a context pairs a class name with a type variable. Pairing a class name

with a type is not allowed. For example, consider the de�nition:

palindrome xs = (xs == reverse xs)

The inferred signature is:

palindrome :: (Eq a) => [a] -> Bool

Note that the context is (Eq a), not (Eq [a]).

2.2. Superclasses. A class declaration may include a context that speci�es one or more

superclasses:

class (Eq a) => Ord a where

(<) :: a -> a -> Bool

(<=) :: a -> a -> Bool

This declares that type a belongs to the class Ord if there are operations (<) and (<=) of

the appropriate type, and if a belongs to class Eq. Thus, if (<) is de�ned on some type,

then (==) must be de�ned on that type as well. We say that Eq is a superclass of Ord.

The superclass hierarchy must form a directed acyclic graph. An instance declaration is

valid for a class only if there are also instance declarations for all its superclasses. For

example

instance Ord Int where

(<) = primLtInt

(<=) = primLeInt

is valid, since Eq Int is already a declared instance.

Superclasses allow simpler signatures to be inferred. Consider the following de�nition,

which uses both (==) and (<):

search = \x ys -> not (null ys)

&& ( x == head ys

|| x < head ys && search x (tail ys))

The inferred signature is:

search :: (Ord a) => a -> [a] -> Bool

Without superclasses, the inferred signature would have had the context (Eq a, Ord a).

2.3. Translation. The inference rules specify a translation of source programs into target

programs where the overloading is made explicit.



6 HALL, HAMMOND, PEYTON JONES, WADLER

Each instance declaration generates an appropriate corresponding dictionary declaration.

The dictionary for a class contains dictionaries for all the superclasses, and methods for

all the operators. Corresponding to the Eq Int and Ord Int instances, we have the

dictionaries:

dictEqInt = hprimEqInti

dictOrdInt = hdictEqInt, primLtInt, primLeInti

Here he

1

; : : : ; e

n

i builds a dictionary. The dictionary for Ord contains a dictionary for its

superclass Eq and methods for (<) and (<=).

For each operation in a class, there is a selector to extract the appropriate method from

the corresponding dictionary. For each superclass, there is also a selector to extract the

superclass dictionary from the subclass dictionary. Corresponding to the Eq and Ord

classes, we have the selectors:

(==) = \dEq -> project

1

1

dEq

getEqFromOrd = \dOrd -> project

3

1

dOrd

(<) = \dOrd -> project

3

2

dOrd

(<=) = \dOrd -> project

3

3

dOrd

Here project

n

i

e selects the i'th component of a dicitionary with n entries, so that

project

n

i

hv

1

; : : : ; v

n

i = v

i

. The selector getEqFromOrd extracts the dictionary of the

superclass Eq from a dictionary for Ord, and the selectors (<) and (<=) extract the cor-

responding methods from a dictionary for Ord.

Each overloaded function has extra parameters corresponding to the required dictionaries.

Here is the translation of search:

search = \ dOrd x ys ->

not (null ys)

&& ( (==) (getEqFromOrd dOrd) x (head ys)

|| (<) dOrd x (head ys) && search dOrd x (tail ys))

Each call of an overloaded function supplies the appropriate parameters. Thus the term

(search 1 [2,3]) translates to (search dictOrdInt 1 [2,3]).

If an instance declaration has a context, then its translation has parameters corresponding

to the required dictionaries. Here is the translation for the instance (Eq a) => Eq [a]:

dictEqList = \ dEq -> h\ xs ys ->

(null xs && null ys)

|| ( not (null xs) && not (null ys)

&& (==) dEq (head xs) (head ys)

&& (==) (dictEqList dEq) (tail xs) (tail ys))i

When given a dictionary for Eq a this yields a dictionary for Eq [a]. To get a dictionary

for equality on list of integers, one writes dictEqList dictEqInt.

The actual target language used di�ers from the above in that it contains extra constructs

for explicit polymorphism. See Section 3.2 for examples.



TYPE CLASSES IN HASKELL 7

Type variable �

Type contructor �

Class name �

Simple type � ! �

j � �

1

: : : �

k

(k � 0; k = arity(�))

j �

0

! �

Overloaded type � ! h�

1

�

1

; : : : ; �

m

�

m

i ) � (m � 0)

Polymorphic type � ! 8�

1

: : :�

l

:� ) � (l � 0)

Context � ! h�

1

�

1

; : : : ; �

m

�

m

i (m � 0)

Figure 1. Syntax of types

3. Notation

This section introduces the syntax of types, the source language, the target language, and

the various environments that appear in the type inference rules.

3.1. Type syntax. Figure 1 gives the syntax of types. Types come in three 
avours:

simple, overloaded, and polymorphic.

Recall from the previous section the type signature for search,

(Ord a) => a -> [a] -> Bool;

which we now write in the form

8�:hOrd �i ) � ! List � ! Bool:

This is a polymorphic type of the form � = 8�:� ) � built from a context � = hOrd �i

and a simple type � = � ! List � ! Bool. Here Ord is a class name, List is a type

constructor of arity 1, and Bool is a type constructor of arity 0.

There is one subtlety. In an overloaded type �, entries between angle brackets may have

the form � � , whereas in a polymorphic type � or a context � entries are restricted to

the form � �. The extra generality of overloaded types is required during the inference

process.

3.2. Source and target syntax. Figure 2 gives the syntax of the source language.

A program consists of a sequence of class and instance declarations, followed by an

expression. The Haskell language also includes features such as type declarations and

pattern matching, which have been omitted here for simplicity. The examples from the

previous section �t the source syntax precisely.

Figure 3 gives the syntax of the target language. We write the nonterminals of translated

programs in boldface: the translated form of var is var and of exp is exp. To indicate

that some target language variables and expressions represent dictionaries, we also use

dvar and dexp.

The target language uses explicit polymorphism. It gives the type of bound variables in

function abstractions, and it includes constructs to build and select from dictionaries, and



8 HALL, HAMMOND, PEYTON JONES, WADLER

program ! classdecls ; instdecls ; exp Programs

classdecls ! classdecl

1

; : : : ; classdecl

n

Class declaration (n � 0)

instdecls ! instdecl

1

; : : : ; instdecl

n

Instance declaration (n � 0)

classdecl ! class � ) � � Class declaration

where var

1

: �

1

; : : : ; var

m

: �

m

(m � 0)

instdecl ! instance � ) � (� �

1

: : :�

k

) Instance declaration

where var

1

= exp

1

; : : : ; var

m

= exp

m

(k � 0, m � 0)

exp ! var Variable

j � var . exp Function abstraction

j exp exp

0

Function application

j let var = exp

0

in exp Local de�nition

Figure 2. Syntax of source programs

program ! letrec bindset in exp Program

bindset ! var

1

= exp

1

; : : : ;var

n

= exp

n

Binding set (n � 0)

exp ! var Variable

j � var : �: exp Function abstraction

j exp exp

0

Function application

j let var = exp

0

in exp Local de�nition

j hexp

1

; : : : ; exp

n

i Dictionary formation (n � 0)

j project

n

i

exp Dictionary extraction

j ��

1

: : :�

n

. exp Type abstraction (n � 1)

j exp �

1

: : : �

n

Type application (n � 1)

Figure 3. Syntax of target programs

to perform type abstraction and application. A program consists of a set of bindings,

which may be mutually recursive, followed by an expression.

As an example, here is the translation of search from Section 2.3, amended to make all

polymorphism explicit:

search = ��: �dOrd:(Ord �): �x:�: �ys:[�]:

not (null � ys)

&& ( (==) � (getOrdFromEq � dOrd) x (head � ys)

|| (<) � dOrd x (head � ys) && search � dOrd x (tail � ys))

For the target language, the syntax of simple types is extended to include \dictionary

types" of the form � � . In the example above, (Ord �) is a dictionary type. It can be

thought of as a shorthand for the type hEq �; � ! � ! Bool; �! � ! Booli.



TYPE CLASSES IN HASKELL 9

Environment Notation Type

Type variable environment AE f�g

Type constructor environment TE f� : kg

Type class environment CE f� : 8�: � ) LVEg

Instance environment IE fdvar : 8�

1

: : :�

k

: � ) � �g

Local instance environment LIE fdvar : � �g

Variable environment V E fvar : �g

Local variable environment LV E fvar : �g

Environment E (AE; TE;CE; IE;LIE; VE)

Declaration environment DE (CE; IE;VE)

Figure 4. Environments

TE

0

= f Int: 0,

Bool:0,

List:1 g

CE

0

= f Eq : f (==): 8�: h i ) � ! � ! Bool g;

Ord : f (<): 8�: hEq �i ) � ! � ! Bool;

(<=): 8�: hEq �i ) � ! � ! Bool g g

IE

0

= f getEqFromOrd : 8�: hOrd �i ) Eq �;

dictEqInt : Eq Int;

dictEqList : 8�: hEq �i ) Eq (List �);

dictOrdInt : Ord Int g

VE

0

= f (==):8�: hEq �i ) � ! � ! Bool;

(<): 8�: hOrd �i ) � ! � ! Bool;

(<=):8�: hOrd �i ) � ! � ! Bool g

E

0

= (f g; TE

0

; CE

0

; IE

0

; f g; VE

0

)

Figure 5. Initial environments

3.3. Environments. The inference rules use a number of di�erent environments, which

are summarised in Figure 4.

The environment contains su�cient information to verify that all type variables, type con-

structors, class names, and individual variables appearing in a type or expression are valid.

Environments come in two 
avours, map environments and compound environments.

A map environment associates names with information. We write ENV name = info to

indicate that environment ENV maps name name to information info. If the information

is not of interest, we just write ENV name to indicate that name is in the domain of ENV.

The type of a map environment is written in the symbolic form fname : infog.

We have the following map environments.

� The type variable environment AE contains each type variable name � that may

appear in a valid type. This is the one example of a degenerate map, where there

is no information associated with a name. We write AE � to indicate that � is in

AE.



10 HALL, HAMMOND, PEYTON JONES, WADLER

� The type contructor environment TE maps a type constructor � to its arity k.

� The type class environment CE maps a class name � to a value environment V E

that speci�es the type of each operator in the class. This is explained in more

detail below.

� The instance environment IE maps a dictionary variable dvar to its corresponding

type. The type indicates that dvar is a polymorphic function that expects one

dictionary for each entry in �, and returns a dictionary for � � .

� The local instance environment LIE is similar, except the associated type is more

restricted. Here the type indicates that dvar is a dictionary for � � .

� The variable environment IE maps a variable var to its associated polymorphic

type �.

� The local variable environment LIE is similar, except the associated type is a

simple type � .

Environments corresponding to the examples in Section 2 are shown in Figure 5.

Given a local value environment LV E the notation

8�

1

: : :�

k

: � ) LV E

stands for a value environment VE with the same domain as LV E such that if LV E var =

� then V E var = 8�

1

: : :�

k

: � ) � . This is used when specifying the type of CE above,

to make clear that each entry in the associated value environment has the same quanti�ed

type variable and context. We use a similar notation to generate an instance environment

IE from a local instance environment LIE.

A compound environment consists of a tuple of other environments. We have the following

compound environments.

� Most judgements use an environment E consisting of a type variable, a type con-

structor, a type class, an instance, a local instance, and a variable environment.

� The judgements for class declarations produces a declaration environment DE

consisting of a type class, an instance, and a variable environment.

Again, these are summarised in Figure 4.

We write V E of E to extract the type environment V E from the compound environment

E, and similarly for other components of compound environments.

The operations � and

!

� combine environments. The former checks that the domains of

its arguments are distinct, while the latter \shadows" its left argument with its right:

(ENV

1

� ENV

2

) var =

�

ENV

1

var if var 2 dom(ENV

1

) and var 62 dom(ENV

2

)

ENV

2

var if var 2 dom(ENV

2

) and var 62 dom(ENV

1

),

(ENV

1

!

� ENV

2

) var =

�

ENV

1

var if var 2 dom(ENV

1

) and var 62 dom(ENV

2

)

ENV

2

var if var 2 dom(ENV

2

).

For brevity, we write E

1

� E

2

instead of a tuple of the sums of the components of E

1

and E

2

; and we write E � V E to combine VE into the appropriate component of E; and

similarly for other environments.

There are three implicit side conditions associated with environments:

(1) Variables may not be declared twice in the same scope. If E

1

� E

2

appears in a

rule, then the side condition dom(E

1

) \ dom(E

2

) = ; is implied.



TYPE CLASSES IN HASKELL 11

E

type

` �

E

over-type

` �) �

E

poly-type

` 8�

1

; : : : ; �

n

: �) �

(AE of E) �

TYPE-VAR

E

type

` �

(TE of E) � = k

E

type

` �

i

(1 � i � k)

TYPE-CON

E

type

` � �

1

: : : �

k

(CE of E) �

i

(1 � i � m)

(AE of E) �

i

(1 � i � m)

E

type

` �

TYPE-PRED

E

over-type

` h�

1

�

1

; : : : ; �

m

�

n

i ) �

AE = f�

1

; : : : ; �

k

g

E � AE

over-type

` � ) �

TYPE-GEN

E

poly-type

` 8�

1

: : :�

k

: � ) �

Figure 6. Rules for types

(2) Every variable must appear in the environment. If E var appears in a rule, then

the side condition var 2 dom(E) is implied.

(3) At most one instance can be declared for a given class and given type constructor.

If IE

1

� IE

2

appears in a rule, then the side condition

8 �

1

(�

1

�

1

: : :�

m

) 2 IE

1

: 8 �

2

(�

2

�

1

: : :�

n

) 2 IE

2

: �

1

6= �

2

_ �

1

6= �

2

is implied.

4. Rules

This section gives the inference rules for the various constructs in the source language. We

consider in turn types, expressions, dictionaries, class declarations, instance declarations,

and full programs.

4.1. Types. The rules for types are shown in Figure 6. The three judgement forms

de�ned are summarised in the upper left corner. A judgement of the form

E

type

` �

holds if in environment E the simple type � is valid. In particular, all type variables in �

must appear in AE of E (as checked by rule TYPE-VAR), and all type constructors in

� must appear in TE of E with the appropriate arity (as checked by rule TYPE-CON).

The other judgements act similarly for overloaded types and polymorphic types.



12 HALL, HAMMOND, PEYTON JONES, WADLER

Here are some steps involved in validating the type 8�: hOrd �i ) � ! � ! Bool. Let

AE = f�g and let E

0

be as in Figure 5. Then the following are valid judgements:

(1) E

0

� AE

type

` �! �! Bool;

(2) E

0

� AE

over-type

` hOrd �i ) � ! � ! Bool;

(3) E

0

poly-type

` 8�: hOrd �i ) � ! � ! Bool:

Judgement (1) yields (2) via TYPE-PRED, and judgement (2) yields (3) via TYPE-GEN.

The type inference rules are designed to ensure that all types that arise are valid, given

that all types in the initial environment are valid. In particular, if all types appearing in

the CE, IE, LIE, and V E components of E are valid with respect to E, this property

will be preserved throughout the application of the rules.

4.2. Expressions. The rules for expressions are shown in Figure 7. A judgement of the

form

E

exp

` exp : �  exp

holds if in environment E the expression exp has simple type � and yields the translation

exp. The other two judgements act similarly for overloaded and polymorphic types.

The rules are very similar to those for the Hindley-Milner system. The rule TAUT handles

variables, the rule LET handle let binding, the rules ABS and COMB introduce and

eliminate function types, and the rules GEN and SPEC introduce and eliminate type

quanti�ers. The new rules PRED and REL introduce and eliminate contexts. Just as the

rule GEN shrinks the type variable environment AE, the rule PRED shrinks the local

instance environment LIE.

Here are some steps involved in typing the phrase \ x y -> x < y. Let E

0

be as in

Figure 5, and let AE = f�g, LIE = fdOrd : Ord �g, and V E = fx : �; y : �g. Then the

following are valid judgements:

(1) E

0

� AE � LIE � VE

exp

` x < y : Bool

 

(<) � dOrd x y

(2) E

0

� AE � LIE

exp

` \ x y -> x < y : � ! �! Bool

 

�x : �: �y : �: (<) � dOrd x y

(3) E

0

� AE

over-exp

` \ x y -> x < y : hOrd �i ) � ! � ! Bool

 

�dOrd : Ord �: �x : �: �y : �: (<) � dOrd x y

(4) E

0

poly-exp

` \ x y -> x < y : 8�: hOrd �i ) � ! � ! Bool

 

��: �dOrd : Ord �: �x : �: �y : �: (<) � dOrd x y

Judgement (1) yields (2) via ABS, judgement (2) yields (3) via PRED, and judgment (3)

yields (4) via GEN.

As is usual with such rules, one is required to use prescience to guess the right initial

environments. For the SPEC and GEN rules, the method of transforming prescience into

an algorithm is well known: one generates equations relating types during the inference



TYPE CLASSES IN HASKELL 13

E

exp

` exp : �  exp

E

over-exp

` exp : �  exp

E

poly-exp

` exp : �  exp

(V E of E) var = �

TAUT

E

poly-exp

` var : �  var

E

poly-exp

` var : 8�

1

: : :�

k

:� ) �  var

E

type

` �

i

(1 � i � k)

SPEC

E

over-exp

` var : � ) � [�

1

=�

1

; : : : ; �

k

=�

k

]  var �

1

: : : �

k

E

over-exp

` var : h�

1

�

1

; : : : ; �

m

�

m

i ) �  exp

E

dict

` �

i

�

i

 dexp

i

(1 � i � m)

REL

E

exp

` var : �  exp dexp

1

: : :dexp

m

V E = fvar : �

0

g

E

!

� V E

exp

` exp : �  exp

ABS

E

exp

` �var. exp : �

0

! �  �var: �

0

. exp

E

exp

` exp : �

0

! �  exp

E

exp

` exp

0

: �

0

 exp

0

COMB

E

exp

` (exp exp

0

) : �  (exp exp

0

)

(CE of E) �

i

(1 � i � m)

(AE of E) �

i

(1 � i � m)

LIE = fdvar

1

: �

1

�

1

; : : : ;dvar

m

: �

m

�

m

g

E � LIE

exp

` exp : �  exp

PRED

E

over-exp

` exp : h�

1

�

1

; : : : ; �

m

�

m

i ) �

 

� dvar

1

: �

1

�

1

: : : : :� dvar

m

: �

m

�

m

: exp

AE = f�

1

; : : : ; �

k

g

E �AE

over-exp

` exp : � ) �  exp

GEN

E

poly-exp

` exp : 8�

1

: : :�

k

: � ) �  ��

1

: : :�

k

. exp

E

poly-exp

` exp

0

: �  exp

0

VE = fvar : �g

E

!

� V E

exp

` exp : �  exp

LET

E

exp

` let var = exp

0

in exp : �  let var = exp

0

in exp

Figure 7. Rules for expressions



14 HALL, HAMMOND, PEYTON JONES, WADLER

E

dict

` � �  dexp

E

over-dict

` �) � �  dexp

E

poly-dict

` 8�

1

: : : �

n

: �) � �  dexp

(LIE of E) dvar = � �

DICT-TAUT-LIE

E

dict

` � �  dvar

(IE of E) dvar = 8�

1

: : :�

n

: � ) � �

DICT-TAUT-IE

E

poly-dict

` 8�

1

: : :�

n

: � ) � �  dvar

E

poly-dict

` 8�

1

: : :�

m

:� ) � �  dexp

DICT-SPEC

E

over-dict

` (� ) � �)[�

1

=�

1

; : : : ; �

m

=�

m

]  dexp �

1

: : : �

m

E

over-dict

` h�

1

�

1

; : : : ; �

n

�

n

i ) � �  dexp

E

dict

` �

i

�

i

 dexp

i

(1 � i � n)

DICT-REL

E

dict

` � �  dexp dexp

1

: : :dexp

n

Figure 8. Rules for dictionaries

process, then solves these equations via uni�cation. For the PRED and REL rules, a

similar method of generating equations can be derived.

4.3. Dictionaries. The inference rules for dictionaries are shown in Figure 8. A judge-

ment of the form

E

dict

` � �  dexp

holds if in environment E there is an instance of class � at type � given by the dictionary

dexp. The other two judgements act similarly for overloaded and polymorphic instances.

The two DICT-TAUT rules �nd instances in the IE and LIE component of the envi-

ronment. The DICT-SPEC rule instantiates a polymorphic dictionary, by applying it to

a type. Similarly, the DICT-REL rule instantiates an overloaded dictionary, by apply-

ing it to other dictionaries, themselves derived by recursive application of the dictionary

judgement.

Here is how to derive a dictionary for the instance of class Eq at type Int. Let E

0

be as

in Figure 5. Then the following judgements hold:

(1) E

0

dict-poly

` 8�: hEq �i ) Eq (List �)  dictEqList

(2) E

0

dict-over

` hEq Inti ) Eq (List Int)  dictEqList Int

(3) E

0

dict

` Eq Int  dictEqInt

(4) E

0

dict

` Eq (List Int)  dictEqList Int dictEqInt

Judgement (1) holds via DICT-TAUT-IE, judgement (2) follows from (1) via DICT-SPEC,

judgement (3) holds via DICT-TAUT-IE, and judgement (4) follows from (2) and (3) via

DICT-REL.



TYPE CLASSES IN HASKELL 15

E

classdecl

` classdecl : DE  bindset

(1) � = h�

1

�; : : :�

l

�i

(2) (CE of E) �

i

(1 � i � l)

(3) AE = f�g

(4) E � AE

type

` �

i

(1 � i � n)

(5) LIE = fdvar

1

: �

1

�; : : : ;dvar

n

: �

n

�g

(6) LVE = fvar

1

: �

1

; : : : ;var

n

: �

n

g

CLASS

E

classdecl

` class � ) � � where var

1

: �

1

; : : : ; var

n

: �

n

:

(f� : 8�: � ) LVEg; 8�: h� �i ) LIE; 8�: h� �i ) LV E)

 

dvar

1

= � dvar : � �: project

m+n

1

dvar;

� � �

dvar

m

= � dvar : � �: project

m+n

m

dvar;

var

1

= � dvar : � �: project

m+n

m+1

dvar;

� � �

var

n

= � dvar : � �: project

m+n

m+n

dvar

Figure 9. Rule for class declarations

Note that the dictionary rules correspond closely to the TAUT, SPEC, and REL rules for

expressions.

4.4. Class declarations. The rule for class declarations is given in Figure 9. Although

the rule looks formidable, its workings are straightforward.

A judgement of the form

E

classdecl

` classdecl : DE  bindset

holds if in environment E the class declaration classdecl is valid, generating new envi-

ronment DE and yielding translation bindset. In the compound environment DE =

(CE; IE;VE), the class environment CE has one entry that describes the class itself, the

instance environment IE has one entry for each superclass of the class (given the class

dictionary, it selects the appropriate superclass dictionary) and the value environment

V E has one entry for each operator of the class (given the class dictionary, it selects the

appropriate method).

For example, the class declaration for Ord given in Section 2.2 yields the Ord component

of CE

0

, the getEqFromOrd component of IE

0

, and the (<) and (<=) components of VE

0

,

as found in Figure 5. The binding set generated by the rule is as shown in Section 2.3.

4.5. Instance declarations. The rule for instance declarations is given in Figure 9.

Again the rule looks formidable, and again its workings are straightforward.

A judgement of the form

E

instdecl

` instdecl : IE  bindset



16 HALL, HAMMOND, PEYTON JONES, WADLER

E

instdecl

` instdecl : IE  bindset

(1) � = � �

1

: : :�

k

(2) (TE of E) � = k

(3) AE = f�

1

; : : : ; �

k

g

(4) �

0

= h�

0

1

�

0

1

; : : : ; �

0

l

�

0

l

i

(5) (CE of E) �

i

(1 � i � l)

(6) AE �

0

i

(1 � i � l)

(7) (CE of E) � = 8�: h�

1

�; : : : ; �

m

�i ) fvar

1

: �

1

; : : : ;var

n

: �

n

g

(8) LIE = fdvar

1

: �

0

1

�

0

1

; : : : ;dvar

l

: �

0

l

�

0

l

g

(9) E � AE � LIE

dict

` �

i

�  dexp

i

(1 � i � m)

(10) E � AE � LIE

exp

` exp

i

: �

i

[�=�]  exp

i

(1 � i � n)

INST

E

instdecl

` instance � ) � � where var

1

= exp

1

; : : : ; var

m

= exp

n

:

fdvar : 8�

1

: : :�

k

: � ) � �g

 

dvar = ��

1

: : :�

k

.

�dvar

1

: �

0

1

�

0

1

: : : : �dvar

l

: �

0

l

�

0

l

:

hdexp

1

; : : : ;dexp

m

; exp

1

; : : : ; exp

n

i

Figure 10. Rule for instance declarations

holds if in environment E the instance declaration instdecl is valid, generating new envi-

ronment IE and yielding translation bindset. The instance environment IE contains a

single entry corresponding to the instance declaration, and the bindset contains a single

binding. If the header of the instance declaration is � ) � � , then the corresponding in-

stance is a function that expects one dictionary for each entry in �, and returns a dictionary

for the instance.

Line (1) ensures that � has the form � �

1

: : :�

k

. Line (3) sets AE to contain the type

variables in � , line (4) extracts the entries �

0

i

�

0

i

from the context �, and line (6) guarantees

that each �

0

i

in the entry is one of the free type variables of � . The other lines check that

the given methods correspond to those required by the class, and generate the required

dictionaries for the superclasses.

For example, the instance declarations for Eq Int, (Eq a) => Eq [a], and Ord Int yield

the dictEqInt, dictEqList, and dictOrdInt components of IE

0

as found in Figure 5,

and the bindings generated by the rule are as shown in Section 2.3.

4.6. Programs. Figure 11 gives the rules for declaration sequences and programs.

The order of the class declarations is signi�cant, because at the point of a class declara-

tion all its superclasses must already be declared. (This guarantees that the superclass

hierarchy forms a directed acyclic graph.) Further, all class declarations must come before

all instance declarations.

Conversely, the order of the instance declarations is irrelevant, because all instance dec-

larations may be mutually recursive. Mutual recursion of polymorphic functions doesn't

cause the problems you might expect, because the instance declaration explicitly provides



TYPE CLASSES IN HASKELL 17

E

classdecls

` classdecls : DE  bindset

E �DE

1

� : : :�DE

i�1

classdecl

` classdecl

i

: DE

i

 bindset

i

(1 � i � n)

CDECLS

E

classdecls

` classdecl

1

; : : : ; classdecl

n

: DE

1

� : : :�DE

n

 

bindset

1

; : : : ;bindset

n

E

instdecls

` instdecls : IE  bindset

E

instdecl

` instdecl

i

: IE

i

 bindset

i

(1 � i � n)

IDECLS

E

instdecls

` instdecl

1

; : : : ; instdecl

n

: (IE of E)� IE

1

� : : :� IE

n

 

bindset

1

; : : : ;bindset

n

E

program

` program : (DE; � )  exp

(1) E

classdecls

` classdecls : DE  bindset

C

(2) E �DE � IE

instdecls

` instdecls : IE  bindset

I

(3) E �DE � IE

exp

` exp : �  exp

PROG

E

program

` classdecls ; instdecls ; exp : (DE � IE; �)

 

letrec bindset

C

; bindset

I

in exp

Figure 11. Rules for declaration sequences and programs

the needed type information.

These di�erences are re
ected in the di�erent forms of the CDECLS and IDECLS rules.

That instance declarations are mutually recursive is indicated by line (2) of the PROG

rule, where the same environment IE appears on the left and right of the instdecl rule.

In Haskell, the source text need not be so ordered. A preprocessing phase performs a

dependency analysis and places the declarations in a suitable order.

This concludes our presentation of the inference rules for type classes in Haskell. An

important feature of this style of presentation is that it scales up well to a description of

the entire Haskell language. The rules have been of immense help in constructing our new

Haskell compiler.

References

[Blo91] S. Blott, Type classes. Ph.D. Thesis, Glasgow University, 1991.

[Car87] Cardelli, L., Basic Polymorphic Typechecking, Science of Computer Programming, Vol.

8, (1987), pp. 147-172.

[CW90] G. V. Comack and A. K. Wright, Type dependent parameter inference, In Programming

Language Design and Implementation, White Plains, New York, June 1990, ACM Press.

[DM82] L. Damas and R. Milner, Principal type schemes for functional programs. In Symposium

on Principles of Programming Languages, Albuquerque, N.M., January 1982.



18 HALL, HAMMOND, PEYTON JONES, WADLER

[Gir72] J.-Y. Girard, Interpr�etation functionelle et �elimination des coupures dans l'arithm�etique

d'ordre sup�erieure. Ph.D. thesis, Universit�e Paris VII, 1972.

[Han87] P. Hancock, Chapters 8 and 9 in S. L. Peyton Jones, The implementation of functional

programming languages, Prentice-Hall International, Englewood Cli�s, New Jersey, 1987.

[Hin69] R. Hindley, The principal type scheme of an object in combinatory logic. Trans. Am.

Math. Soc. 146, pp. 29{60, December 1969.

[HPW91] P. Hudak, S. L. Peyton Jones, and P. Wadler, editors, Report on the Programming

Language Haskell, Dept. of Computing Science, University of Glasgow, August (1991).

[Jon92] M. P. Jones, A theory of quali�ed types. In European Symposium on Programming,

Rennes, February 1992, LNCS (to appear), Springer-Verlag.

[Kae88] S. Kaes, Parametric polymorphism. In European Symposium on Programming, Nancy,

France, March 1988. LNCS 300, Springer-Verlag, 1988.

[MTH] R. Milner, M. Tofte, and R. Harper, The de�nition of Standard ML, MIT Press, Cam-

bridge, Massachusetts, 1990.

[MT91] R. Milner and M. Tofte, Commentary on Standard ML, MIT Press, Cambridge, Mas-

sachusetts, 1991.

[Mil78] R. Milner, A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17,

pp. 348{375, 1978.

[NS91] T. Nipkow and G. Snelting, Type Classes and Overloading Resolution via Order-Sorted

Uni�cation. In Functional Programming Languages and Computer Architecture, Boston,,

August 1991. LNCS 523, Springer-Verlag.

[Pey87] S. L. Peyton Jones, The implementation of functional programming languages, Prentice-

Hall International, Englewood Cli�s, New Jersey, 1987.

[PW91] S. L. Peyton Jones and P. Wadler, A static semantics for Haskell. Department of Com-

puting Science, Glasgow University, May 1991.

[Rey74] J. C. Reynolds, Towards a theory of type structure. In B. Robinet, editor, Proc. Colloque

sur la Programmation, LNCS 19, Springer-Verlag.

[Rey85] J. C. Reynolds, Three approaches to type structure. In Mathematical Foundations of

Software Development, LNCS 185, Springer-Verlag, 1985.

[Rou90] F. Rouaix, Safe run-time overloading. In Principles of Programming Languages, San

Francisco, January 1990, ACM Press.

[Tur85] D. A. Turner, Miranda: A non-strict functional language with polymorphic types. In

Proceedings of the 2'nd International Conference on Functional Programming Languages

and Computer Architecture, Nancy, France, September 1985. LNCS 201, Springer-Verlag,

1985.

[VS91] D. M. Volpano and G. S. Smith, On the complexity of ML typability with overloading. In

Functional Programming Languages and Computer Architecture, Boston, August 1991,

LNCS 523, Springer-Verlag.

[WB89] P. L. Wadler and S. Blott, \How to make ad-hoc polymorphism less ad hoc", Proc

16th ACM Symposium on Principles of Programming Languages, Austin, Texas, January

(1989), pp. 60{76.


