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We study the problem of integrated staffing and scheduling under demand uncertainty. This problem is

formulated as a two-stage stochastic integer program with mixed-integer recourse. The here-and-now decision

is to find initial staffing levels and schedules. The wait-and-see decision is to adjust these schedules at a time

closer to the actual date of demand realization. We show that the mixed-integer rounding inequalities for

the second-stage problem convexify the recourse function. As a result, we present a tight formulation that

describes the convex hull of feasible solutions in the second stage. We develop a modified multicut approach in

an integer L-shaped algorithm with a prioritized branching strategy. We generate twenty instances (each with

more than 1.3 million integer and 4 billion continuous variables) of the staffing and scheduling problem using

3.5 years of patient volume data from Northwestern Memorial Hospital. Computational results show that the

efficiency gained from the convexification of the recourse function is further enhanced by our modifications

to the L-shaped method. The results also show that compared with a deterministic model, the two-stage

stochastic model leads to a significant cost savings. The cost savings increase with mean absolute percentage

errors in the patient volume forecast.
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1. Introduction

Because labor cost constitutes a large portion of the operating expense of many organizations,

staffing and scheduling decisions are important for effective operations management. The labor

cost and job satisfaction both can be improved by improving these decisions (Wright and Mahar

2013). The staffing decision consists of knowing the number of employees that should be available

to work at a given time. The scheduling decision consists of creating a detailed schedule plan

that is offered to the employees. The actual requirements (demand) are typically unknown at the

time of making these decisions. Short-term adjustments are made to ensure the desired quality

of service. For example, in the healthcare setting, such adjustments may involve calling in extra

workers (nurses) and paying overtime if demand surges or canceling the shift of a scheduled staff

if demand drops (Bard and Purnomo 2005b,d).
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In this paper, we study an integrated staffing and scheduling model (iStaff) that develops staffing

plans and initial schedules while allowing adjustment to these schedules at a time closer to the

actual demand realization. Our approach aims to reduce overall labor costs by right-sizing staff

by balancing under- and overstaffing costs. Scheduling plans and staffing decisions are usually

generated well ahead in time, while adjustments are made when more accurate demand information

is available. The iStaff model is a challenging large-scale two-stage stochastic integer program

with mixed-integer recourse. Such problems have been approached only heuristically in the past

(e.g., Easton and Rossin 1996, Easton and Mansour 1999, Bard et al. 2007). The problem is large

because the scheduling decisions introduce a large number of integer variables due to possible shift

combinations. It is also a two-stage stochastic program because at a distant future adjustments to

scheduling decisions are needed. More specifically, in our iStaff model (see Section 3) the here-and-

now decision is to generate staffing levels and schedules, and the wait-and-see decision is to adjust

these schedules for each demand scenario.

Contributions of this paper. This paper makes the following contributions. We identify valid

parametric mixed-integer rounding (MIR) inequalities and show that by adding these inequalities

we obtain the convex hull of feasible solutions for the second-stage mixed-integer problems in

the iStaff model. This approach allows us to relax the integrality requirements on the second-

stage variables of the iStaff model. An empirical study based on patient volume data from the

Department of Hospital Medicine (HM) at Northwestern Memorial Hospital (NMH) is performed

to evaluate the usefulness of the two-stage stochastic programming approach. A 1000-scenario

iStaff model for HM in its extensive form has more than 1.3 million general integer variables

and more than 4 billion continuous variables. The ability to convexify the second stage problems

reduces the number of integer variables to 3,913. Despite this reduction, however, the extensive

form could not be solved by the CPLEX MIP solver, and standard implementation of the integer

L-shaped method needed further computational enhancements to achieve realistic solution times.

We present two enhancements to the standard integer L-shaped method that significantly improve

the computational performance for our problems. The first enhancement is in the form of a multicut

aggregation approach. This enhancement results in a nearly sixfold reduction in the CPU time

compared with the best known approaches. Furthermore, the memory requirement for solving

the problems was significantly reduced. The second computational enhancement is in the form of

preidentifying thin branching directions and using a priority branching on these directions before

branching on the decision variables in the original optimization model. This enhancement results in

a nearly threefold improvement in the CPU time during the branch-and-cut phase of the L-shaped

method.
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The value of the stochastic solution was evaluated. Empirical results show that in a high volume

unit such as HM with a mean absolute percentage error in patient volume at around 12% (real

setting) and with a cost structure where the overtime is 1.5 times the required wages and there

is no salvage value for overstaffing, the two-stage stochastic programming approach yields about

2.3% cost savings. This amounts to an overall cost reduction of more than 3.6 times the hiring

cost of full-time nurses. A 2.3% cost savings is significant for a unit that has an operating profit of

10% and incurs nearly 50% of its cost toward staffing. Empirical results under different cost and

forecast error conditions are also presented. These results show cost savings ranging from less than

1% to as high as 34%. Empirical results are also given to demonstrate the improvement in solution

quality when solving a 1000-scenario problem over a 100 scenario problem.

Organization of this paper. This paper is organized as follows. In Section 2.1 we review the

relevant literature on the staffing and scheduing problem, with an emphasis on nurse scheduling.

Section 2.2 reviews the literature on two-stage stochastic integer programming problems where

both the first- and second-stage decision variables are mixed-integer. In Section 3 we formally

introduce the iStaff model and study the properties of its second-stage recourse function. Specifi-

cally, we identify valid parametric mixed-integer rounding inequalities and show that the addition

of these inequalities results in the convex hull of feasible solutions of the second-stage integer pro-

grams. We use this property to present an equivalent tight formulation for our problem by relaxing

the integrality requirement of the second-stage decision variables. We present our computational

enhancements to the integer L-shaped method in Section 4.

We test the iStaff model for application in a realistic environment, using real-world data, in

Section 5. The generation of problem instances is described in Section 5.1. The results and anal-

yses on the value of the stochastic solution for our problems are discussed in Section 5.2, and

the expected value of perfect information is discussed in Section 5.3. Section 5.4 provides compu-

tational performance results with the multicut aggregation approach and the priority branching

strategy. In Section 6, we give some concluding remarks and briefly discuss areas for future research.

Appendix A gives CPLEX parameter settings. Appendix B gives additional information on patient

volume characteristics and patient volume forecasting errors. Appendix C compares the value of

stochastic solution in 100- and 1000-scenario problems. Appendix D gives the pseudocode for gen-

erating scheduling patterns. Appendix E gives the solution times for the deterministic staffing

model that ignores forecasting errors and develops a plan based on point forecasts. Appendix F

gives results on other cut aggregation strategies, and Appendix G gives results from an alternative

multicut purge approach. Appendix H gives detailed results for the branching strategy that does

not include the auxiliary variables to facilitate thin direction branching and therefore branches on

the original variables only.



Kim and Mehrotra: Integrated Staffing and Scheduling Model under Demand Uncertainty
4 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

2. Literature Review

2.1. Literature review of nurse staffing and scheduling

Cheang et al. (2003) and Burke et al. (2004) provide an extensive review of models and methods

for the nurse scheduling problem. Hence, the following review focuses primarily on the research

that is directly related to our work. Most research studies on staffing, scheduling, and adjustment

decision problems (e.g., Bard and Purnomo 2004, 2005a,b,c,d, 2007, Burke et al. 2012, Jaumard

et al. 1998, Parr and Thompson 2007, Wright et al. 2006) have focused on only one aspect of these

decisions. Only a few studies have attempted to integrate staffing and scheduling decisions and

examine the implications of interactions between these decisions. An early paper by Abernathy

et al. (1973) presents an integrated staffing and scheduling model to determine an optimal staffing

policy with the recourse decisions of staff allocations under demand uncertainty. Abernathy et al.

(1973) present two solution procedures to determine the staffing level: the first approach iteratively

uses a penalty function for understaffing and overstaffing, whereas the second approach determines

a required staffing level based on the chance-constraints. The models presented by Venkataraman

and Brusco (1996), Easton and Rossin (1996), and Easton and Mansour (1999) are special cases

of our iStaff model. Easton and Rossin (1996) present a stochastic goal programming model that

integrates staffing and scheduling decisions under uncertain staffing requirements in a general

workforce planning setting. A set of scheduling patterns is enumerated in advance, and the model

determines the number of employees assigned to scheduling patterns. Tabu search (Easton and

Rossin 1996) and a distributed genetic algorithm (Easton and Mansour 1999) are used to find

heuristic solutions for the stochastic goal programming model. Maenhout and Vanhoucke (2013a,b)

use a Dantzig-Wolfe decomposition approach to integrate nurse staffing and scheduling decisions

in a deterministic setting.

Bard and Purnomo (2004, 2005b,d) consider the problem of short-term nurse rescheduling for

daily fluctuations in patient demand, where a given midterm schedule is revised to cover shortages

for nursing services. Wright and Bretthauer (2010) study a coordinated nurse planning problem

that considers nurse scheduling and adjustments in response to patient demand. However, they

solve the nurse scheduling model and the adjustment model separately. Woodall et al. (2013) use

separate optimization models for monthly, weekly, and daily scheduling in a simulation framework.

A handful of studies take a two-stage stochastic programming approach for workforce planning.

Kao and Queyranne (1985) present a two-stage stochastic program that determines staffing hours in

the first stage and overtime in the second stage. Punnakitikashem et al. (2008) present a two-stage

stochastic integer programming model for nurse assignment, where the first-stage decision assigns

each nurse to patients and the second stage balances the workload for each nurse. The staffing
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decisions are integrated into the stochastic model by introducing binary variables (Punnakitikashem

et al. 2013). An L-shaped method is used to solve both models (Punnakitikashem et al. 2008,

2013). Zhu and Sherali (2007) also present a two-stage stochastic workforce planning model, in

which the second-stage decision assigns continuous workload to each worker. In a recent paper,

Bodur and Luedtke (2014) present an integrated staffing and scheduling model for service system

using two-stage stochastic programming. The second-stage decisions in their model are continuous

variables, and a linear programming recourse problem is used to assign real-valued workload to the

workers. The previous studies do not integrate workforce adjustment decisions in staffing and/or

scheduling models as a recourse to the changed demand.

2.2. Literature review of two-stage stochastic programming with mixed-integer recourse

Two-stage stochastic integer programming with mixed-integer recourse is a challenging problem.

Louveaux and Schultz (2003) and Sen (2005) give a survey of this problem. Most studies are limited

to developing algorithms for problems when the second stage consists of mixed-binary programs

(e.g., Carøe and Tind 1997, Gade et al. 2012, Laporte and Louveaux 1993, Sen and Higle 2005,

Sherali and Fraticelli 2002, Sherali and Zhu 2006). Only a limited number of research papers focus

on pure-integer variables (Ahmed et al. 2004, Kong et al. 2006, Schultz et al. 1998) or mixed-integer

variables (Sen and Higle 2005, Sen and Sherali 2006) in the second stage.

A popular approach to solving two-stage stochastic programs is the L-shaped method based on

Benders’ decomposition (Benders 1962). Van Slyke and Wets (1969) first proposed the L-shaped

method for two-stage stochastic linear programs with continuous variables in both stages. The

integer L-shaped method, which is also based on the Benders’ decomposition approach, was first

proposed by Laporte and Louveaux (1993). The integer L-shaped method allows integer variables

in the first-stage and/or the second-stage problems. It incorporates a branch-and-bound procedure

to ensure optimality. Finiteness of this method is ensured from the finite number of subspaces that

are created during branching (Birge and Louveaux 1997). Ahmed et al. (2004) proposed the idea

of branching on tender variables defined by the product of first-stage decision variables with the

technology matrix for problems having pure-integer variables in the second stage.

A typical description of the L-shaped method is based on a single-cut approach. In this approach

a single optimality cut resulting from aggregating information from all the second-stage problems

is added at each major iteration. Birge and Louveaux (1988) suggest a multicut approach where

cut information from second-stage scenarios is kept separately. They suggest that this approach

may significantly reduce the number of major iterations while solving the two-stage stochastic

linear program. Moreover, Birge and Louveaux (1988) and Trukhanov et al. (2010) suggest that

aggregation of subsets of scenarios to form a smaller number of cuts may be advantageous. These
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authors also explore the relative advantages of different scenario aggregation approaches. However,

their studies are limited to solving a two-stage stochastic linear program. To our knowledge, no

study has focused on efficient approaches to scenario aggregation and outer linearization in two-

stage stochastic integer programs.

In a recent paper Kong et al. (2013) present several general conditions for totally unimodular

property in two-stage stochastic mixed-integer programs. The model studied in our paper does

not satisfy the totally unimodularity conditions on the constraint matrix. Furthermore, it does

not have an integer right-hand side. However, we do use the total unimodular property of the

second-stage constraint matrix when studying the properties of the second-stage polyhedra that is

obtained after adding the parametric mixed-integer rounding inequalities.

3. Integrated Staffing and Scheduling Model

In this section we present iStaff, an integrated staffing and scheduling model used to find initial

optimal staffing levels and schedules, while adjusting them in the future as more accurate demand

information becomes available. The model formulation is given in Section 3.1. The properties of

the second-stage mixed-integer recourse function are studied in Section 3.2. Specifically, a convex

hull of the second-stage feasible solutions is obtained by adding a linear number of valid parametric

mixed-integer rounding inequalities to our problem.

3.1. Model description and formulation

We consider an 18-week planning horizon to illustrate the decision dynamics of the iStaff model.

The schedule is created for a 12-week period. We assume that the scheduling patterns repeat

from week to week during this 12-week period. The staffing and scheduling decisions are made

six weeks in advance of this 12-week horizon. The 18-week time horizon is chosen because in a

realistic healthcare setting 12-week (roughly 3-month) schedules are generated and the schedules

are made available to nurses six weeks in advance in order to allow for choices. Weekly decisions

are made over the 12-week period to adjust the planned schedules at the beginning of each week

for the following week. These adjustment (recourse) decisions are applied for each day of the week

and allow for calling in additional staff or finding salvage value from the scheduled staff. Figure 1

shows different time horizons and the corresponding decisions over an 18-week planning horizon.

For example, in Figure 1 the adjustments to week 10 schedules are made at the beginning of week

9, when a more accurate demand forecast becomes available. Note that an alternative model may

allow daily adjustments 24 hours prior to the actual demand realization.

At the beginning of the planning horizon, the staffing and scheduling decisions are made in order

to minimize the sum of total staffing cost, expected adjustment cost, and expected overstaffing
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Figure 1 Illustration of planning horizon, staffing horizon, adjustment horizon, and decision epoch

Table 1 Notation for the iStaff model formulation

The first-stage problem:
Parameters
I set of weekly scheduling patterns
T set of hourly time periods during a week (= {1, . . . ,24× 7})
X set of staffing and scheduling rules
ci staffing cost per labor working for scheduling pattern i
ait 1 if scheduling pattern i contains hour t, and 0 otherwise
Decision variables
xi decision variable representing the number of workers working in scheduling pattern i∈ I
χt decision variable representing the number of workers working at time t

The second-stage problem:
Parameters
J set of adjustment patterns
q+j cost of adding a shift for adjustment pattern j
q−j cost of canceling a shift scheduled for pattern j
r+ penalty cost of overstaffing per time period
r− penalty cost of understaffing per time period
wjt 1 if adjustment pattern j contains hour t, and 0 otherwise
dt(ω) demand forecast at time period t
Decision variables
y+j (ω) number of shifts added for adjustment pattern j
y−j (ω) number of shifts cancelled for adjustment pattern j
ut(ω) amount of overstaffing at hour t
vt(ω) amount of understaffing at hour t

and understaffing cost. Hence, the model is in the framework of the classical newsvendor model

(see Davis et al. (2013) and references therein) generalized for the staffing problem. The staffing,

scheduling, and adjustment decisions are coupled because an understaffed shift requires additional

workers in order to maintain the desired quality of service, while an overstaffed shift results in lost

wages because of limited salvage value of the scheduled staff.
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We formulate the iStaff model as a two-stage stochastic integer program with mixed-integer

recourse. The notation is described in Table 1. Each element i in the set I of weekly scheduling

patterns defines one or more blocks of work hours with shift start times during a week, whereas

each element j in the set J of adjustment patterns defines only one block of work hours a week. We

also consider positive staffing cost ci > 0 for scheduling pattern i, positive adjustment cost q+j > 0

of adding a shift for adjustment pattern j, and non-negative adjustment cost q−j ≥ 0 of canceling

a shift scheduled for pattern j. Let xi denote the decision variables representing the number of

workers working in scheduling pattern i, and let χt be the auxiliary variables representing the

number of workers working at time t. The scheduling rules X are used to generate the columns

of the first-stage constraint matrix. We formulate the two-stage stochastic integer programming

(TSSIP) formulation of the iStaff model as follows:

min
∑
i∈I

cixi +Q(χ) (TSSIP)

s.t. χt =
∑
i∈I

aitxi ∀t∈ T (1a)

x = (x1, . . . , x|I|)∈X ∩Z|I|, (1b)

where the second-stage recourse function Q(χ) evaluates the expected weekly recourse cost for a

given χ and the vector ai = (ai1, . . . , ai|T |) represents an acceptable schedule pattern i for the week.

We assume that all acceptable schedule patterns are pregenerated, in order to ensure compliances

with scheduling rules and regulations (no back-to-back shifts, weekly duty hours, etc.).

The objective function of (TSSIP) is to minimize the sum of the weekly staffing cost and the

expected weekly recourse cost Q(χ), χ= (χ1, . . . , χ|T |). The decision variables χt in (1a) are also

known as tender variables in the stochastic programming literature (Ahmed et al. 2004); note that

they take integer value.

The expected recourse function Q(χ) := Eω[Q(χ, ω)], and

Q(χ, ω) = min
∑
j∈J

q+j y
+
j (ω) +

∑
j∈J

q−j y
−
j (ω) + r+

∑
t∈T

ut(ω) + r−
∑
t∈T

vt(ω) (2a)

s.t.
∑
j∈J

wjt(y
+
j (ω)− y−j (ω))−ut(ω) + vt(ω) = dt(ω)−χt ∀t∈ T (2b)

y+j (ω), y−j (ω)∈Z+, ut(ω), vt(ω)≥ 0 ∀j ∈ J, t∈ T, (2c)

where y+j (ω) and y−j (ω) are the decision variables representing the number of shifts added and

cancelled, respectively, for adjustment pattern j. The overstaffing and understaffing at each hour

t are captured by ut(ω) and vt(ω) at penalty costs r+ and r−, respectively. The vector wj =

(wj1, . . . ,wj|T |) in (2b) represents a pregenerated adjustment pattern for the week. Constraint

(2b) ensures that the anticipated demand scenarios dt(ω) are satisfied by the staffing levels after

adjustments.
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3.2. Properties of the second-stage problem in the iStaff model

Our main result is given in Theorem 1, which shows that a tight formulation is possible for the

second-stage mixed-integer problem after adding certain parametric mixed-integer rounding (MIR)

inequalities. Consequently, the integrality requirement of the second-stage variables can be relaxed.

This approach allows us to compute a subgradient of the recourse function.

We omit the indexing for the scenario when discussing the second-stage problem in this section.

Let q+,q− ∈ R|J|, and d ∈ R|T |. Let e ∈ R|T | be the vector of all ones, and let W ∈ B|J|×|T | be

a |J | × |T |-dimensional matrix of elements wjt. The recourse function using matrix and vector

notation is given as follows:

Q(χ, ω) = min (q+)Ty+ + (q−)Ty−+ r+eTu + r−eTv

s.t. WT (y+−y−)−u + v = d−χ

y+,y− ∈Z|J|+ ,u,v ∈R|T |+ .

By eliminating v the second-stage problem is given by

min (q̃+)Ty+ + (q̃−)Ty−+ (r+ + r−)eTu + r̃ (3a)

s.t. (y+,y−,u)∈P(χ), (3b)

where q̃+ = q+− r−We, q̃− = q−+ r−We, r̃= r−eT (d−χ), and P(χ) is described by

P(χ) :=
{

(y+,y−,u)∈Z|J|+ ×Z|J|+ ×R|T |+ |wT
t (y+−y−)−ut ≤ dt−χt, ∀t∈ T

}
. (4)

Observe that, since the second-stage problem Q(χ, ω) can be reformulated as a piecewise linear

convex optimization problem over non-negative integer decision variables by substituting ut =

max{0,wT
t (y+−y−) +χt− dt} for all t∈ T , the iStaff model has complete recourse. We now show

the validity of parametric MIR inequalities for (4).

Proposition 1. The parametric MIR inequalities

wT
t (y+−y−)− ftut ≤ bdtc−χt ∀t∈ T, (5)

where ft = 1/(1− dt + bdtc), are valid for P(χ).

Proof. For a given t, we consider two cases.

• Case 1: Suppose ftut < 1. Then, wT
t (y+−y−)≤ dt−χt +ut < bdtc+1−χt. Since wT

t (y+−y−)

and χ are integral, we have wT
t (y+−y−)≤ bdtc−χt. Subtracting ftut ≥ 0 gives (5).

• Case 2: Suppose ftut ≥ 1. Then, wT
t (y+−y−)−ftut ≤ dt−χt +ut−ftut ≤ dt−χt + 1/ft−1 =

bdtc−χt. Therefore, the MIR inequalities are valid for P(χ). �
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Note that the valid inequalities (5) are parameterized by χ, whose value is not fixed since these

are the tender variables in (TSSIP). The main observation leading to the validity of (5) is that in

our case χt is integer, giving bdt−χtc= bdtc−χt.

Theorem 1. Let P(χ) be given in (4). Then, conv(P(χ)) is described by inequalities

wT
t (y+−y−)−ut ≤ dt−χt, ∀t∈ T

wT
t (y+−y−)− ftut ≤ bdtc−χt, ∀t∈ T

y+,y−,u≥ 0.

Proof. Our proof here borrows the conceptual steps from Miller and Wolsey (2003). Let ηt =

wT
t (y+−y−)+χt for all t∈ T , and consider the set St = {(ηt, ut) | ηt−ut ≤ dt, ηt−ftut ≤ bdtc, ut ≥

0}. Note that at any extreme point of St only two of the inequalities in the set St are binding. The

extreme points of St are given by (1 + bdtc,1− dt + bdtc) and (bdtc,0) for all t∈ T . These extreme

points are integral in ηt.

Now consider the set U = {(η,y+,y−,u) | η = WT (y+ − y−) +χ, y+,y− ≥ 0, (ηt, ut) ∈ St, ∀t ∈

T}, and U ⊆ R2(|J|+|T |), where W is defined as a |J | × |T |-dimensional matrix of elements wjt.

Suppose that (η̂, ŷ+, ŷ−, û) is an extreme point of the polyhedra U . We will show that (η̂, ŷ+, ŷ−, û)

is given by the following system of linear equations,[
χ
ηLB

]
≤
[

I −WT WT

I 0 0

] η̂ŷ+

ŷ−

≤ [ χ
ηUB

]
(6a)

û = AT η̂−b, (6b)

where ηLB,ηUB ∈ Z|T | ∪ {−∞,∞}, A ∈ R|T |×|T |, and b ∈ R|T |. Furthermore, we will show that

(η̂, ŷ+, ŷ−, û) is integral in (η̂, ŷ+, ŷ−).

Note that in U an extreme point is given by 2(|J |+ |T |) binding constraints with the matrix

defining the constraints to be nonsingular. Let J+
= = {j ∈ J | ŷ+j = 0} and J−= = {j ∈ J | ŷ−j = 0},

and let J+
> = J\J+

= and J−> = J\J−= . Hence, at this extreme point, at least |T |+ |J+
> |+ |J−> | binding

constraints exist. The binding constraints defining this set include η = WT (y+ − y−) +χ. Note

that for each set St at least one constraint defining this set should be binding at any extreme point

of U . Hence, for at least |J+
> |+ |J−> | of the sets St, two constraints are binding at the extreme point

(η̂, ŷ+, ŷ−, û). The remaining sets St have one binding constraint. The extreme points satisfy

ût = η̂t− dt if η̂t ≥ 1 + bdtc,

ût = (1− dt + bdtc)(η̂t−bdtc) if bdtc ≤ η̂t ≤ 1 + bdtc,

ût = 0 if η̂t ≤ bdtc.
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Let T1 be a subset of T such that St has one binding constraint at the extreme point so that

|T\T1| ≥ |J+
> |+ |J−> |. Note that |T\T1|> |J+

> |+ |J−> | when the extreme point is degenerate. Then,

the following constraints in U define the extreme point (η̂, ŷ+, ŷ−, û):

η̂t =
∑
j∈J+

=

wT
jtŷ

+
j +

∑
j∈J+

>

wT
jtŷ

+
j −

∑
j∈J−=

wT
jtŷ
−
j −

∑
j∈J−>

wT
jtŷ
−
j +χt, ∀t∈ T (7a)

ŷ+j = 0, ∀j ∈ J+
= , ŷ+j > 0, ∀j ∈ J+

> , ŷ−j = 0, ∀j ∈ J−= , ŷ−j > 0, ∀j ∈ J−> (7b)

û1

...
û|T1|
û|T1|+1

...
û|T |


=



a1
. . . 0

a|T1|

0 0





η̂1
...

η̂|T1|
η̂|T1|+1

...
η̂|T |


−



b1
...

b|T1|
0 or 1− dt + bdtc

...
0 or 1− dt + bdtc


for (at, bt)∈ {(1, dt), (1− dt + bdtc, (1− dt + bdtc)bdtc), (0,0)} and t∈ T1. (7c)

Now we set each element of vector ηLB to be 1+bdtc, bdtc, or −∞ and set each element of vector

ηUB to be 1 + bdtc, bdtc, or ∞. Also, we let A be a diagonal matrix where each diagonal element

is 0, 1, or 1− dt + bdtc, and we let each element of b be 0, dt, 1− dt + bdtc, or (1− dt + bdtc)bdtc.
Then, the set of constraints (7) is rewritten as (6). Moreover, each row of W has consecutive ones.

Hence, W is totally unimodular, and so is

[
I −WT WT

I 0 0

]
(Nemhauser and Wolsey 1988). Note

that χ,ηLB and ηUB are integer vectors, and so are η̂, ŷ+, and ŷ−. Therefore, an extreme point of

U is integral in η̂, ŷ+, and ŷ−. By eliminating η in U , we obtain conv(P(χ)), where the extreme

points are integral in ŷ+ and ŷ−. �

Note that the first-stage constraint matrix in (TSSIP) may not be totally unimodular. The reason

is that, because of required off-time, the consecutive ones property is violated when considering

multiple shifts in a week while generating scheduling patterns in X. The consecutive ones property

holds for the recourse constraint matrix, however, because the adjustments are for a shift during a

week.

Theorem 1 implies that the integrality of the second-stage decision variables can be relaxed

after adding the MIR inequalities. The following corollaries provide desirable properties from an

algorithmic perspective.

We denote the “convexified” recourse function resulting from adding MIR inequalities (5) by

QMIR(χ, ω):

QMIR(χ, ω) = min (q̃+)Ty+ + (q̃−)Ty−+ (r+ + r−)eTu + r̃ (8a)

s.t. wT
t (y+−y−)−ut ≤ dt−χt, ∀t∈ T (8b)

wT
t (y+−y−)− ftut ≤ bdtc−χt, ∀t∈ T (8c)

y+,y− ∈Z|J|+ ,u≥ 0. (8d)
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Corollary 1. For each ω ∈Ω and a given χ∈Z|T |, QMIR(χ, ω) =Q(χ, ω).

Corollary 2. Assuming χ ∈ Z|T |, the function QMIR(χ) := Eω[QMIR(χ, ω)] is piecewise linear

convex in χ.

Corollary 3. For a given χ∗ and scenario ω, let µ∗(ω) and π∗(ω) be a dual optimal solution

of (8). Then, −µ∗(ω)− π∗(ω)− r−e is a subgradient of QMIR(χ, ω) at point χ∗. Moreover, the

recourse function Q(χ, ω) is underestimated by

Q(χ, ω)≥
(
d(ω)Tµ∗(ω) + bd(ω)cTπ∗(ω) + r−eTd(ω)

)
−
(
µ∗(ω) +π∗(ω) + r−e

)T
χ. (9)

4. Modified L-Shaped Method for the iStaff Model

In this section we present a modified L-shaped method for solving the iStaff model. The modifica-

tions to the L-shaped method proposed here are intended to achieve computational improvement

for iStaff model. We assume that the random vector ω follows a discrete distribution with a finite

support. Let S be a finite set of scenario indices, and let ps > 0 be the probability of realizing

scenario ωs for s∈ S such that
∑

s∈S ps = 1. Then, Q(χ) = Eω[QMIR(χ, ω)] =
∑

s∈S psQMIR(χ, ωs).

In Section 4.1, we present a branching strategy that prioritizes the order of branching variables

in the model. Auxiliary branching variables are introduced to provide new branching directions for

our branch-and-cut (B&C) procedure. In Section 4.2, we develop a multicut aggregation approach

with the goal of avoiding an increase in the number of constraints in the B&C node subprob-

lems. In Section 4.3, we summarize the modified L-shaped method with the proposed solution

enhancements.

4.1. Thin direction branching strategy

We present a heuristic branching strategy that prioritizes the order of branching variables in the

model. The proposed branching strategy implicitly performs branching on thin directions of the

polyhedron. We first introduce a more detailed description of the staffing model. The iStaff model

considers full-time, part-time, and casual employments, denoted by FT, PT, and CA, respectively,

and six shift types, denoted by 3S12H, 2S12H, 1S12H, 3S8H, 2S8H, and 1S8H. The employment

and shift types are defined in Table 2. A full-time staff works 36 hours per week, part-time staff

works 24 hours per week, and casual staff works less than 24 hours per week. Casual staff fills in

when additional staff is required. The casual staff (nurses) is called PRN (pro re nata) employment

in hospitals and is part of the overall nurse pool.

Let E be the set of employment types (full-time, part-time, and casual), and let H be the set

of shift types. We additionally introduce auxiliary variables φe, e ∈ E and ψh, h ∈ H that repre-

sent the number of workers in each employment type e and the number of workers in each shift
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Table 2 Definition of employment and shift types considered in the iStaff model

Employment Type Shift Type Work Hours per Week

FT: Full-time 3S12H: Three 12-hour shifts 36
PT: Part-time 2S12H: Two 12-hour shifts 24
PT: Part-time 3S8H: Three 8-hour shift 24
CA: Casual 2S8H: Two 8-hour shift 16
CA: Casual 1S12H: One 12-hour shift 12
CA: Casual 1S8H: One 8-hour shift 8

type h, respectively. We denote φ= (φ1, . . . , φ|E|) and ψ = (ψ1, . . . ,ψ|H|). The following additional

constraints are added to the model (TSSIP):∑
i∈Ie

xi = φe e∈E, (10a)∑
i∈Ih

xi =ψh h∈H, (10b)

where Ie and Ih are the subsets of I representing the scheduling patterns for employment type

e and shift type h, respectively. Theorem 1 remains applicable after adding these constraints to

iStaff. We now consider the following convex mixed-integer programming formulation of (TSSIP):

min
∑
i∈I

cixi +
∑
s∈S

psθs (CMIP)

s.t. QMIR(χ, ωs)≤ θs, ∀s∈ S, (11a)

(x,χ,φ,ψ,θ)∈ X̄ ∩Z|I|×Z|T |, (11b)

where X̄ = {(x,χ,φ,ψ,θ) | (1a), (10a), (10b), x∈X} and θ= (θ1, . . . , θ|S|). Note that the objective

function of (TSSIP) is reformulated by the objective function of (CMIP) and the convex constraints

(11a). In the L-shaped method, the convex constraints (11a) are outer approximated by linear

inequalities (9) in Corollary 3.

The branching priority order for the first-stage variables is defined such that first φ is consid-

ered for branching, followed by ψ,χ, and x. If multiple fractional variables exist with the same

branching priority, then branching is performed on the most fractional variable. This branching

order can be viewed as a heuristic from the following standpoints. First note that branching on

thin directions can be beneficial for solving mixed-integer programming problems as suggested by

the theoretical results of Lenstra (1983), Lovász and Scarf (1992), and Mehrotra and Li (2011).

More specifically, a polynomial time algorithm is available for mixed-integer linear programs and

mixed-integer convex programs in fixed dimensions. Unfortunately, generation of thin branching

directions by following the theory can be computationally expensive, since it requires a certain

lattice basis reduction. Other strategies have been proposed to identify good thin directions adap-

tively while simplifying this computation (Aardal et al. 2002, Owen and Mehrotra 2001, Mahajan
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and Ralphs 2009, Karamanov and Cornuéjols 2011, Cornuéjols et al. 2011, Mehrotra and Huang

2013). Our proposed thin direction branching scheme can be viewed as preidentifying thin branch-

ing directions represented by (10). These directions are expected to be thin in cost-effective feasible

solutions because φe and ψh (the total number of full-time workers and the number of workers in

a certain shift type) will have values only in a limited range to satisfy demand.

4.2. Multicut aggregation of outer linearization of node subproblems

We now present an outer linearization approach with multicut aggregation to solve (CMIP) in

a B&C framework. The multicut aggregation proposed here heuristically aggregates the cuts by

using the dual variable values of B&C node LP relaxation subproblem. The optimal value of dual

multiplier corresponding to the outer linearization inequality in a B&C node subproblem is used.

All the cuts with zero dual variable value are aggregated into a single cut. In an abuse of notation,

we now describe this aggregation procedure in some detail and distinguish it from other approaches.

Let k be the index for outer linearization iterations, where optimality cuts are added. Specifically,

for a given value of tender variables χk, at iteration k an outer linearization cut is generated for

each scenario s ∈ S. These cuts are aggregated into Mk cuts, one for each subset Sk
m. Let the set

of scenarios be divided into mutually exclusive subsets Sk
m, m= 1, . . .Mk, (i.e., S = ∪Mk

m=1S
k
m and

Sk
i ∩Sk

j = ∅ for any i 6= j and i, j ∈ {1, . . . ,Mk}). Let X̄N ⊆ X̄ be the set of feasible solutions at a

given node N in the B&C tree T . A B&C node subproblem after adding l rounds of optimality

cuts at node N ∈ T is given by

min
∑
i∈I

cixi +
∑
s∈S

psθs (SPN )

s.t.
∑
s∈Sk

m

(GT
ksχ+ θs−gks)≥ 0, m= 1, . . . ,Mk, k= 1, . . . , l, (12a)

(x,χ,φ,ψ,θ)∈ X̄N , (12b)

where equation (12a) gives the aggregated cuts generated at outer linearization iterations k =

1, . . . , l. These cuts are denoted by using coefficient matrices Gks :=µk(ωs) +πk(ωs) + r−e, right-

hand side vectors gks := d(ωs)
Tµk(ωs)+bd(ωs)cTπk(ωs)+r−eTd(ωs) and use optimal dual variable

values µk(ωs) and πk(ωs) corresponding to constraints (8b) and (8c). The convex constraints (11a)

are now approximated by linear inequalities (12a) generated from the kth outer linearization for

each scenario s∈ S. Note that the inequalities (12a) are valid at any node N ∈ T .

The standard multicut approach adds up to |S| cuts in each outer linearization iteration, whereas

for a single-cut approach M 1 = · · ·=M l = 1. A hybrid-cut approach sets 1<Mk < |S|,M 1 = · · ·=

M l (Birge and Louveaux 1988). We note that the cut aggregation level can change from an outer
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linearization iteration to a subsequent one. Based on this observation, our approach is a variant

of the hybrid-cut approach, where Sk
m and Mk may be different for each k = 1, . . . , l. We call this

approach multicut aggregation (MCA). The proposed MCA approach is described in Algorithm 1.

Algorithm 1 Multicut Aggregation (MCA)

Initialization. For a given χk, outer linearization cuts are given by∑
s∈Sk

m

(GT
ksχ+ θs−gks)≥ 0, m= 1, . . . ,Mk. (13)

Step 1. Add these cuts (13) to (SPN ).

Step 2. Solve (SPN ), and let λ∗m be the optimal dual variable values corresponding to the cuts

(13) for m= 1, . . . ,Mk.

Step 3. Letm0 be the number of outer linearization cuts with the corresponding dual multipliers

equal to zeros, say λk
m = 0 for m= (Mk−m0 + 1), . . . ,Mk. Generate the aggregated cut

Mk∑
m=Mk−m0+1

∑
s∈Sk

m

(GT
ksχ+ θs−gks)≥ 0. (14)

Step 4. Update Mk :=Mk−m0.

Suppose that an integer L-shaped method applies a multicut approach (i.e., Mk = |S| for all

k) and that outer linearization cuts are generated for a given χk. In Algorithm 1, Sk
m for m =

1, . . . ,Mk are initialized by singletons of the set S. (SPN ) is first solved with these cuts added

according toMk and Sk
m form= 1, . . . ,Mk. Next, we aggregate the cuts that have the corresponding

dual variable values equal to zeros at the optimum solution of the LP subproblem. The following

proposition states that the optimum solution of the current relaxation problem does not change

after aggregating the cuts.

Proposition 2. Suppose that outer linearization cuts (12a) are generated for a given χk

and that (xk+1,χk+1,φk+1,ψk+1,θk+1) is an optimal solution of (SPN ) with these cuts. Then,

(xk+1,χk+1,φk+1,ψk+1,θk+1) is an optimal solution of (SPN ) after aggregating the cuts by Algo-

rithm 1. �

4.3. Modified L-shaped method

The modified integer L-shaped method with the thin direction branching branching strategy and

the MCA approach is summarized in this section. Algorithm 2 provides the steps of the method.
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Algorithm 2 Modified Integer L-Shaped Method

Initialization. Create a root node N with X̄N := X̄, and set k := 0 and z̄ :=−∞. Set an initial

value for M 0, and define S0
m for m= 1, . . . ,M 0.

Step 1. Convex relaxation programming problem:

a. Solve (SPN ) to optimality. If the problem is infeasible, then stop. Otherwise, let

(x̂, χ̂, φ̂, ψ̂, θ̂) be an optimal solution.

b. If
∑

s∈S psθ̂s <
∑

s∈S psQ(χ̂, ωs), then set k := k + 1, Mk := M 0 and Sk
m := S0

m for m =

1, . . . ,M 0, add outer linearization cuts (13), and go to Step 1a.

c. If the current solution is fractional in x̂, χ̂, φ̂, or ψ̂, then aggregate the inequalities (13) as

described in Algorithm 1, and go to Step 2. Otherwise, an optimal solution has been found: stop.

Step 2. Branch-and-cut procedure:

a. Select a node N ∈ T according to a best-bound rule. If none exists (i.e., T = ∅), then an

optimal solution has been found: stop.

b. Solve (SPN ), and let zN be the optimal objective value. If zN > z̄, then fathom the current

node, and go to Step 2a. Otherwise, let (x̂, χ̂, φ̂, ψ̂, θ̂) be an optimal solution.

c. Check the integrality of φ̂, ψ̂, χ̂, and x̂ in a certain branching priority. If the current solution

is fractional, then create two nodes N1 and N2 by branching on the most fractional variable, update

T := T ∪{N1,N2}, and go to Step 2a. Otherwise, the current solution is integral in φ̂, ψ̂, χ̂, and x̂.

d. If z̄ >
∑

i∈I cix̂i +
∑

s∈S psQ(χ̂, ωs), then update upper bound z̄ :=
∑

i∈I cix̂i +∑
s∈S psQ(χ̂, ωs). Otherwise, fathom the current node, and go to Step 2a.

e. If
∑

s∈S psθ̂s <
∑

s∈S psQ(χ̂, ωs), then set k := k + 1, Mk := M 0 and Sk
m := S0

m for m =

1, . . . ,M 0, generate outer linearization cuts (13), aggregate the cuts as described in Algorithm 1,

and go to Step 2b. Otherwise, fathom the current node, and go to Step 2a.

We assume that the proposed method solves (SPN ) with a cut generation approach specified by

the subsets S0
m of scenario indices for m= 1, . . . ,M 0, a predefined number M 0 of outer linearization

inequalities.

The outer linearization cuts added at the root node are aggregated when an optimal solution

to the convex relaxation node subproblem is found (Step 1c). This approach decreases the time

spent in solving the convex relaxation programming problem at the root node, while starting with

a smaller number of node subproblems in the B&C procedure. The MCA approach presented in

Section 4.2 has helped in keeping the memory needs for the solver relatively low (Step 2e). In

the B&C procedure, outer linearization inequalities are generated only at incumbent solutions.

This approach avoids a significant increase in the memory required to save a larger size of node
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Figure 2 Fluctuations in patient census and required staffing levels for HM

(a) Number of patients in HM on a day of the week
(b) Number of nurses required to care for HM patients

based on the desired nurse-to-patient ratios

subproblems (see Appendix F) and also avoids a number of computations for solving the second-

stage problems. The algorithm terminates if the B&C tree becomes empty.

Remark 1. Algorithm 2 stops after a finite number of steps for problems with a bounded set

feasible set X. To see this, first note that the dual multipliers µ,π correspond to one of the bases

of QLR(χ, ω) for a given χ, ω. The finite convergence of Step 1 follows from the fact that there are

a finite number of different combinations of the dual multipliers µ,π. Moreover, Step 2 terminates

finitely by branching on variables, since the set X is bounded.

5. Empirical Study: Nurse Staffing at NMH Department of Hospital Medicine

We now present results from an empirical study for nurse staffing and scheduling in the Department

of Hospital Medicine (HM) at Northwestern Memorial Hospital (NMH). This empirical study aims

to (1) evaluate the value of the stochastic programming approach as compared with the decisions

recommended by a deterministic version of the model based on a point forecast and (2) examine

the computational performance of the integer L-shaped method with enhancements presented in

Section 4.

5.1. Model instances and input data

5.1.1. Patient census data Hourly patient census data was collected for HM service from

the Northwestern Medicine Enterprise Data Warehouse from January 2009 to June 2012. Figure 2a

shows patient volume during a week for the HM service over the entire study period. The shaded

region represents the minimum and maximum patient volume observed during the study period.
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The solid line shows the mean patient volume. Two standard deviations of the patient volume

above and below the mean are shown by dashed lines. The nurse-to-patient ratios were provided

by NMH operations managers. A 1:4 nurse-to-patient ratio is applied to the patient volume from

8am to 4pm, and a 1:5 ratio is applied for the rest of the day. The ideal nurse count required to

provide patient care is shown in Figure 2b. The detailed patient volume characteristics are given

in Appendix B.

5.1.2. Problem instances Using the patient census data, we created 20 problem instances

in our empirical study. Each problem instance considers an 18-week planning horizon that rolls by

4 weeks. Rolling by 4 weeks allowed us to generate a sufficient number of problem instances for

numerical testing. Each problem instance is generated as follows.

Based on the employment types, nurses at the NMH Department of Hospital Medicine work

either 8 hours or 12 hours per shift (see Table 2). Each 12-hour shift starts from 8AM, 10AM,

12PM, or 8PM; and each 8-hour shift starts from 12AM, 8AM, 12PM, or 4PM. We assume a 12-

hour break between two successive shifts worked by a nurse. Scheduling patterns were generated

by using a recursive procedure (see Appendix D). For a given shift type, the procedure checks

over hours of a week whether the hour is valid for a shift start time. For a valid shift start time,

the procedure adds it to the set of start times and calls itself with the set. In subsequent calls,

the procedure generates a scheduling pattern if the required number of shifts (i.e., start times)

is generated. As a result, we generated 3,913 (= |I|) viable weekly scheduling patterns. Similarly,

eight adjustment patterns were generated on the basis of one 12-hour shift and one 8-hour shift

for each day with start times given above. In the model, adjustment decisions are made once a

week for all days of the week. Thus the model has 56 (= |J |) (8× 7) adjustment patterns. The

adjustment decision for day i is not chained by the decisions for day (i− 1) over the adjustment

horizon. Hence, the adjustments are separable by day as well as week.

The full model has 3,913 first-stage integer variables. The second stage has 112 integer variables

and 336 continuous variables for each week of the 12-week staffing horizon and for each scenario.

Note that the second-stage problem is separable by each of the 12 weeks since the schedules

are based on weekly patterns. Consequently, each problem instance has 1,347,913 general integer

variables and 4,032,000,000 continuous variables. 1,344,000 integer variables in the second stage

are treated as continuous variables after adding MIR inequalities due to Theorem 1. Hence, the

resulting integer program has only 3,913 integer variables. However, the CPLEX MIP optimizer

resulted in an out-of-memory error (128 GB) on our computation server when we attempted to

solve the extensive form formulation.
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5.1.3. Scenario generation We used empirical forecast errors to generate demand scenarios

for our model. We used the available 3.5 years of data as follows for generating the forecast errors.

A 613-day time window was used for generating the forecasts and computing the errors in these

forecasts. The window was moved by an hour between January 1, 2009, and June 17, 2010, for 532

days. Note that the test problems are generated for Sept. 2010 – Feb. 2012; hence, the empirical

forecast errors are generated by using data for a period that does not overlap with the decision

period. On our data, the autoregressive integrated moving average (ARIMA) method outperformed

the other methods among a variety of known forecasting techniques for long-term forecasts. The

MAPE for the forecast are shown in Figure 3 in Appendix B. Details of the predictability of different

time series forecasting methods to the HM patient volume are discussed by Kim et al. (2014). An

ARIMA model was estimated for each time window, and forecasting errors were evaluated for the

next 18-week forecasts generated from the time window. These steps provided a pool of 12,768

(= 532×24) forecast error vectors that reflect the past behavior of the ARIMA forecasting method.

From this pool, we randomly selected 1,000 error vectors using a uniform distribution over the

error vectors. A selected error vector was added to a mean point forecast to generate a demand

scenario. The choice of using 1,000 scenarios for the results reported in our empirical study is

arbitrary. Results in Appendix C show that using a smaller number of scenarios results in larger

staffing costs and lower value of stochastic solution.

5.1.4. Additional parameter settings and model modifications We set the cost coef-

ficients ci, q
+
j , q

−
j , r

+, and r− as relative weights to staffing cost per hour. Staffing cost ci is set to

1 per hour, while the underage cost q+j is 1.5 per hour. The reason is that the nurses called to

do an overtime shift get paid 50% more than the base salary. We assume that the salvage value

(overage cost) of a nurse is zero (q−j = 0). The labor surplus benefit is usually zero unless better

service is provided (Easton and Rossin 1996) or alternative work is found. In the base model, the

penalty costs r+ and r− are set sufficiently large (r+ = r− = 50) to have a model that tracks the

nurse-to-patient ratio as closely as possible at the time of service. The need to track patient census

was suggested to us by NMH operations managers for patient safety reasons (see also Woodall

et al. (2013)). However, we also report results with alternative penalty cost parameters in Sec-

tion 5.2.3. The model also assumes that the number of full-time nurses should be more than 80%

of the total number of nurses and that the number of part-time nurses should be more than 10%

of the total number of nurses. This full-time/part-time/casual staff mix is the current policy at

NMH. Therefore, the following additional constraints were added to the model:∑
i∈IFT

xi ≥ 0.8
∑
i∈I

xi and
∑
i∈IPT

xi ≥ 0.1
∑
i∈I

xi,

where IFT and IPT are the subsets of scheduling patterns for full-time shifts and part-time shifts,

respectively. Note that Theorem 1 remains applicable even after adding these constraints.
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Table 3 Comparison of deterministic solutions and stochastic solutions, and the value of the stochastic solutions for the 20

problem instances

Deterministic Solutions Stochastic Solutions
Staffing Overtime Paid Time-Off Total Staffing Overtime Paid Time-Off Total

Instance Hours Hours Hours Cost Hours Hours Hours Cost VSS

20FEB2012 5000 230 343 5344 4676 365 165 5223 121
23JAN2012 5556 252 425 5934 5096 455 188 5778 156
26DEC2011 5064 216 315 5388 4760 344 149 5276 112
28NOV2011 5272 228 337 5614 4928 376 152 5492 122
31OCT2011 5392 268 377 5794 5012 438 183 5669 125
03OCT2011 5204 241 394 5566 4760 446 174 5430 136
05SEP2011 5108 258 381 5495 4676 462 171 5368 127
08AUG2011 5704 288 407 6136 5236 511 184 6003 133
11JUL2011 5564 255 391 5947 5180 422 189 5813 135
13JUN2011 5544 240 384 5903 5132 420 169 5762 141
16MAY2011 5712 253 407 6091 5236 472 170 5944 147
18APR2011 5588 255 379 5970 5180 443 176 5844 126
21MAR2011 5296 232 359 5644 4928 388 160 5511 134
21FEB2011 5588 263 383 5982 5180 452 181 5858 124
24JAN2011 5388 230 390 5733 5012 384 182 5588 145
27DEC2010 5252 229 351 5595 4928 360 169 5468 127
29NOV2010 5120 226 337 5460 4760 386 148 5339 121
01NOV2010 5224 225 332 5562 4928 344 165 5444 118
04OCT2010 5316 238 371 5673 4928 403 163 5533 140
06SEP2010 5296 226 333 5635 4928 390 140 5512 123

Mean 5359 243 370 5723 4973 413 169 5593 130
Stdev 214.3 18.1 29.9 233.8 182.8 46.1 13.9 227.7 11.1

5.1.5. Computational environment We implemented the modified integer L-shaped

method (see Algorithm 2) in C++ and used the CPLEX 12.5.0 callable library (CPLEX 2009) to

solve the generated linear and mixed integer programming subproblems. CPLEX callback functions

were used for the branch-and-cut procedure in Algorithm 2. The CPLEX parameters used with

nondefault values in our empirical study are given in Appendix A. Note that the relative optimality

gap was set to zero. The code was run on a 32-core Intel Xeon 2.2 GHz machine with 128 GB

RAM, although we report only the total CPU time in this paper. Patient volume forecasts were

generated by using the procedures in the R software package (Eddelbuettel and François 2010, Kim

et al. 2014).

5.2. Value of the stochastic solution (VSS)

5.2.1. VSS based on scenarios We now evaluate the value of the stochastic solutions (VSS;

see Birge (1982)) resulting from our iStaff model when compared with the solutions from the

deterministic model that considers the iStaff model with a single scenario based on point forecast

of patient volume. Table 3 provides solutions resulting from the deterministic model, the stochastic

programming iStaff model, and the VSS. The problem instance is named by the first date of the
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planning horizon. The column “Staffing Hours” gives the number of nursing hours per week. The

columns “Overtime Hours” and “Paid Time-Off Hours” give the expected number of hours for

which HM will need to call in an overtime nurse or have a nurse with no salvage value. The total cost

is the sum of the staffing cost and the expected adjustment cost per week. The VSS calculates the

difference between two total costs. In calculating the total cost we excluded the penalty cost, which

corresponds to E[r+
∑

t∈T ut(ω) + r−
∑

t∈T vt(ω)], because the penalty cost is not out-of-pocket of

hospital operating cost.

As can be seen in Table 3, the use of the stochastic iStaff model saves the cost of staffing 130

nursing hours a week on average, which is equivalent to the cost of hiring 3.6 full-time nurses on

average. The VSS was also evaluated by using all 12,768 error vectors (see Appendix C). This

value is not significantly different from that reported in Table 3. On average the stochastic model

staffs 386 fewer nursing hours while calling in only 170 nursing overtime hours in comparison with

the deterministic solutions. The deterministic solutions have more paid time-off hours than do the

stochastic solutions. In Appendix E, we report computation time and other computational results

for solving the deterministic models. The average CPU time for the deterministic model was 13

seconds. The optimal solutions were found at the root node for 16 of 20 problem instances.

5.2.2. VSS based on actual patient census The VSS reported in Table 3 assumes that

(1) the scenarios generated from the ARIMA models follow the empirical demand distribution for

the planning horizon and (2) improved demand information by a week-ahead forecast represents

actual patient volume at the adjustment decision epoch. In practice, however, improved demand

information could still have forecast error. In our empirical setting, a week-ahead forecast has 9%

mean absolute percentage error on average, whereas a six-week-ahead forecast has an average 12%

error. Hence, one may be interested in the VSS based on actual realizations of patient census for

the planning horizon. Table 4 gives results from the deterministic solutions and the stochastic solu-

tions using actual patient census. On our data during the study period, the use of the stochastic

iStaff model on average saves the cost of staffing 108 nursing hours a week (i.e., three full-time

nurses). Unlike the results in Table 3, the stochastic solutions incurred more cost than the deter-

ministic solutions did for some instances (26DEC2011, 29NOV2010, and 04OCT2010 in Table 4).

In addition, the VSS was low for instances 28NOV2011, 01NOV2010, and 06SEP2010. The reason

is that the patient volume forecast used for the recourse considerations was significantly lower than

that actually realized. Consequently, the plan required significantly more overtime hours for these

cases.
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Table 4 The deterministic solutions and the stochastic solutions evaluated using the actual realizations of patient census

Deterministic Solutions Stochastic Solutions
Staffing Overtime Paid Time-Off Total Staffing Overtime Paid Time-Off Total

Instance Hours Hours Hours Cost Hours Hours Hours Cost VSS

20FEB2012 5000 19 285 5028 4676 216 162 5001 28
23JAN2012 5556 45 657 5623 5096 160 312 5336 288
26DEC2011 5064 248 216 5437 4760 466 132 5459 -23
28NOV2011 5272 229 355 5615 4928 454 235 5609 6
31OCT2011 5392 95 597 5535 5012 287 408 5443 92
03OCT2011 5204 73 695 5314 4760 267 446 5161 153
05SEP2011 5108 26 594 5148 4676 218 355 5004 144
08AUG2011 5704 1 944 5706 5236 70 546 5342 365
11JUL2011 5564 65 484 5662 5180 225 262 5518 144
13JUN2011 5544 81 388 5665 5132 293 190 5572 93
16MAY2011 5712 31 595 5758 5236 206 297 5545 213
18APR2011 5588 0 531 5588 5180 121 247 5362 226
21MAR2011 5296 43 424 5361 4928 248 262 5300 61
21FEB2011 5588 49 601 5662 5180 205 349 5488 174
24JAN2011 5388 104 445 5545 5012 300 266 5463 82
27DEC2010 5252 142 370 5466 4928 302 207 5381 85
29NOV2010 5120 204 247 5427 4760 451 135 5436 -10
01NOV2010 5224 220 342 5554 4928 400 228 5528 26
04OCT2010 5316 204 318 5623 4928 465 191 5626 -3
06SEP2010 5296 216 338 5620 4928 456 212 5613 7

Mean 5359 105 471 5517 4973 291 272 5409 108
Stdev 214 85 180 187 182 121 106 182 106

5.2.3. Sensitivity analysis in model parameters In this section, we give results showing

the absolute VSS and the relative VSS under different parameter settings. Table 5 presents the

results by varying the recourse function cost r+ and r− and patient volume characteristics. Absolute

and relative savings (in parentheses) are given in this table. We experimented with different patient

volume by taking max{0, dt(ω)−∆}, where ∆ are 0, 40, and 70. Hence, the mean patient volume is

reduced by a given ∆. Note that the standard deviation does not change. We calculated the mean

absolute percentage error of each patient volume forecast reduced by ∆. The combinations of r+

and r− are taken with the following justifications: (1) r+ = 0.75, r− = 1.25: some salvage cost and

low cost nurse addition; (2) r+ = 0.5, r− = 2: low salvage cost and agency nurse short notice; (3)

r+ = r− = 50: closely track demand; (4) r+ = 5, r− = 10: loosely track demand; (5) r+ = 0.5, r− = 50:

low salvage cost and significant safety costs due to understaffing; and (6) r+ = 0, r− = 50: no salvage

cost and significant safety costs due to understaffing.

For a given recourse function cost, the absolute VSS shows a decreasing tendency as mean

absolute percent error increases. The largest absolute VSS was obtained when some salvage cost

and low nurse replacement cost were used in the model with high MAPE, whereas the smallest

absolute VSS was obtained when the adjustment decisions were made to strictly meet the patient

volume demand regardless of overstaffing level.
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Table 5 Sensitivity analysis of the value of the stochastic

solutions on different cost function coefficients (r+ and r−) and mean
absolute percentage errors of patient volume forecast

Mean Absolute Percentage Error
r+ r− 12% 18% 27%

0.75 1.25 547.5 (10.7%) 524.6 (20.6%) 480.2 (34.0%)
0.5 2 180.73 (3.4%) 167.89 (6.0%) 162.45 (9.6%)
50 50 130.01 (2.3%) 122.84 (3.9%) 115.94 (5.6%)
5 10 83.45 (1.5%) 76.68 (2.5%) 76.95 (3.8%)
0.5 50 52.11 (0.8%) 49.42 (1.3%) 51.04 (1.8%)
0 50 52.75 (0.8%) 51.01 (1.3%) 48.32 (1.7%)

Note that the relative VSS decreases as the recourse function costs r+ and r− increase. The

reason is that the denominator of the relative VSS is the optimal objective value of the model,

which increases in the recourse function cost. Moreover, since dt(ω) are fractional in the model,

positive residuals ut(ω) and vt(ω) must exist regardless of any model parameter setting. Hence,

one can easily see that the relative VSS goes to zero as the recourse function cost increases.

We also evaluated the objective values of the solutions based on 100 scenarios by using all 12,768

error vectors. The average VSS based on a choice of 100 scenarios was significantly lower than that

based on the 1,000 scenarios (110 vs. 130 with p-value < 0.01). Moreover, the standard deviation

of the objective function values based on the 100 scenarios was larger than that based on the 1,000

scenarios on average (599 vs. 559). Detailed results are given in Appendix C.

5.3. Expected value of perfect information

We evaluate the maximum staffing cost saving if perfect patient volume were available in the

iStaff model. The expected value of perfect information (EVPI) has been used in the context of

decision analysis to measure the amount that a decision maker is willing to pay in return for perfect

information about uncertain factors (Pratt et al. 1995, Birge and Louveaux 1997). The EVPI is

calculated as follows. We call the staffing cost resulting from (TSSIP) the wait-and-see staffing cost.

We compare the wait-and-see staffing cost with the so-called here-and-now staffing cost, which is

obtained by solving min
{
Eω

[∑
i∈I cixi +Q(χ, ω)

]
| (1a)− (1b)

}
. Then, the EVPI is the difference

between the wait-and-see staffing cost and the here-and-now staffing cost.

Table 6 provides the wait-and-see staffing cost, the here-and-now staffing cost, and the EVPI

for each problem instance. The EVPI for the iStaff model is the cost of staffing 300 nursing hours

a week on average. The HM service would save 5.4% of the staffing cost more than the wait-and-

see staffing cost resulting from (TSSIP) if perfect and accurate patient volume information were

available to the iStaff model.
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Table 6 Expected value of perfect patient volume information (EVPI) for the iStaff model

Instance Wait-and-See Staffing Cost Here-and-Now Staffing Cost EVPI

20FEB2012 5223 4946 277 5.3%
23JAN2012 5778 5443 335 5.8%
26DEC2011 5276 5025 251 4.8%
28NOV2011 5492 5223 269 4.9%
31OCT2011 5669 5346 324 5.7%
03OCT2011 5430 5111 318 5.9%
05SEP2011 5368 5046 322 6.0%
08AUG2011 6003 5644 359 6.0%
11JUL2011 5813 5491 322 5.5%
13JUN2011 5762 5461 301 5.2%
16MAY2011 5944 5619 325 5.5%
18APR2011 5844 5526 318 5.4%
21MAR2011 5511 5229 281 5.1%
21FEB2011 5858 5531 328 5.6%
24JAN2011 5588 5288 300 5.4%
27DEC2010 5468 5190 278 5.1%
29NOV2010 5339 5069 270 5.0%
01NOV2010 5444 5177 267 4.9%
04OCT2010 5533 5243 290 5.2%
06SEP2010 5512 5250 263 4.8%

Mean 5593 5293 300 5.4%
Stdev 227 206 29 0.4%

5.4. Computational experience with the modified L-shaped method

We now discuss the computational performances of our algorithmic approach. In Section 5.4.1 we

compare our multicut aggregation (MCA) approach with the single-cut approach and the hybrid-

cut approach given in Section 4.2. The outer linearization cuts were generated only at the incumbent

solutions. More aggressive cut generation increased the computation time. For example, when

the cuts are generated at every feasible integer solution, the computation time is doubled (see

Appendix F). However, the maximum memory (128 GB) available on our computation server was

not enough when the cuts are generated at all fractional solutions. In Section 5.4.2 we discuss the

computational results from the proposed thin direction branching strategy.

5.4.1. Computational performance of multicut aggregation We now give results com-

paring the computational performance of the single-cut approach, the hybrid-cut approach, and the

proposed MCA approach within the framework of the L-shaped method. Table 7 gives the average

computational performances of different approaches on the 20 problem instances. The single-cut

approach adds only one cut (i.e., Mk = 1) generated for each χk at iteration k. The hybrid-cut

approach adds Mk number of cuts generated for each χk at iteration k. The MCA approach also

adds Mk number of cuts generated for each χk but aggregates those having dual multipliers equal

to zero. We consider the hybrid cut and the MCA approaches to add 10, 100, 500, and 1,000 cuts for
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Table 7 Average computational performances of different cut aggregation approaches for the 20 problem instances

Absolute
Root Node B&C Total Optimality Gap at

No. of No. of CPU Time CPU Time CPU Time the First Feasible
Approach Cuts Nodes (sec.) (sec.) (sec.) Solution

Single cut 533 944 56492 2917 59409 15
Hybrid cut (10 cuts) 3284 1133 35020 5860 40879 48
Hybrid cut (100 cuts) 11309 1919 12290 52091 64381 46
Hybrid cut (500 cuts) NA† NA† NA† NA† NA† NA†

Hybrid cut (1000 cuts) NA† NA† NA† NA† NA† NA†

MCA (10 cuts) 94 1831 34704 38382 73086 48
MCA (100 cuts) 615 2572 11828 53908 65736 44
MCA (500 cuts) 2944 1653 6468 20524 26991 31
MCA (1000 cuts) 4354 918 5261 4749 10010 26

† Hybrid cut (500 cuts) and hybrid cut (1,000 cuts) reached the maximum memory (128 GB) available in our computation
server.

each χk (i.e., Mk = 10,100,500, and 1,000). The subsets Sk
m of scenario indices are constructed in

a round-robin fashion for m= 1, . . . ,Mk. The absolute optimality gap at the first feasible solution

is given by the absolute difference between the optimal objective value and the objective value at

a feasible solution that was first found.

The MCA approach used the least total CPU time (10,010 sec.) when allowing 1,000 cuts.

The known hybrid-cut approach had the least total CPU time (40,879 sec.) for 10 cuts among

different parameter settings. The total CPU time was reduced by a factor of 4.1 on average for

our problem instances. In addition to the reduced root node CPU time, the branch-and-cut (B&C)

CPU time resulting from the MCA with 1,000 cuts approach was also reduced by a factor of 1.2

when compared with that of the hybrid cut with 10 cuts. The hybrid cut with 500 cuts and that

with 1,000 cuts could not find a solution as they reached the maximum memory (128 GB) available

in our computation server. The single-cut approach required more than ten times the CPU time at

the root node, but it did produce better root node solutions that required less time subsequently

to reach optimality. Overall, MCA with 1,000 cuts required about one-sixth the time to solve the

test problems.

Appendix G reports the results from a different multicut approach that purges the cuts with zero

dual multipliers. Although this multicut purge approach resulted in nearly the same computational

performances for 16 of the 20 instances, the proposed MCA approach outperformed in the other

four instances.

5.4.2. Computational performance of the thin direction branching strategy We now

examine the computational performance of the thin direction branching strategy devised by intro-

ducing the auxiliary variables φ,ψ, and χ with priority as discussed in Section 4.1. Recall that with

this branching strategy, we first seek integrality in the number of full-time and part-time nurses
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and the number of nurses in each shift type. Table 8 gives results comparing the computational

performance of our priority branching with a tender variable branching strategy that gives priority

to branching on tender variables χ, followed by branching on the original variables x.

The proposed thin direction branching strategy on average used 918 nodes in the B&C tree. This

is smaller by a factor of 1.6 when compared with the tender variable branching strategy (1,499

nodes). The thin direction branching strategy branched on original variable x only a few times

(i.e., 32 vs. 1,484). Moreover, in the B&C procedure, the thin direction branching strategy found

19 feasible solutions on average, whereas the tender variable branching strategy found 56 feasible

solutions on average. This increased B&C CPU time from the tender variable branching results,

because of the additional efforts required in objective function evaluation. Hence, the thin direction

branching strategy took less time per node subproblem for all the problem instances (i.e., 5.2 vs.

9.4 CPU-seconds per node on average). As a result, the B&C CPU time resulting from the thin

direction branching strategy is lower than that from the tender variable branching by a factor of

3. This result implies that by branching on thin directions, φ and ψ, the integrality of the solution

is more efficiently achieved in the B&C search tree.

In Appendix H we report the results from the standard branching strategy that considers branch-

ing on original variables x only. The reduction in the B&C CPU time by the tender variable

branching is not significant (14,068 vs. 14,175 sec. on average). The reason is that the tender vari-

able branching strategy on average performed branching 15 times on tender variables compared

with 1,484 times on original variables. Note that in contrast the prioritized branching strategy

performs most of its branching on the tender variables χ, after generating some branches using φ

and ψ. This result suggests the benefits of branching on the implied thin directions by the proposed

prioritized branching strategy.

6. Concluding Remarks

The integrated staffing and scheduling model studied in this paper is applicable for a single unit.

This model assumes that nurses are identical in their skill set. This assumption is justified for a

single unit (e.g., hospital medicine) problem. In more general hospital-wide settings, nurses across

different units have different certifications and skill sets. In certain situations, or with additional

skill sets, these nurses are interchangeable across units. An example is the nurse float pool, which

is often maintained in a large hospital. Nurses in the float pool may work in many different

units. Developing and studying hospital-wide staffing and scheduling models are a topic of future

research. Another important issue in developing schedules is individual preferences (see, e.g., Bard

and Purnomo 2005b,c, Maenhout and Vanhoucke 2013b). There are two possible approaches to

address this issue. The first approach is to develop a detailed preference-based optimization model
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and optimize for overall satisfaction. The alternative approach is to first create schedules without

preferences and then offer these schedules to the nurses for their bidding. The issue of scheduling

preference was discussed with the NMH administration in the context of changing schedules based

on our results. The suggestion was that, based on nurse preferences, use of certain scheduling pat-

terns could be further restricted by additional lower and upper bounds on the first-stage decision

variables.

Despite these limitations, this paper takes several important steps in the direction of incorpo-

rating uncertainty in the workforce planning. For a single-unit problem, the computational results

in this paper show that realistic integrated staffing and scheduling problems, modeled as two-stage

stochastic mixed-integer programs, can be solved in a reasonable amount of time. A key to solving

such problems is the ability to add inequalities that tighten the relaxation of the second-stage

mixed-integer sets. For the problems studied in this paper we showed that the tighter relaxations

obtained by adding parametric mixed-integer inequalities were sufficient to specify the convex hull

of the second-stage mixed-integer set. This remarkably reduced the complexity of the model. Fur-

ther algorithmic enhancements to the L-shaped method resulted in another tenfold improvement in

solution time and significant reduction in memory usage. On the practical side, the empirical study

based on real data showed that one can achieve significant cost savings by appropriately modeling

the future uncertainty. This result was demonstrated by evaluating the value of stochastic solution,

as well as testing the performance of the model against real demand data. We also observed that

the value of stochastic solution increases with mean percentage forecast error.

Appendix A: CPLEX Parameter Setting

In Table 9, we list the CPLEX parameters with nondefault values used in our computational study.

The first four parameter (CPX PARAM MIPSEARCH, CPX PARAM MIPCBREDLP, CPX PARAM PRELINEAR,

and CPX PARAM REDUCE) settings are necessary for the implementation of our algorithm. Parame-

ter CPX PARAM PARALLELMODE is set to 1 in order to enable deterministic parallel search mode in

the CPLEX MIP optimizer. With the parameter setting to turn on all the CPLEX internal cut

procedures, we observed that CPLEX did not generate any cut throughout the branch-and-cut

procedure.

Appendix B: Characteristics of Patient Census Data and Problem Instances

Patient census during the study period has a mean of 125 and a standard deviation of 19. As can

be seen in Figure 2a, the patient volume fluctuates during different times of the day and days of

the week. The patient volume is typically higher during Tuesdays through Fridays. Figure 2a also

shows a large variability in patient volume on a given day of the week. NMH manages its nurse

staffing levels using nurse-to-patient ratios for HM.
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Table 9 CPLEX parameters used with nondefault values in the

computational study

Parameter Name Value

CPX PARAM MIPSEARCH CPX MIPSEARCH TRADITIONAL

CPX PARAM MIPCBREDLP CPX OFF

CPX PARAM PRELINEAR 0
CPX PARAM REDUCE CPX PREREDUCE PRIMALONLY

CPX PARAM PARALLELMODE 1
CPX PARAM THREADS 32
CPX PARAM EPGAP 0.0
CPX PARAM LPMETHOD CPX ALG DUAL

CPX PARAM MIPEMPHASIS 3
CPX PARAM BNDSTRENIND 1
CPX PARAM VARSEL 2
CPX PARAM DIVETYPE 3
CPX PARAM PRESLVND 2
CPX PARAM PROBE 3

Table 10 Characteristics of problem instances and patient census data

Training Horizon Planning Horizon
Instance Date Range (613 days) Mean Stdev Max Min Mean Stdev Max Min

20FEB2012 06/17/2010 - 02/19/2012 120 18.9 188 62 112 12.4 152 84
23JAN2012 05/20/2010 - 01/22/2012 121 19.1 188 62 114 12.8 152 84
26DEC2011 04/22/2010 - 12/25/2011 122 19.1 188 62 114 13.3 152 73
28NOV2011 03/25/2010 - 11/27/2011 123 18.8 188 62 113 14.8 152 70
31OCT2011 02/25/2010 - 10/30/2011 125 18.3 188 73 109 15.4 146 62
03OCT2011 01/28/2010 - 10/02/2011 126 18.4 188 73 109 15.5 146 62
05SEP2011 12/31/2009 - 09/04/2011 127 18.7 188 73 109 15.2 146 62
08AUG2011 12/03/2009 - 08/07/2011 127 18.9 188 73 113 14.6 146 62
11JUL2011 11/05/2009 - 07/10/2011 127 18.9 188 73 117 10.9 146 79
13JUN2011 10/08/2009 - 06/12/2011 128 18.9 188 73 118 10.9 147 77
16MAY2011 09/10/2009 - 05/15/2011 129 18.8 188 73 119 11.4 148 77
18APR2011 08/13/2009 - 04/17/2011 129 18.6 188 73 117 12.0 148 77
21MAR2011 07/16/2009 - 03/20/2011 130 18.8 189 73 117 12.9 152 77
21FEB2011 06/18/2009 - 02/20/2011 132 18.9 203 73 116 12.7 152 83
24JAN2011 05/21/2009 - 01/23/2011 133 18.3 203 73 115 13.6 152 74
27DEC2010 04/23/2009 - 12/26/2010 133 17.9 203 73 116 14.2 174 74
29NOV2010 03/26/2009 - 11/28/2010 135 17.2 203 78 113 15.2 174 73
01NOV2010 02/26/2009 - 10/31/2010 136 16.7 203 85 114 16.2 174 73
04OCT2010 01/29/2009 - 10/03/2010 136 16.5 203 85 121 21.6 177 73
06SEP2010 01/01/2009 - 09/05/2010 135 16.5 203 85 129 23.1 181 73

Table 10 shows the characteristics of patient census data used for each problem instance. The

first column presents the problem instances, which are named by the first date of each planning

horizon. For each problem instance, 613 days of patient census data were taken to train the ARIMA

forecasting model. Mean, standard deviation, and maximum and minimum of patient census data

are given for each of the training horizon and the planning horizon.
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Figure 3 Mean absolute percentage error resulting from the base scenarios in our empirical study.

In our empirical setting, a set of demand scenarios is generated by using an ARIMA model and

empirical error vectors, which simulate hourly patient volume for an 18-week planning horizon. The

forecast resulting from the ARIMA model has 11% mean absolute percentage error (MAPE) on

average for a 6-week period (see Figure 3). For weekly adjustment, a patient census forecast made

a week ahead of the adjusting week is used and has 9% MAPE on average in our empirical setting.

Note, however, that such forecast for the adjusting week is not based on actual patient census but

on the scenarios. Therefore, overall performance of the stochastic solution does not depend on the

weekly adjusting forecasts but on the scenarios generated for the 18-week planning horizon.

Appendix C: Value of the Stochastic Solution Resulting from 100 Patient Volume Scenarios

Table 11 reports the value of the stochastic solution (VSS) obtained by solving (TSSIP) with

100-patient volume scenarios. The 100 patient volume scenarios were generated from an arbitrary

choice of 100 error vectors. We compare the deterministic solution, the stochastic solution from

the 100-patient scenario, and the stochastic solution with the 1,000-patient scenario. Moreover,

p-values were calculated from Welch’s t-test in order to see whether the staffing cost from the

1,000-patient scenario is significantly lower than that from the 100-patient scenario. To achieve a

greater statistical power, we evaluate the solutions using 12,768 error vectors available from our

empirical study.

The stochastic solution from the 100-patient scenario results in the cost saving of 110 nursing

hours a week on average. This is smaller than that from the 1,000-patient solution by average 20

nursing hours a week. Moreover, the difference of the staffing cost between the 100-patient scenario

solution and the 1,000-patient scenario solution is statistically significant with a p-value < 0.01.
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Table 11 Staffing cost and value of the stochastic solutions resulting from the different number of scenarios. estimated

using 12,768 error vectors

Deterministic
Solution 100-Patient Scenario Solution 1000-Patient Scenario Solution

Instance Mean Stdev Mean Stdev VSS Mean Stdev VSS p-value

20FEB2012 5360 375 5263 564 97 1.8% 5240 508 119 2.2% < 0.01
23JAN2012 5956 431 5825 654 132 2.2% 5803 620 153 2.6% < 0.01
26DEC2011 5384 310 5285 489 99 1.8% 5262 444 121 2.3% < 0.01
28NOV2011 5624 357 5516 527 108 1.9% 5495 501 129 2.3% < 0.01
31OCT2011 5823 448 5721 658 102 1.7% 5699 602 124 2.1% < 0.01
03OCT2011 5591 425 5475 630 116 2.1% 5456 604 135 2.4% 0.01
05SEP2011 5523 441 5424 651 98 1.8% 5401 613 122 2.2% < 0.01
08AUG2011 6154 467 6049 696 106 1.7% 6028 658 126 2.0% 0.01
11JUL2011 5973 434 5860 648 112 1.9% 5843 590 130 2.2% 0.01
13JUN2011 5933 404 5810 614 123 2.1% 5790 575 143 2.4% < 0.01
16MAY2011 6116 430 5994 648 122 2.0% 5977 620 139 2.3% 0.01
18APR2011 5993 439 5892 636 101 1.7% 5875 600 118 2.0% 0.01
21MAR2011 5668 387 5551 565 116 2.1% 5531 539 136 2.4% < 0.01
21FEB2011 6010 447 5909 654 101 1.7% 5888 611 122 2.0% < 0.01
24JAN2011 5758 401 5636 611 122 2.1% 5618 554 139 2.4% 0.01
27DEC2010 5615 381 5506 573 109 1.9% 5485 516 131 2.3% < 0.01
29NOV2010 5468 355 5364 530 104 1.9% 5341 505 127 2.3% < 0.01
01NOV2010 5563 353 5463 535 100 1.8% 5442 476 121 2.2% < 0.01
04OCT2010 5698 398 5579 585 119 2.1% 5557 559 141 2.5% < 0.01
06SEP2010 5636 333 5527 514 108 1.9% 5504 489 132 2.3% < 0.01

Mean 5742 401 5632 599 110 1.9% 5612 559 130 2.3% < 0.01

Algorithm 3 Scheduling Pattern Generation

ReqShifts← the required number of shifts for a given shift type.

ShiftLength← the number of work hours per shift for a given shift type.

Schedules←∅

Call GeneratePatterns(Schedules,∅,0)

function GeneratePatterns(Schedules,Shifts,StartT ime)

if |Shifts|=ReqShifts then

Schedules← Schedules∪{Shifts}; return

end if

for t= StartT ime, . . . ,168 do . 168 hours = 1 week.

if t is a valid shift start time then

Call GeneratePatterns(Schedules,Shifts∪{t}, StartT ime+ShiftLength)

end if

end for

end function
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Table 12 Computational results from the deterministic iStaff model

Root Node Branch-and-Cut
CPU CPU Total

No. of No. of Time No. of No. of Branching on Time CPU Time
Instance Iterations Cuts (sec.) Cuts Nodes φ ψ χ x (sec.) (sec.)

20FEB2012 136 30 10 5 0 0 0 0 0 2 11
23JAN2012 134 30 10 2 0 0 0 0 0 1 11
26DEC2011 150 30 11 4 0 0 0 0 0 1 12
28NOV2011 128 30 10 3 0 0 0 0 0 1 11
31OCT2011 131 30 10 4 0 0 0 0 0 2 11
03OCT2011 137 30 10 4 0 0 0 0 0 1 11
05SEP2011 196 30 15 2 0 0 0 0 0 1 16
08AUG2011 155 30 11 4 0 0 0 0 0 1 12
11JUL2011 154 30 12 3 0 0 0 0 0 1 13
13JUN2011 132 29 10 3 0 0 0 0 0 1 11
16MAY2011 173 30 13 7 90 6 7 3 75 12 25
18APR2011 164 28 12 11 10 5 2 2 2 4 16
21MAR2011 127 30 9 4 0 0 0 0 0 2 11
21FEB2011 156 30 12 4 0 0 0 0 0 1 13
24JAN2011 138 29 10 3 0 0 0 0 0 1 11
27DEC2010 132 30 9 4 0 0 0 0 0 1 10
29NOV2010 197 30 15 5 50 19 15 8 8 6 21
01NOV2010 120 29 9 12 50 13 4 12 22 8 17
04OCT2010 170 30 13 4 0 0 0 0 0 1 14
06SEP2010 134 30 10 4 0 0 0 0 0 1 12

Mean 148 30 11 5 10 2 1 1 5 3 13
Stdev 22 1 2 3 24 5 4 3 17 3 4

Appendix D: Algorithm for Generating Scheduling Patterns

For generating scheduling patterns in our iStaff model, Algorithm 3 calls a recursive function

GeneratePatterns for a given shift type and results in a set of schedules, Schedules, where

each schedule, Shifts, consists of a set of valid start times.

Appendix E: Computational Results from the Deterministic iStaff Model

We present computational results from the deterministic iStaff model that considers a single sce-

nario based on the mean point forecast. A deterministic problem instance has 4,025 integer variables

and 336 continuous variables and was solved by the proposed L-shaped method. Table 12 shows

the computational results for 20 problem instances. The column “No. of Iterations” presents the

number of times that the master problem was resolved. The column “No. of Cuts” presents the

number of optimality cuts after aggregation at the end of Step 1 of Algorithm 2. The deterministic

problems were solved to optimality in 13 CPU-seconds on average. Of the 20 problem instances,

16 were solved at the root node of the branch-and-cut tree as the CPLEX MIP optimizer found

optimum solutions using its internal heuristic procedures.
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Table 13 Computational performance from generating outer linearization cuts only at incumbent solutions

and generating outer linearization cuts at any feasible solutions

Generating Cuts Generating Cuts
Only at Incumbent Solutions at Any Feasible Integer Solutions

No. of No. of CPU Time Wallclock No. of No. of CPU Time Wallclock
Instance Cuts Nodes (sec.) (sec.) Cuts Nodes (sec.) (sec.)

20FEB2012 3323 294 2020 334 5647 552 4745 532
23JAN2012 3987 2118 10565 904 2000 318 3777 302
26DEC2011 1998 2131 7107 563 4369 1226 10620 703
28NOV2011 2314 926 4032 377 2147 210 2498 255
31OCT2011 3947 621 5728 538 7668 1020 7681 775
03OCT2011 2724 1159 5722 479 10302 768 7190 863
05SEP2011 2678 536 2953 340 17269 1382 18499 2002
08AUG2011 3471 1213 7746 661 2780 320 4362 353
11JUL2011 6931 655 5930 692 14381 1090 10729 1156
13JUN2011 3889 626 4556 453 8399 945 6651 791
16MAY2011 3372 1206 6127 555 15730 2237 17873 3293
18APR2011 2790 830 3315 361 3000 287 3883 294
21MAR2011 2508 800 3501 382 4000 920 3341 342
21FEB2011 2981 1146 5870 536 19891 989 14294 1987
24JAN2011 4601 777 3400 341 3539 789 5470 469
27DEC2010 2935 658 3560 368 8026 540 5850 624
29NOV2010 2868 292 1795 272 9484 982 5679 942
01NOV2010 2522 722 3019 343 5497 625 7345 805
04OCT2010 2692 1536 6372 538 3000 127 2487 233
06SEP2010 3963 111 1653 306 4322 646 5412 513

Mean 3325 918 4749 467 7573 799 7419 862
Stdev 1082 540 2258 158 5399 488 4713 760

Appendix F: Computational Results from More Aggressively Generating Outer Linearization

Cuts in the Branch-and-Cut Procedure

We compare computational results from generating outer linearization cuts only at incumbent

solutions with those from generating the cuts at any feasible integer solutions. When the cuts

were generated at any feasible integer solutions, average computation time increased from 4,749 to

7,419 CPU-seconds. The reason is that the size of the B&C node subproblem becomes larger with

more cuts, which results in longer computation time spent per B&C node subproblem on average.

Specifically, the number of cuts generated at any feasible integer solutions was nearly twice that

generated only at incumbent solutions. By generating the cuts at any feasible integer solutions,

the number of nodes solved in the B&C tree was reduced because of tighter lower bounds.

Appendix G: Computational Results from Multicut Purge Approach

We compare computational results from two different multicut approaches. One approach purges

the cuts whose dual multipliers equal zero, while the other aggregates these cuts as presented in

Section 4.2. Results are given in Table 14. Two approaches resulted in the nearly same compu-

tational performances for 16 of the 20 instances. The multicut aggregation approach generated



Kim and Mehrotra: Integrated Staffing and Scheduling Model under Demand Uncertainty
34 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Table 14 Computational performance resulting from multicut approach with cut purge and cut aggregation

Multicut Purge Multicut Aggregation
Root Node B&C Total Root Node B&C Total

No. of No. of CPU Time CPU Time CPU Time No. of No. of CPU Time CPU Time CPU Time
Instance Cuts Nodes (sec.) (sec.) (sec.) Cuts Nodes (sec.) (sec.) (sec.)

20FEB2012 4352 294 6452 2002 8454 4352 294 6384 2020 8405
23JAN2012 5016 2118 5184 10638 15822 5016 2118 5168 10565 15734
26DEC2011 3027 2132 5913 6987 12900 3027 2131 5940 7107 13047
28NOV2011 3343 926 5294 4113 9407 3343 926 5324 4032 9356
31OCT2011 5972 689 4778 6166 10944 4976 621 4784 5728 10512
03OCT2011 3753 1156 5069 5691 10760 3753 1159 5004 5722 10726
05SEP2011 3707 535 4787 2887 7674 3707 536 4788 2953 7740
08AUG2011 4500 1212 4606 6405 11011 4500 1213 4576 7746 12322
11JUL2011 7737 887 5141 7226 12367 7960 655 5164 5930 11095
13JUN2011 4918 626 5592 4581 10173 4918 626 5544 4556 10100
16MAY2011 4401 1205 5182 5939 11121 4401 1206 5143 6127 11270
18APR2011 3819 830 5037 3547 8584 3819 830 4730 3315 8045
21MAR2011 3537 800 5199 3766 8965 3537 800 4785 3501 8286
21FEB2011 5006 1214 5315 6929 12244 4010 1146 4875 5870 10745
24JAN2011 8621 5874 5562 106371 111933 5630 777 5097 3400 8497
27DEC2010 3964 658 5802 3576 9378 3964 658 5718 3560 9278
29NOV2010 3897 292 5632 1846 7478 3897 292 5423 1795 7218
01NOV2010 3551 724 5582 2988 8570 3551 722 5609 3019 8628
04OCT2010 3721 1536 5281 6480 11761 3721 1536 5227 6372 11599
06SEP2010 4992 111 5900 1639 7538 4992 111 5937 1653 7590

Mean 4592 1191 5365 9989 15354 4354 918 5261 4749 10010
Stdev 1472 1225 446 22798 22830 1082 540 477 2258 2144

fewer nodes in the branch-and-bound tree for instances 31OCT2011, 11JUL2011, 21FEB2011, and

24JAN2011. This resulted in the B&C CPU time reduction for these problems. In particular, for

the 24JAN2011 instance, the B&C CPU time was reduced by a factor of 31.

Appendix H: Computational Results from the Standard Branching Strategy

In Table 15 we report computational results from the standard branching strategy that consid-

ers branching on original variables x only. The computational performances are not significantly

different from those that first use tender variable branching (see Table 8).
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Table 15 Computational performance resulting from branching on tender

variable with priority over original variable

No. of No. of B&C Total
No. of Feasible Branching CPU Time CPU Time

Instance Nodes Solutions on x (sec.) (sec.)

20FEB2012 1303 69 1307 12803 19155
23JAN2012 1111 53 1114 11220 16373
26DEC2011 1978 54 1972 18857 24787
28NOV2011 1808 74 1812 14667 19980
31OCT2011 1915 75 1890 25221 30041
03OCT2011 1784 46 1783 14760 19806
05SEP2011 1418 40 1417 7824 12579
08AUG2011 1404 37 1403 8732 13352
11JUL2011 2409 65 2408 18311 23506
13JUN2011 295 30 298 4372 10063
16MAY2011 1757 40 1748 12239 17391
18APR2011 1592 54 1595 9837 14856
21MAR2011 1544 60 1546 12346 17519
21FEB2011 2001 82 2002 17733 23074
24JAN2011 1925 99 1934 34151 39721
27DEC2010 1824 67 1828 16804 22527
29NOV2010 946 40 949 8271 13864
01NOV2010 2348 76 2350 18569 24174
04OCT2010 722 41 730 8544 13754
06SEP2010 1059 51 1061 8244 14067

Mean 1557 58 1557 14175 19529
Stdev 535 18 533 6897 6947
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Gade, Dinakar, Simge Küçükyavuz, Suvrajeet Sen. 2012. Decomposition algorithms with parametric gomory

cuts for two-stage stochastic integer programs. Mathematical Programming 1–26.

Jaumard, Brigitte, Frédéric Semet, Tsevi Vovor. 1998. A generalized linear programming model for nurse

scheduling. European Journal of Operational Research 107(1) 1–18.

Kao, Edward PC, Maurice Queyranne. 1985. Budgeting costs of nursing in a hospital. Management Science

31(5) 608–621.
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recourse by enumeration: A framework using Gröbner basis. Mathematical Programming 83(1-3) 229–

252.

Sen, Suvrajeet. 2005. Algorithms for stochastic mixed-integer programming models. Handbooks in Operations

Research and Management Science 12 515–558.

Sen, Suvrajeet, Julia L Higle. 2005. The C3 theorem and a D2 algorithm for large scale stochastic mixed-

integer programming: set convexification. Mathematical Programming 104(1) 1–20.

Sen, Suvrajeet, Hanif D Sherali. 2006. Decomposition with branch-and-cut approaches for two-stage stochas-

tic mixed-integer programming. Mathematical Programming 106(2) 203–223.

Sherali, Hanif D, Barbara MP Fraticelli. 2002. A modification of Benders’ decomposition algorithm for

discrete subproblems: An approach for stochastic programs with integer recourse. Journal of Global

Optimization 22(1-4) 319–342.

Sherali, Hanif D, Xiaomei Zhu. 2006. On solving discrete two-stage stochastic programs having mixed-integer

first-and second-stage variables. Mathematical Programming 108(2-3) 597–616.



Kim and Mehrotra: Integrated Staffing and Scheduling Model under Demand Uncertainty
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 39

Trukhanov, Svyatoslav, Lewis Ntaimo, Andrew Schaefer. 2010. Adaptive multicut aggregation for two-stage

stochastic linear programs with recourse. European Journal of Operational Research 206(2) 395–406.

Van Slyke, Richard M, Roger Wets. 1969. L-shaped linear programs with applications to optimal control

and stochastic programming. SIAM Journal on Applied Mathematics 17(4) 638–663.

Venkataraman, R, MJ Brusco. 1996. An integrated analysis of nurse staffing and scheduling policies. Omega

24(1) 57–71.

Woodall, Jonathan C, Tracy Gosselin, Amy Boswell, Michael Murr, Brian T Denton. 2013. Improving patient

access to chemotherapy treatment at Duke Cancer Institute. Interfaces 43(5) 449–461.

Wright, P Daniel, Kurt M Bretthauer. 2010. Strategies for addressing the nursing shortage: Coordinated

decision making and workforce flexibility. Decision Sciences 41(2) 373–401.

Wright, P Daniel, Kurt M Bretthauer, Murray J Côté. 2006. Reexamining the nurse scheduling problem:
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