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Abstract. One-switch utility function is used to describe how the risk attitude of a decision maker 

changes with his wealth level. In this paper additive decision rule is used for the aggregation of 

decision member’s utility which is represented by one-switch utility function. Based on Markov 

decision processes (MDP) and group utility, a dynamic, multi-stages and risk sensitive group 

decision model is proposed. The proposed model augments the state of MDP with wealth level, so 

the policy of the model is defined as an action executed in a state and a wealth level interval. A 

backward-induction algorithm is given to solve the optimal policy for the model. Numerical 

examples show that personal risk attitude has a great influence on group decision-making when 

personal risk attitudes of members are different, while the weights of members play a critical role 

when personal risk attitudes of members are similar.   

Introduction 

When facing major decisions concerning heavy casualties and property losses, decision maker’s 

risk attitude is generally risk-averse. Exponential utility function is usually used to model 

risk-averse attitude. The risk attitude of the decision maker is modeled by exponential utility 

function keeps unchanged. However, in reality, personal risk attitude generally change with wealth 

level [1]. Bell gives a kind of utility function named one-switch utility function, that can describe 

the risk attitude of decision makers whose risk attitude shift from risk-averse to risk-neutral as their 

wealth level increases. Furthermore Bell and Fishburn give a kind of one-switch utility function that 

meets SOS(strong one-switch) conditions, that is formed by linear utility function and exponential 

utility function, ���� = �� − �	
�� (where 	�	is wealth level). Liu and Koenig improve the 

one-switch utility function with considering the risk aversion coefficient �, that	is	���� = � −���. This form of one-switch function can not only describe the change of decision maker’s risk 

attitude, but also can distinguish different decision maker’s risk attitude through the quantitative 

risk aversion coefficient � [2-6]. 

For a multi-stages and uncertain decision  problem, if the decision maker is risk-sensitive, it  is 

necessary to consider the possible change of decision maker’s risk attitude when the wealth level of 

decision maker changes and further influence on the decision in the next stage. Markov decision 

processes (MDP) is an important model framework for uncertain and multi-stages decision theoretic 

planning. Based on MDP, Howard and Matheson use exponential utility function to depict the risk 

attitude of decision makers and maximize the expected utility instead of maximizing the expected 

reward to seek the optimal policy, but they do not consider the wealth level of decision makers [7]. 

For the study of risk-sensitive group decision making, the general method is assembling the 

personal utility function into group utility function and making decisions based on the group utility 

function. The aggregation methods include addition rule and multiplication rule, etc [8-10]. Based 

on multi-goal or multi-attribute utility functions, single stage and static decision making is focused 

on in most studies without considering the multi-stages, dynamic group decision making. 

In this paper, we will study a dynamic, multi-stages and uncertain group decision making in 

which all the members are risk sensitive. Group utility function is proposed based on one-switch 

utility function. MDP model of risk-sensitive group decision making is given and backward 
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induction method is used to solve the model. A numerical example is illustrated to analyze the 

impact of the personal risk attitude on group decision making. 

Risk-Sensitive Group Decision Making Model Based On MDP 

One-Switch Utility Function. One-switch utility function denotes that there existing a wealth 

level	�, when the wealth level of a decision maker is below �, the decision maker is risk-averse, 

but when his wealth level is higher than	�, the decision maker is approach to risk-neutral. The form 

of one-switch utility function given by Liu and Koenig is shown as follows [4]: 

																																				���� = � − ���, D>0, 0<	�<1                        (1) 

Where �	is wealth level,	�is risk aversion coefficient of the decision maker. D is constant 

coefficient provides an adjustable tradeoff between linear term and exponential term. In this paper, 

facing heavy casualties and property losses, � is a large negative number, then �	is a very small 

number close to 0. The one-switch function is illustrated in Fig. 1. 

 

Fig. 1: One-switch utility function 

If value function in MDP is replaced with one-switch utility function, the planning problem will 

be not decomposable [1]. Traditional value iteration method cannot be used to calculate the 

expected utility and seek the optimal policies. A new backward-induction method of risk-sensitive 

group decision making is given in the following sections. 

Risk-Sensitive Group Decision Making Model Based on MDP. Goal-directed Markov decision 

processes (GDMDP) that MDP has goal states is named augmented GDMDP if wealth level is 

considered as a part of the state of the original GDMDP. So the state of augmented GDMDP is 

composed by the states of original GDMDP and wealth level. The state set is	�S,W�, goal state set 

is�G,W� and non-goal state set is	�S�,W�, where S denotes state set original GDMDP, W denotes 

wealth level set and S� = S\G. 

Action set is A�(the same as the action set of original GDMDP), which denotes the actions that 

decision maker can execute in the state	s.    

  �� ∈ S, ��	and	��		denote the system state, action and wealth level in the	stage	" respectively. If 

system state	is	��, decision maker executes action ��, and the system state	is	�’	in the next stage, 

then the state transition probability and reward are represented respectively 

 		$%��’, ��&'�(���, �)�, ��* = +$��’|��, ���,				��&' = �� + .���, ��, �’�						0,																								0"ℎ	.  

				.�����, �)�, ��, ��’, ��&'�� = ����&'� − ����� < 0                                  (2) 

In this paper, we use additive decision rule for the aggregation of utility  ���� = ∑ 45�5���657' ,		where ∑ 45 = 1657' . �5��� ∈ :0,1; denotes the ith member’s one-switch 

utility function. 45	is the weights of	�5���, γ=	is the risk aversion coefficient of >th member. > = 1,2, … , A, A is the number of group members. 

 			���� = ∑ 45�5���657' 	=	w-k'D'γ'F-kGDGγGF- ∙∙ 	 -kIDIγIF                    (3) 
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In any stage, for a policy J the expected group utility in the state (s, w) is expressed as follows: 

 		KLM��, �� = ���� = � − 4'�'�'� − 4G�G�G� −∙∙∙ −46�6γI�							∀� ∈ O, ∀�LM��, �� = ∑ $%�’(�, J��, ��* ∙ LM%�’, � + .��, J��, ��, �’�*		∀� ∈ P’, ∀�Q’∈R           (4) 

So the optimal policy is expressed as follows: 

				KL∗��, �� = ���� = � − 4'�'�'� − 4G�G�G� −∙∙∙ −46�6γI�	∀� ∈ O, ∀�								L∗��, �� = maxV∈WX ∑ $��’|�, �� ∙ L∗%�’, � + .��, �, �’�*		∀� ∈ P’, ∀�Q’∈Y 																																	(5) 

As wealth level being a part of state, the policy J is defined as the action executed in a state	s  

and wealth level �:	J = %��, ��, �*. Wealth level is a continuous interval	�−∞,�[;��[	denotes 

initial wealth level, and we set �[ = 0 ), so it is necessary to divide the wealth level interval into 

child intervals. Then policy is the action executed in a state s and wealth level interval%�5 , �5&'\, 
denoted as ]%�, %�5 , �5&'\*, �^(�5	denote a wealth level point). 

The Backward-Induction Algorithm 

In group utility function, personal utility function is usually normalized, �5��� ∈ :0,1;. For the 

one-switch utility function,	�5��� = � − �5�5�, if the value of	�	is in the range of from	−∞ to 0, 

the value of �5���	will be in the range �−∞,�5;, because D=	is a very small number close to 0. 

The value ranges of all �5���	approach to the same interval�−∞, 0�, it is not necessary to 

normalize the utility function. 

For a policy	J the expected group utility in the state (s, w) is calculated as follows: 

 				LM��, �� = _>`�→bcQ,�M :�����; 														= lim�→bcQ,�M e�f���� + 4'�'�',g���� + 4G�G�G,g���� +∙∙∙ +46�6�6,g����\ 														= lim�→bcQ,�M :�f����; + lim�→bcQ,�M e4'�'�',g����\ +	∙∙∙ + lim�→bcQ,�M :4'�'�',g����; 
														= lim�→bcQ,�M h� +i.5

�
'

57[
j + lim�→bcQ,�M k4'�'�'�&∑ lmnopmqr s +∙∙∙ +lim�→bcQ,�M :46�6�6�&∑ lmnopmqr ; 

										= � + _>`�→bcQ,�M hi.5
�
'

57[
j + 4'�'�'� _>`�→bcQ,�M k�'∑ lmnopmqr s +∙∙∙ +46�6�6� _>`�→bcQ,�M k�6∑ lmnopmqr s 

														= � + LfM��� + 4'�'�'�L',gM ��� +∙∙∙ +46�6�6�L6,gM ���												 
					∴ LM��, �� = � + LfM��� + 4'�'�'�L',gM ��� +∙∙∙ +46�6�6�L6,gM ���			                  (6) 

 

  LfM���	,	L5,gM ���	denote the linear expected utility and exponential expected utility respectively. 

From Eq.6, we can find the relationship between expected group utility and linear expected utility or 

exponential expected utility. For a state	�	and a policy	J, linear expected utility and exponential 

expected utility can be calculated as follows: 

				KLfM��� = 0																																																																												� ∈ O				LfM��� = ∑ $%�’(�, J���*:.��, J���, �’� + LfM��’�;			� ∈ P’Q’∈R                         (7) 

				KL5,gM ��� = −1																																																																			� ∈ O										
L5,gM ��� = ∑ $%�’(�, J���*e�5l�Q,M�Q�,Q’� ∙ L5,gM ��’�\			� ∈ P’			Q’∈R                         (8) 

 

Using Eq. 7 and Eq. 8, we can calculate the linear expected utility and exponential expected 

utility of all stationary policies when	" → ∞	or	�� → −∞	. Then using Eq. 6, we can get the 

expected group utility. In details, value iteration algorithm is used to get the 
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values	LfM���	and	L5,gM ���	through Eq.7 and Eq. 8, then the right hand side of Eq. 6 is a polynomial of 

one indeterminate about wealth level	�.	Through comparing the value of this polynomial under 

different policies, the optimal policy which has the biggest value of the polynomial can be obtained. 

  	J∗	is used to denote the optimal policy for  one-switch utility function, J5,g∗ 	denotes the optimal 

policy of >th member for exponential utility function. According to the backward induction idea of 

value iteration, we first seek the optimal policy J
b∗ 	 when � → −∞. 

LEMMA 1. If there exist a	�5	, for all w ≠ >，�5 < �y ,	that is to say, the >th member is more 

risk-averse than other members, we have 

																																																							 _>`�→
b L∗��, ���5
� = 45�5	L5,g∗ ���                        (9) 

Proof：_>`�→
b L∗��, ���5
� = _>`�→
b LM∗��, ���5
� 

												= _>`�→
b��5
� + LfM∗����5
� + 4'�' z�'�5{
� L',gM∗ ��� +∙∙∙ +45�5L5,gM∗��� + 

∙∙∙ +46�6 z�6�5{
� L6,gM∗ ��� 

			∵ 			 �y/�5 > 1, w ≠ >	, �0 _>`�→
b4y�y z�y�5{
� Ly,gM∗��� = 0	 

			∴ 			 _>`�→
b L∗��, ���5
� = 45�5L5,gM∗��� ≤ 45�5L5,g∗ ��� 
			�A� _>`�→
b L∗��, ���5
� ≥ _>`�→
b LM5,g∗ ��, ���5
� 

	= _>`�→
b��5
� + LfMm,�∗ ����5
� + 4'�' z�'�5{
� L',gMm,�∗ ��� +∙∙∙ +45�5L5,gMm,�∗ ��� + 

∙∙∙ +46�6 z�6�5{
� L6,gMm,�∗ ��� 

																						= 45�5L5,g∗ ��� 				∴ 			 _>`�→
b L∗��, ���5
� = 45�5 	L5,g∗ ���				∎ 

    Lemma 1 shows that, when the wealth level approaches to	−∞, the optimal policy is the same 

as the most risk-averse member’s optimal policy J5,g∗ . The optimal policy J5,g∗  is solved by 

calculating of MEUe (maximizing expected exponential utility). 

After getting J
b∗ , the next step is finding out the wealth level threshold	�	which means that the 

optimal policy J
b∗  keeps in the interval 	�−∞,�;. According to Eq. 5, for all � ≤ �, and all 

non-goal state	� 

 				∵ � + .��, �, �’� < 	�,  

				L∗��, �� = `��V∈WX i$�� .|�, �� ∙ LMo�∗ %�’, � + .��, �, �’�*	
Q’∈R

 

																		= `��V∈WX i$��’|�, ��
Q’∈R

∙ �� + .��, �, �’� + LfMo�∗ ��� + 4'�'�'�&l�Q,V,Q’.�L',gMo�∗ ��� +∙∙∙ 
																																							+46�6�6�&l�Q,V,Q’�L6,gMo�∗ ��� 
																	= `��V∈WX :� + LfMo�∗ ��, �� + 4'�'�'�L',gMo�∗ ��, �� +∙∙∙ +46�6�6�L6,gMo�∗ ��, ��; 
  LfMo�∗ ��, ��	 and 	L5,gMo�∗ ��, �� can be calculated through Eq. 7and Eq. 8. ∀� ∈ P′,   �y ∈�Q\J
b∗ ���: 
  ∑ $%�’(�, J
b∗ ���* ∙ LMo�∗ %�’, � + .��, J
b∗ ���, �’�*	Q’∈R ≥					 
                          																								∑ $%�’(�, �y* ∙ LMo�∗ ]�’, � + .%�, �y, �’*^	Q’∈R  

				� + LfMo�∗ %�, J
b∗ ���* + 4'�'�'�L',gMo�∗ %�, J
b∗ ���* +∙∙∙ +46�6�6�L6,gMo�∗ %�, J
b∗ ���* ≥	 
  																																	� + LfMo�∗ %�, �y* + 4'�'�'�L',gMo�∗ %�, �y* +∙∙∙ +46�6�6�L6,gMo�∗ %�, �y*    (10) 
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We can get a wealth level point �Mo�∗ ,Q,V�  in equality case of the weak inequality above. 

From the algorithm above, we can get the wealth level threshold	� 

																															� = `>AQ∈Q’`>AV�∈WX\Mo�∗ �Q�`>A ]�[, �Mo�∗ ,Q,V�^                    (11) 

After getting	�, the next step is to divide further the interval��,�[; into child intervals and seek 

the optimal policy for each child interval. The main procedures of backward-induction algorithm for 

group decision making is listed as follows. 

Step 1: For all � ∈ �’, get J
b∗  and L',g∗ , L',g∗ ∙∙∙, L',g∗ , Lf∗ when � → −∞. 

Step 2: For all	� ∈ �’,	� ∈ �Q\J
b∗ ���,	using Eq. 7 and Eq. 8 to get the value LfMo�∗ ��, ��, 
														L',gMo�∗ ��, ��,∙∙∙ 	L6,gMo�∗ ��, ��, then get �Mo�∗ ,Q,V. 

Step 3:	� = `>AQ∈Q’`>AV�∈WX\Mo�∗ �Q�`>A ]�[, �Mo�∗ ,Q,V�^. 
Step 4: For all	� ∈ �’,	dividing the interval	��,�[;. Inserting two different kinds of wealth level 

points and seek the optimal actions [4]. 

Numerical Example 

For a serious forest fire, there are two ways to extinguish the fire, one is direct extinguishing, and 

the other one is digging a fire isolation zone. These two ways consume	r'	and rG units of resources 

with success possibility p'	and		pG respectively. Now there are two decision members named 

member1 and member2 with risk aversion coefficient γ'and	γGrespectively. They need to make an 

optimal firefighting policy to extinguish the fire together. 

For the above example, GDMDP model is defined as follows: S={on fire (P[), fire extinguished 

(�)}, A�={direct extinguishing (�'), digging an fire isolation zone (�G)}. Assuming state transition 

possibility of success P = �0.95,1�, returns	R = �−1000,−5000�, the one-switch utility functions 

of two members are �'��� = � − 10
�0.997�  and �G��� = � − 10
�0.995� . Then the 

optimal policies and wealth points of two members are represented as follows: 

Member1：J∗��[, �� = + �'		� ∈ �−6211,0;					�G		� ∈ �−∞,−6211; 
Member2：J∗��[, �� = + �'		� ∈ �−4077.2,0;					�G		� ∈ �−∞,−4077.2; 

If set the weights of utility function of two members 	k' = kG = 0.5, then the optimal policies 

and wealth points are listed as follows: 

J∗��[, �� = + �'		� ∈ �−4215.2,0;					�G		� ∈ �−∞,−4215.2; 
The result shows that in the interval�−6211,−4215.2;, if member1 make decisions alone, the 

optimal policy is taking action �'	in state	S[, and �G	for member2, but if they make decisions 

together, then action �G is taken. 

Next, we consider how the group-wealth level threshold	�	changes with the weights of two 

utility functions, in detailed, k' changes from 0.05 to 0.95and kG changes from 0.95 to 0.05. The 

result is shown in Fig.2. 

The result shows that � tends to the wealth point of member2 as a whole, that is, if the risk 

aversion coefficients of members are different, the influence of the weights is not very various, the 

risk aversion coefficients play an important role. 

If the risk aversion coefficients of two members are set 0.99694 and 0.9969 respectively, the 

corresponding one-switch utility functions are 	�'��� = � − 10
�0.99694�and	�G��� = � −10
�0.9969�. The weights of utility functions change as the same above, the result is shown as 

Fig.3.The result shows that, if there is little difference between the risk aversion coefficients of 

members, the weights of members play a critical role. 
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Fig. 2: The change of �(different risk         Fig. 3: The change of �(similar risk aversion  

aversion coefficients of members)                coefficients of members) 

Conclusions 

In a dynamic multi-stage group decision making, the risk attitudes of members are taken into 

consideration. A group decision model based on MDP and one-switch utility function and its 

algorithm are proposed. The influence of risk aversion coefficients of members is not various if the 

risk aversion coefficients have little difference. However, the risk aversion coefficients of members 

play a critical role if the risk aversion coefficients of members are different, the member with 

smaller risk aversion coefficient has larger influence on group decision making, and the weights of 

members have less impact on group decision making. 
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