A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management

Kibaek Kim, Sanjay Mehrotra
Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60201 kibaek.kim@u.northwestern.edu, mehrotra@northwestern.edu

Abstract

We study the problem of integrated staffing and scheduling under demand uncertainty. This problem is formulated as a two-stage stochastic integer program with mixed-integer recourse. The here-and-now decision is to find initial staffing levels and schedules. The wait-and-see decision is to adjust these schedules at a time closer to the actual date of demand realization. We show that the mixed-integer rounding inequalities for the second-stage problem convexify the recourse function. As a result, we present a tight formulation that describes the convex hull of feasible solutions in the second stage. We develop a modified multicut approach in an integer L-shaped algorithm with a prioritized branching strategy. We generate twenty instances (each with more than 1.3 million integer and 4 billion continuous variables) of the staffing and scheduling problem using 3.5 years of patient volume data from Northwestern Memorial Hospital. Computational results show that the efficiency gained from the convexification of the recourse function is further enhanced by our modifications to the L-shaped method. The results also show that compared with a deterministic model, the two-stage stochastic model leads to a significant cost savings. The cost savings increase with mean absolute percentage errors in the patient volume forecast.

History: Revised on February 5, 2015

1. Introduction

Because labor cost constitutes a large portion of the operating expense of many organizations, staffing and scheduling decisions are important for effective operations management. The labor cost and job satisfaction both can be improved by improving these decisions (Wright and Mahar 2013). The staffing decision consists of knowing the number of employees that should be available to work at a given time. The scheduling decision consists of creating a detailed schedule plan that is offered to the employees. The actual requirements (demand) are typically unknown at the time of making these decisions. Short-term adjustments are made to ensure the desired quality of service. For example, in the healthcare setting, such adjustments may involve calling in extra workers (nurses) and paying overtime if demand surges or canceling the shift of a scheduled staff if demand drops (Bard and Purnomo 2005b,d).

In this paper, we study an integrated staffing and scheduling model (iStaff) that develops staffing plans and initial schedules while allowing adjustment to these schedules at a time closer to the actual demand realization. Our approach aims to reduce overall labor costs by right-sizing staff by balancing under- and overstaffing costs. Scheduling plans and staffing decisions are usually generated well ahead in time, while adjustments are made when more accurate demand information is available. The iStaff model is a challenging large-scale two-stage stochastic integer program with mixed-integer recourse. Such problems have been approached only heuristically in the past (e.g., Easton and Rossin 1996, Easton and Mansour 1999, Bard et al. 2007). The problem is large because the scheduling decisions introduce a large number of integer variables due to possible shift combinations. It is also a two-stage stochastic program because at a distant future adjustments to scheduling decisions are needed. More specifically, in our iStaff model (see Section 3) the here-andnow decision is to generate staffing levels and schedules, and the wait-and-see decision is to adjust these schedules for each demand scenario.

Contributions of this paper. This paper makes the following contributions. We identify valid parametric mixed-integer rounding (MIR) inequalities and show that by adding these inequalities we obtain the convex hull of feasible solutions for the second-stage mixed-integer problems in the iStaff model. This approach allows us to relax the integrality requirements on the secondstage variables of the iStaff model. An empirical study based on patient volume data from the Department of Hospital Medicine (HM) at Northwestern Memorial Hospital (NMH) is performed to evaluate the usefulness of the two-stage stochastic programming approach. A 1000-scenario iStaff model for HM in its extensive form has more than 1.3 million general integer variables and more than 4 billion continuous variables. The ability to convexify the second stage problems reduces the number of integer variables to 3,913 . Despite this reduction, however, the extensive form could not be solved by the CPLEX MIP solver, and standard implementation of the integer L-shaped method needed further computational enhancements to achieve realistic solution times. We present two enhancements to the standard integer L-shaped method that significantly improve the computational performance for our problems. The first enhancement is in the form of a multicut aggregation approach. This enhancement results in a nearly sixfold reduction in the CPU time compared with the best known approaches. Furthermore, the memory requirement for solving the problems was significantly reduced. The second computational enhancement is in the form of preidentifying thin branching directions and using a priority branching on these directions before branching on the decision variables in the original optimization model. This enhancement results in a nearly threefold improvement in the CPU time during the branch-and-cut phase of the L-shaped method.

The value of the stochastic solution was evaluated. Empirical results show that in a high volume unit such as HM with a mean absolute percentage error in patient volume at around 12% (real setting) and with a cost structure where the overtime is 1.5 times the required wages and there is no salvage value for overstaffing, the two-stage stochastic programming approach yields about 2.3% cost savings. This amounts to an overall cost reduction of more than 3.6 times the hiring cost of full-time nurses. A 2.3% cost savings is significant for a unit that has an operating profit of 10% and incurs nearly 50% of its cost toward staffing. Empirical results under different cost and forecast error conditions are also presented. These results show cost savings ranging from less than 1% to as high as 34%. Empirical results are also given to demonstrate the improvement in solution quality when solving a 1000 -scenario problem over a 100 scenario problem.
Organization of this paper. This paper is organized as follows. In Section 2.1 we review the relevant literature on the staffing and scheduing problem, with an emphasis on nurse scheduling. Section 2.2 reviews the literature on two-stage stochastic integer programming problems where both the first- and second-stage decision variables are mixed-integer. In Section 3 we formally introduce the iStaff model and study the properties of its second-stage recourse function. Specifically, we identify valid parametric mixed-integer rounding inequalities and show that the addition of these inequalities results in the convex hull of feasible solutions of the second-stage integer programs. We use this property to present an equivalent tight formulation for our problem by relaxing the integrality requirement of the second-stage decision variables. We present our computational enhancements to the integer L-shaped method in Section 4.

We test the iStaff model for application in a realistic environment, using real-world data, in Section 5. The generation of problem instances is described in Section 5.1. The results and analyses on the value of the stochastic solution for our problems are discussed in Section 5.2, and the expected value of perfect information is discussed in Section 5.3. Section 5.4 provides computational performance results with the multicut aggregation approach and the priority branching strategy. In Section 6, we give some concluding remarks and briefly discuss areas for future research. Appendix A gives CPLEX parameter settings. Appendix B gives additional information on patient volume characteristics and patient volume forecasting errors. Appendix C compares the value of stochastic solution in 100- and 1000-scenario problems. Appendix D gives the pseudocode for generating scheduling patterns. Appendix E gives the solution times for the deterministic staffing model that ignores forecasting errors and develops a plan based on point forecasts. Appendix F gives results on other cut aggregation strategies, and Appendix G gives results from an alternative multicut purge approach. Appendix H gives detailed results for the branching strategy that does not include the auxiliary variables to facilitate thin direction branching and therefore branches on the original variables only.

2. Literature Review

2.1. Literature review of nurse staffing and scheduling

Cheang et al. (2003) and Burke et al. (2004) provide an extensive review of models and methods for the nurse scheduling problem. Hence, the following review focuses primarily on the research that is directly related to our work. Most research studies on staffing, scheduling, and adjustment decision problems (e.g., Bard and Purnomo 2004, 2005a,b,c,d, 2007, Burke et al. 2012, Jaumard et al. 1998, Parr and Thompson 2007, Wright et al. 2006) have focused on only one aspect of these decisions. Only a few studies have attempted to integrate staffing and scheduling decisions and examine the implications of interactions between these decisions. An early paper by Abernathy et al. (1973) presents an integrated staffing and scheduling model to determine an optimal staffing policy with the recourse decisions of staff allocations under demand uncertainty. Abernathy et al. (1973) present two solution procedures to determine the staffing level: the first approach iteratively uses a penalty function for understaffing and overstaffing, whereas the second approach determines a required staffing level based on the chance-constraints. The models presented by Venkataraman and Brusco (1996), Easton and Rossin (1996), and Easton and Mansour (1999) are special cases of our iStaff model. Easton and Rossin (1996) present a stochastic goal programming model that integrates staffing and scheduling decisions under uncertain staffing requirements in a general workforce planning setting. A set of scheduling patterns is enumerated in advance, and the model determines the number of employees assigned to scheduling patterns. Tabu search (Easton and Rossin 1996) and a distributed genetic algorithm (Easton and Mansour 1999) are used to find heuristic solutions for the stochastic goal programming model. Maenhout and Vanhoucke (2013a,b) use a Dantzig-Wolfe decomposition approach to integrate nurse staffing and scheduling decisions in a deterministic setting.

Bard and Purnomo (2004, 2005b,d) consider the problem of short-term nurse rescheduling for daily fluctuations in patient demand, where a given midterm schedule is revised to cover shortages for nursing services. Wright and Bretthauer (2010) study a coordinated nurse planning problem that considers nurse scheduling and adjustments in response to patient demand. However, they solve the nurse scheduling model and the adjustment model separately. Woodall et al. (2013) use separate optimization models for monthly, weekly, and daily scheduling in a simulation framework.

A handful of studies take a two-stage stochastic programming approach for workforce planning. Kao and Queyranne (1985) present a two-stage stochastic program that determines staffing hours in the first stage and overtime in the second stage. Punnakitikashem et al. (2008) present a two-stage stochastic integer programming model for nurse assignment, where the first-stage decision assigns each nurse to patients and the second stage balances the workload for each nurse. The staffing
decisions are integrated into the stochastic model by introducing binary variables (Punnakitikashem et al. 2013). An L-shaped method is used to solve both models (Punnakitikashem et al. 2008, 2013). Zhu and Sherali (2007) also present a two-stage stochastic workforce planning model, in which the second-stage decision assigns continuous workload to each worker. In a recent paper, Bodur and Luedtke (2014) present an integrated staffing and scheduling model for service system using two-stage stochastic programming. The second-stage decisions in their model are continuous variables, and a linear programming recourse problem is used to assign real-valued workload to the workers. The previous studies do not integrate workforce adjustment decisions in staffing and/or scheduling models as a recourse to the changed demand.

2.2. Literature review of two-stage stochastic programming with mixed-integer recourse

Two-stage stochastic integer programming with mixed-integer recourse is a challenging problem. Louveaux and Schultz (2003) and Sen (2005) give a survey of this problem. Most studies are limited to developing algorithms for problems when the second stage consists of mixed-binary programs (e.g., Carøe and Tind 1997, Gade et al. 2012, Laporte and Louveaux 1993, Sen and Higle 2005, Sherali and Fraticelli 2002, Sherali and Zhu 2006). Only a limited number of research papers focus on pure-integer variables (Ahmed et al. 2004, Kong et al. 2006, Schultz et al. 1998) or mixed-integer variables (Sen and Higle 2005, Sen and Sherali 2006) in the second stage.

A popular approach to solving two-stage stochastic programs is the L-shaped method based on Benders' decomposition (Benders 1962). Van Slyke and Wets (1969) first proposed the L-shaped method for two-stage stochastic linear programs with continuous variables in both stages. The integer L-shaped method, which is also based on the Benders' decomposition approach, was first proposed by Laporte and Louveaux (1993). The integer L-shaped method allows integer variables in the first-stage and/or the second-stage problems. It incorporates a branch-and-bound procedure to ensure optimality. Finiteness of this method is ensured from the finite number of subspaces that are created during branching (Birge and Louveaux 1997). Ahmed et al. (2004) proposed the idea of branching on tender variables defined by the product of first-stage decision variables with the technology matrix for problems having pure-integer variables in the second stage.

A typical description of the L-shaped method is based on a single-cut approach. In this approach a single optimality cut resulting from aggregating information from all the second-stage problems is added at each major iteration. Birge and Louveaux (1988) suggest a multicut approach where cut information from second-stage scenarios is kept separately. They suggest that this approach may significantly reduce the number of major iterations while solving the two-stage stochastic linear program. Moreover, Birge and Louveaux (1988) and Trukhanov et al. (2010) suggest that aggregation of subsets of scenarios to form a smaller number of cuts may be advantageous. These
authors also explore the relative advantages of different scenario aggregation approaches. However, their studies are limited to solving a two-stage stochastic linear program. To our knowledge, no study has focused on efficient approaches to scenario aggregation and outer linearization in twostage stochastic integer programs.

In a recent paper Kong et al. (2013) present several general conditions for totally unimodular property in two-stage stochastic mixed-integer programs. The model studied in our paper does not satisfy the totally unimodularity conditions on the constraint matrix. Furthermore, it does not have an integer right-hand side. However, we do use the total unimodular property of the second-stage constraint matrix when studying the properties of the second-stage polyhedra that is obtained after adding the parametric mixed-integer rounding inequalities.

3. Integrated Staffing and Scheduling Model

In this section we present iStaff, an integrated staffing and scheduling model used to find initial optimal staffing levels and schedules, while adjusting them in the future as more accurate demand information becomes available. The model formulation is given in Section 3.1. The properties of the second-stage mixed-integer recourse function are studied in Section 3.2. Specifically, a convex hull of the second-stage feasible solutions is obtained by adding a linear number of valid parametric mixed-integer rounding inequalities to our problem.

3.1. Model description and formulation

We consider an 18 -week planning horizon to illustrate the decision dynamics of the iStaff model. The schedule is created for a 12 -week period. We assume that the scheduling patterns repeat from week to week during this 12 -week period. The staffing and scheduling decisions are made six weeks in advance of this 12 -week horizon. The 18 -week time horizon is chosen because in a realistic healthcare setting 12 -week (roughly 3 -month) schedules are generated and the schedules are made available to nurses six weeks in advance in order to allow for choices. Weekly decisions are made over the 12 -week period to adjust the planned schedules at the beginning of each week for the following week. These adjustment (recourse) decisions are applied for each day of the week and allow for calling in additional staff or finding salvage value from the scheduled staff. Figure 1 shows different time horizons and the corresponding decisions over an 18 -week planning horizon. For example, in Figure 1 the adjustments to week 10 schedules are made at the beginning of week 9 , when a more accurate demand forecast becomes available. Note that an alternative model may allow daily adjustments 24 hours prior to the actual demand realization.

At the beginning of the planning horizon, the staffing and scheduling decisions are made in order to minimize the sum of total staffing cost, expected adjustment cost, and expected overstaffing

Figure 1 Illustration of planning horizon, staffing horizon, adjustment horizon, and decision epoch

Table 1 Notation for the iStaff model formulation
The first-stage problem:
Parameters
$I \quad$ set of weekly scheduling patterns
$T \quad$ set of hourly time periods during a week $(=\{1, \ldots, 24 \times 7\})$
$X \quad$ set of staffing and scheduling rules
$c_{i} \quad$ staffing cost per labor working for scheduling pattern i
$a_{i t} \quad 1$ if scheduling pattern i contains hour t, and 0 otherwise
Decision variables
$x_{i} \quad$ decision variable representing the number of workers working in scheduling pattern $i \in I$
$\chi_{t} \quad$ decision variable representing the number of workers working at time t
The second-stage problem:
Parameters
$J \quad$ set of adjustment patterns
$q_{j}^{+} \quad$ cost of adding a shift for adjustment pattern j
$q_{j}^{-} \quad$ cost of canceling a shift scheduled for pattern j
$r^{+} \quad$ penalty cost of overstaffing per time period
$r^{-} \quad$ penalty cost of understaffing per time period
$w_{j t} \quad 1$ if adjustment pattern j contains hour t, and 0 otherwise
$d_{t}(\omega)$ demand forecast at time period t
Decision variables
$y_{j}^{+}(\omega)$ number of shifts added for adjustment pattern j
$y_{j}^{-}(\omega)$ number of shifts cancelled for adjustment pattern j
$u_{t}(\omega)$ amount of overstaffing at hour t
$v_{t}(\omega)$ amount of understaffing at hour t
and understaffing cost. Hence, the model is in the framework of the classical newsvendor model (see Davis et al. (2013) and references therein) generalized for the staffing problem. The staffing, scheduling, and adjustment decisions are coupled because an understaffed shift requires additional workers in order to maintain the desired quality of service, while an overstaffed shift results in lost wages because of limited salvage value of the scheduled staff.

We formulate the iStaff model as a two-stage stochastic integer program with mixed-integer recourse. The notation is described in Table 1. Each element i in the set I of weekly scheduling patterns defines one or more blocks of work hours with shift start times during a week, whereas each element j in the set J of adjustment patterns defines only one block of work hours a week. We also consider positive staffing cost $c_{i}>0$ for scheduling pattern i, positive adjustment cost $q_{j}^{+}>0$ of adding a shift for adjustment pattern j, and non-negative adjustment cost $q_{j}^{-} \geq 0$ of canceling a shift scheduled for pattern j. Let x_{i} denote the decision variables representing the number of workers working in scheduling pattern i, and let χ_{t} be the auxiliary variables representing the number of workers working at time t. The scheduling rules X are used to generate the columns of the first-stage constraint matrix. We formulate the two-stage stochastic integer programming (TSSIP) formulation of the iStaff model as follows:

$$
\begin{array}{ll}
\min & \sum_{i \in I} c_{i} x_{i}+\mathcal{Q}(\boldsymbol{\chi}) \\
\text { s.t. } & \chi_{t}=\sum_{i \in I} a_{i t} x_{i} \quad \forall t \in T \\
& \mathbf{x}=\left(x_{1}, \ldots, x_{|I|}\right) \in X \cap \mathbb{Z}^{|I|}, \tag{1b}
\end{array}
$$

where the second-stage recourse function $\mathcal{Q}(\chi)$ evaluates the expected weekly recourse cost for a given $\boldsymbol{\chi}$ and the vector $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i|T|}\right)$ represents an acceptable schedule pattern i for the week. We assume that all acceptable schedule patterns are pregenerated, in order to ensure compliances with scheduling rules and regulations (no back-to-back shifts, weekly duty hours, etc.).

The objective function of (TSSIP) is to minimize the sum of the weekly staffing cost and the expected weekly recourse cost $\mathcal{Q}(\chi), \boldsymbol{\chi}=\left(\chi_{1}, \ldots, \chi_{|T|}\right)$. The decision variables χ_{t} in (1a) are also known as tender variables in the stochastic programming literature (Ahmed et al. 2004); note that they take integer value.

The expected recourse function $\mathcal{Q}(\chi):=\mathbb{E}_{\omega}[Q(\chi, \omega)]$, and

$$
\begin{align*}
Q(\boldsymbol{\chi}, \omega)=\min & \sum_{j \in J} q_{j}^{+} y_{j}^{+}(\omega)+\sum_{j \in J} q_{j}^{-} y_{j}^{-}(\omega)+r^{+} \sum_{t \in T} u_{t}(\omega)+r^{-} \sum_{t \in T} v_{t}(\omega) \tag{2a}\\
\text { s.t. } & \sum_{j \in J} w_{j t}\left(y_{j}^{+}(\omega)-y_{j}^{-}(\omega)\right)-u_{t}(\omega)+v_{t}(\omega)=d_{t}(\omega)-\chi_{t} \quad \forall t \in T \tag{2b}\\
& y_{j}^{+}(\omega), y_{j}^{-}(\omega) \in \mathbb{Z}_{+}, u_{t}(\omega), v_{t}(\omega) \geq 0 \quad \forall j \in J, t \in T, \tag{2c}
\end{align*}
$$

where $y_{j}^{+}(\omega)$ and $y_{j}^{-}(\omega)$ are the decision variables representing the number of shifts added and cancelled, respectively, for adjustment pattern j. The overstaffing and understaffing at each hour t are captured by $u_{t}(\omega)$ and $v_{t}(\omega)$ at penalty costs r^{+}and r^{-}, respectively. The vector $\mathbf{w}_{j}=$ $\left(w_{j 1}, \ldots, w_{j|T|}\right)$ in (2b) represents a pregenerated adjustment pattern for the week. Constraint (2b) ensures that the anticipated demand scenarios $d_{t}(\omega)$ are satisfied by the staffing levels after adjustments.

3.2. Properties of the second-stage problem in the iStaff model

Our main result is given in Theorem 1, which shows that a tight formulation is possible for the second-stage mixed-integer problem after adding certain parametric mixed-integer rounding (MIR) inequalities. Consequently, the integrality requirement of the second-stage variables can be relaxed. This approach allows us to compute a subgradient of the recourse function.

We omit the indexing for the scenario when discussing the second-stage problem in this section. Let $\mathbf{q}^{+}, \mathbf{q}^{-} \in \mathbb{R}^{|J|}$, and $\mathbf{d} \in \mathbb{R}^{|T|}$. Let $\mathbf{e} \in \mathbb{R}^{|T|}$ be the vector of all ones, and let $\mathbf{W} \in \mathbb{B}^{|J| \times|T|}$ be a $|J| \times|T|$-dimensional matrix of elements $w_{j t}$. The recourse function using matrix and vector notation is given as follows:

$$
\begin{aligned}
Q(\boldsymbol{\chi}, \omega)=\min & \left(\mathbf{q}^{+}\right)^{T} \mathbf{y}^{+}+\left(\mathbf{q}^{-}\right)^{T} \mathbf{y}^{-}+r^{+} \mathbf{e}^{T} \mathbf{u}+r^{-} \mathbf{e}^{T} \mathbf{v} \\
\text { s.t. } & \mathbf{W}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-\mathbf{u}+\mathbf{v}=\mathbf{d}-\boldsymbol{\chi} \\
& \mathbf{y}^{+}, \mathbf{y}^{-} \in \mathbb{Z}_{+}^{|J|}, \mathbf{u}, \mathbf{v} \in \mathbb{R}_{+}^{|T|}
\end{aligned}
$$

By eliminating \mathbf{v} the second-stage problem is given by

$$
\begin{array}{ll}
\min & \left(\tilde{\mathbf{q}}^{+}\right)^{T} \mathbf{y}^{+}+\left(\tilde{\mathbf{q}}^{-}\right)^{T} \mathbf{y}^{-}+\left(r^{+}+r^{-}\right) \mathbf{e}^{T} \mathbf{u}+\tilde{r} \\
\text { s.t. } & \left(\mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{u}\right) \in \mathcal{P}(\boldsymbol{\chi}) \tag{3b}
\end{array}
$$

where $\tilde{\mathbf{q}}^{+}=\mathbf{q}^{+}-r^{-} \mathbf{W e}, \tilde{\mathbf{q}}^{-}=\mathbf{q}^{-}+r^{-} \mathbf{W e}, \tilde{r}=r^{-} \mathbf{e}^{T}(\mathbf{d}-\boldsymbol{\chi})$, and $\mathcal{P}(\boldsymbol{\chi})$ is described by

$$
\begin{equation*}
\mathcal{P}(\chi):=\left\{\left(\mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{u}\right) \in \mathbb{Z}_{+}^{|J|} \times \mathbb{Z}_{+}^{|J|} \times \mathbb{R}_{+}^{|T|} \mid \mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-u_{t} \leq d_{t}-\chi_{t}, \forall t \in T\right\} . \tag{4}
\end{equation*}
$$

Observe that, since the second-stage problem $Q(\boldsymbol{\chi}, \omega)$ can be reformulated as a piecewise linear convex optimization problem over non-negative integer decision variables by substituting $u_{t}=$ $\max \left\{0, \mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)+\chi_{t}-d_{t}\right\}$ for all $t \in T$, the iStaff model has complete recourse. We now show the validity of parametric MIR inequalities for (4).

Proposition 1. The parametric MIR inequalities

$$
\begin{equation*}
\mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-f_{t} u_{t} \leq\left\lfloor d_{t}\right\rfloor-\chi_{t} \quad \forall t \in T, \tag{5}
\end{equation*}
$$

where $f_{t}=1 /\left(1-d_{t}+\left\lfloor d_{t}\right\rfloor\right)$, are valid for $\mathcal{P}(\boldsymbol{\chi})$.
Proof. For a given t, we consider two cases.

- Case 1: Suppose $f_{t} u_{t}<1$. Then, $\mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right) \leq d_{t}-\chi_{t}+u_{t}<\left\lfloor d_{t}\right\rfloor+1-\chi_{t}$. Since $\mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)$ and $\boldsymbol{\chi}$ are integral, we have $\mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right) \leq\left\lfloor d_{t}\right\rfloor-\chi_{t}$. Subtracting $f_{t} u_{t} \geq 0$ gives (5).
- Case 2: Suppose $f_{t} u_{t} \geq 1$. Then, $\mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-f_{t} u_{t} \leq d_{t}-\chi_{t}+u_{t}-f_{t} u_{t} \leq d_{t}-\chi_{t}+1 / f_{t}-1=$ $\left\lfloor d_{t}\right\rfloor-\chi_{t}$. Therefore, the MIR inequalities are valid for $\mathcal{P}(\boldsymbol{\chi})$.

Note that the valid inequalities (5) are parameterized by $\boldsymbol{\chi}$, whose value is not fixed since these are the tender variables in (TSSIP). The main observation leading to the validity of (5) is that in our case χ_{t} is integer, giving $\left\lfloor d_{t}-\chi_{t}\right\rfloor=\left\lfloor d_{t}\right\rfloor-\chi_{t}$.

Theorem 1. Let $\mathcal{P}(\boldsymbol{\chi})$ be given in (4). Then, $\operatorname{conv}(\mathcal{P}(\boldsymbol{\chi}))$ is described by inequalities

$$
\begin{aligned}
& \mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-u_{t} \leq d_{t}-\chi_{t}, \quad \forall t \in T \\
& \mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-f_{t} u_{t} \leq\left\lfloor d_{t}\right\rfloor-\chi_{t}, \quad \forall t \in T \\
& \mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{u} \geq 0
\end{aligned}
$$

Proof. Our proof here borrows the conceptual steps from Miller and Wolsey (2003). Let $\eta_{t}=$ $\mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)+\chi_{t}$ for all $t \in T$, and consider the set $\mathcal{S}_{t}=\left\{\left(\eta_{t}, u_{t}\right) \mid \eta_{t}-u_{t} \leq d_{t}, \eta_{t}-f_{t} u_{t} \leq\left\lfloor d_{t}\right\rfloor, u_{t} \geq\right.$ $0\}$. Note that at any extreme point of \mathcal{S}_{t} only two of the inequalities in the set \mathcal{S}_{t} are binding. The extreme points of \mathcal{S}_{t} are given by $\left(1+\left\lfloor d_{t}\right\rfloor, 1-d_{t}+\left\lfloor d_{t}\right\rfloor\right)$ and $\left(\left\lfloor d_{t}\right\rfloor, 0\right)$ for all $t \in T$. These extreme points are integral in η_{t}.

Now consider the set $\mathcal{U}=\left\{\left(\boldsymbol{\eta}, \mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{u}\right) \mid \boldsymbol{\eta}=\mathbf{W}^{T}\left(\mathbf{y}^{+}{ }^{-} \mathbf{y}^{-}\right)+\boldsymbol{\chi}, \mathbf{y}^{+}, \mathbf{y}^{-} \geq 0,\left(\eta_{t}, u_{t}\right) \in \mathcal{S}_{t}, \forall t \in\right.$ $T\}$, and $\mathcal{U} \subseteq \mathbb{R}^{2(|J|+|T|)}$, where \mathbf{W} is defined as a $|J| \times|T|$-dimensional matrix of elements $w_{j t}$. Suppose that $\left(\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}, \hat{\mathbf{y}}^{-}, \hat{\mathbf{u}}\right)$ is an extreme point of the polyhedra \mathcal{U}. We will show that $\left(\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}, \hat{\mathbf{y}}^{-}, \hat{\mathbf{u}}\right)$ is given by the following system of linear equations,

$$
\begin{gather*}
{\left[\begin{array}{c}
\chi \\
\boldsymbol{\eta}_{\mathrm{LB}}
\end{array}\right] \leq} \tag{6a}\\
{\left[\begin{array}{ccc}
\mathbf{I}-\mathbf{W}^{T} & \mathbf{W}^{T} \\
\mathbf{I} & \mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\hat{\boldsymbol{\eta}} \\
\hat{\mathbf{y}}^{+} \\
\hat{\mathbf{y}}^{-}
\end{array}\right] \leq\left[\begin{array}{c}
\boldsymbol{\chi} \\
\boldsymbol{\eta}_{\mathrm{UB}}
\end{array}\right]} \tag{6b}\\
\hat{\mathbf{u}}=\mathbf{A}^{T} \hat{\boldsymbol{\eta}}-\mathbf{b},
\end{gather*}
$$

where $\boldsymbol{\eta}_{\mathrm{LB}}, \boldsymbol{\eta}_{\mathrm{UB}} \in \mathbb{Z}^{|T|} \cup\{-\infty, \infty\}, \mathbf{A} \in \mathbb{R}^{|T| \times|T|}$, and $\mathbf{b} \in \mathbb{R}^{|T|}$. Furthermore, we will show that $\left(\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}, \hat{\mathbf{y}}^{-}, \hat{\mathbf{u}}\right)$ is integral in $\left(\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}, \hat{\mathbf{y}}^{-}\right)$.

Note that in \mathcal{U} an extreme point is given by $2(|J|+|T|)$ binding constraints with the matrix defining the constraints to be nonsingular. Let $J_{=}^{+}=\left\{j \in J \mid \hat{y}_{j}^{+}=0\right\}$ and $J_{=}^{-}=\left\{j \in J \mid \hat{y}_{j}^{-}=0\right\}$, and let $J_{>}^{+}=J \backslash J_{=}^{+}$and $J_{>}^{-}=J \backslash J_{=}^{-}$. Hence, at this extreme point, at least $|T|+\left|J_{>}^{+}\right|+\left|J_{>}^{-}\right|$binding constraints exist. The binding constraints defining this set include $\boldsymbol{\eta}=\mathbf{W}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)+\boldsymbol{\chi}$. Note that for each set \mathcal{S}_{t} at least one constraint defining this set should be binding at any extreme point of \mathcal{U}. Hence, for at least $\left|J_{>}^{+}\right|+\left|J_{>}^{-}\right|$of the sets \mathcal{S}_{t}, two constraints are binding at the extreme point $\left(\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}, \hat{\mathbf{y}}^{-}, \hat{\mathbf{u}}\right)$. The remaining sets \mathcal{S}_{t} have one binding constraint. The extreme points satisfy

$$
\begin{aligned}
\hat{u}_{t}=\hat{\eta}_{t}-d_{t} & \text { if } \hat{\eta}_{t} \geq 1+\left\lfloor d_{t}\right\rfloor, \\
\hat{u}_{t}=\left(1-d_{t}+\left\lfloor d_{t}\right\rfloor\right)\left(\hat{\eta}_{t}-\left\lfloor d_{t}\right\rfloor\right) & \text { if }\left\lfloor d_{t}\right\rfloor \leq \hat{\eta}_{t} \leq 1+\left\lfloor d_{t}\right\rfloor, \\
\hat{u}_{t}=0 & \text { if } \hat{\eta}_{t} \leq\left\lfloor d_{t}\right\rfloor .
\end{aligned}
$$

Let T_{1} be a subset of T such that \mathcal{S}_{t} has one binding constraint at the extreme point so that $\left|T \backslash T_{1}\right| \geq\left|J_{>}^{+}\right|+\left|J_{>}^{-}\right|$. Note that $\left|T \backslash T_{1}\right|>\left|J_{>}^{+}\right|+\left|J_{>}^{-}\right|$when the extreme point is degenerate. Then, the following constraints in \mathcal{U} define the extreme point $\left(\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}, \hat{\mathbf{y}}^{-}, \hat{\mathbf{u}}\right)$:

$$
\begin{align*}
& \hat{\eta}_{t}=\sum_{j \in J_{\overline{+}}^{+}} w_{j t}^{T} \hat{y}_{j}^{+}+\sum_{j \in J_{>}^{+}} w_{j t}^{T} \hat{y}_{j}^{+}-\sum_{j \in J_{\models}^{-}} w_{j t}^{T} \hat{y}_{j}^{-}-\sum_{j \in J_{>}^{-}} w_{j t}^{T} \hat{y}_{j}^{-}+\chi_{t}, \quad \forall t \in T \tag{7a}\\
& \hat{y}_{j}^{+}=0, \quad \forall j \in J_{=}^{+}, \quad \hat{y}_{j}^{+}>0, \quad \forall j \in J_{>}^{+}, \quad \hat{y}_{j}^{-}=0, \quad \forall j \in J_{=}^{-}, \quad \hat{y}_{j}^{-}>0, \quad \forall j \in J_{>}^{-} \tag{7b}\\
& {\left[\begin{array}{c}
\hat{u}_{1} \\
\vdots \\
\frac{\hat{u}_{\left|T_{1}\right|}}{\hat{u}_{\left|T_{1}\right|+1}} \\
\vdots \\
\hat{u}_{|T|}
\end{array}\right]=\left[\begin{array}{ccc|c}
a_{1} & & & \\
& \ddots & & 0 \\
& & a_{\left|T_{1}\right|} & 0 \\
\hline & 0 & & 0
\end{array}\right]\left[\begin{array}{c}
\hat{\eta}_{1} \\
\vdots \\
\\
\\
\frac{\hat{l}_{\left|T_{1}\right|}}{\hat{\eta}_{\left|T_{1}\right|+1}} \\
\vdots \\
\hat{\eta}_{|T|}
\end{array}\right]-\left[\begin{array}{c}
b_{1} \\
\vdots \\
\frac{b_{\left|T_{1}\right|}}{0 \text { or } 1-d_{t}+\left\lfloor d_{t}\right\rfloor} \\
\vdots \\
0 \text { or } 1-d_{t}+\left\lfloor d_{t}\right\rfloor
\end{array}\right]} \\
& \text { for }\left(a_{t}, b_{t}\right) \in\left\{\left(1, d_{t}\right),\left(1-d_{t}+\left\lfloor d_{t}\right\rfloor,\left(1-d_{t}+\left\lfloor d_{t}\right\rfloor\right)\left\lfloor d_{t}\right\rfloor\right),(0,0)\right\} \text { and } t \in T_{1} \text {. } \tag{7c}
\end{align*}
$$

Now we set each element of vector $\boldsymbol{\eta}_{\mathrm{LB}}$ to be $1+\left\lfloor d_{t}\right\rfloor,\left\lfloor d_{t}\right\rfloor$, or $-\infty$ and set each element of vector $\boldsymbol{\eta}_{\mathrm{UB}}$ to be $1+\left\lfloor d_{t}\right\rfloor,\left\lfloor d_{t}\right\rfloor$, or ∞. Also, we let \mathbf{A} be a diagonal matrix where each diagonal element is 0,1 , or $1-d_{t}+\left\lfloor d_{t}\right\rfloor$, and we let each element of \mathbf{b} be $0, d_{t}, 1-d_{t}+\left\lfloor d_{t}\right\rfloor$, or $\left(1-d_{t}+\left\lfloor d_{t}\right\rfloor\right)\left\lfloor d_{t}\right\rfloor$. Then, the set of constraints (7) is rewritten as (6). Moreover, each row of \mathbf{W} has consecutive ones. Hence, \mathbf{W} is totally unimodular, and so is $\left[\begin{array}{ccc}\mathbf{I} & -\mathbf{W}^{T} & \mathbf{W}^{T} \\ \mathbf{I} & \mathbf{0} & \mathbf{0}\end{array}\right]$ (Nemhauser and Wolsey 1988). Note that $\boldsymbol{\chi}, \boldsymbol{\eta}_{\mathrm{LB}}$ and $\boldsymbol{\eta}_{\mathrm{UB}}$ are integer vectors, and so are $\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}$, and $\hat{\mathbf{y}}^{-}$. Therefore, an extreme point of \mathcal{U} is integral in $\hat{\boldsymbol{\eta}}, \hat{\mathbf{y}}^{+}$, and $\hat{\mathbf{y}}^{-}$. By eliminating $\boldsymbol{\eta}$ in \mathcal{U}, we obtain $\operatorname{conv}(\mathcal{P}(\boldsymbol{\chi}))$, where the extreme points are integral in $\hat{\mathbf{y}}^{+}$and $\hat{\mathbf{y}}^{-}$.

Note that the first-stage constraint matrix in (TSSIP) may not be totally unimodular. The reason is that, because of required off-time, the consecutive ones property is violated when considering multiple shifts in a week while generating scheduling patterns in X. The consecutive ones property holds for the recourse constraint matrix, however, because the adjustments are for a shift during a week.

Theorem 1 implies that the integrality of the second-stage decision variables can be relaxed after adding the MIR inequalities. The following corollaries provide desirable properties from an algorithmic perspective.

We denote the "convexified" recourse function resulting from adding MIR inequalities (5) by $Q_{\mathrm{MIR}}(\chi, \omega)$:

$$
\begin{align*}
Q_{\mathrm{MIR}}(\boldsymbol{\chi}, \omega)=\min & \left(\tilde{\mathbf{q}}^{+}\right)^{T} \mathbf{y}^{+}+\left(\tilde{\mathbf{q}}^{-}\right)^{T} \mathbf{y}^{-}+\left(r^{+}+r^{-}\right) \mathbf{e}^{T} \mathbf{u}+\tilde{r} \tag{8a}\\
\text { s.t. } & \mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-u_{t} \leq d_{t}-\chi_{t}, \quad \forall t \in T \tag{8b}\\
& \mathbf{w}_{t}^{T}\left(\mathbf{y}^{+}-\mathbf{y}^{-}\right)-f_{t} u_{t} \leq\left\lfloor d_{t}\right\rfloor-\chi_{t}, \quad \forall t \in T \tag{8c}\\
& \mathbf{y}^{+}, \mathbf{y}^{-} \in \mathbb{Z}_{+}^{|J|}, \mathbf{u} \geq 0 . \tag{8d}
\end{align*}
$$

Corollary 1. For each $\omega \in \Omega$ and a given $\boldsymbol{\chi} \in \mathbb{Z}^{|T|}, Q_{M I R}(\boldsymbol{\chi}, \omega)=Q(\boldsymbol{\chi}, \omega)$.
Corollary 2. Assuming $\chi \in \mathbb{Z}^{|T|}$, the function $\mathcal{Q}_{M I R}(\chi):=\mathbb{E}_{\omega}\left[Q_{M I R}(\chi, \omega)\right]$ is piecewise linear convex in $\boldsymbol{\chi}$.

Corollary 3. For a given $\boldsymbol{\chi}^{*}$ and scenario ω, let $\boldsymbol{\mu}^{*}(\omega)$ and $\boldsymbol{\pi}^{*}(\omega)$ be a dual optimal solution of (8). Then, $-\boldsymbol{\mu}^{*}(\omega)-\boldsymbol{\pi}^{*}(\omega)-r^{-} \mathbf{e}$ is a subgradient of $Q_{M I R}(\boldsymbol{\chi}, \omega)$ at point $\boldsymbol{\chi}^{*}$. Moreover, the recourse function $Q(\boldsymbol{\chi}, \omega)$ is underestimated by

$$
\begin{equation*}
Q(\boldsymbol{\chi}, \omega) \geq\left(\mathbf{d}(\omega)^{T} \boldsymbol{\mu}^{*}(\omega)+\lfloor\mathbf{d}(\omega)\rfloor^{T} \boldsymbol{\pi}^{*}(\omega)+r^{-} \mathbf{e}^{T} \mathbf{d}(\omega)\right)-\left(\boldsymbol{\mu}^{*}(\omega)+\boldsymbol{\pi}^{*}(\omega)+r^{-} \mathbf{e}\right)^{T} \boldsymbol{\chi} \tag{9}
\end{equation*}
$$

4. Modified L-Shaped Method for the iStaff Model

In this section we present a modified L-shaped method for solving the iStaff model. The modifications to the L-shaped method proposed here are intended to achieve computational improvement for iStaff model. We assume that the random vector ω follows a discrete distribution with a finite support. Let S be a finite set of scenario indices, and let $p_{s}>0$ be the probability of realizing scenario ω_{s} for $s \in S$ such that $\sum_{s \in S} p_{s}=1$. Then, $\mathcal{Q}(\boldsymbol{\chi})=\mathbb{E}_{\omega}\left[Q_{\mathrm{MIR}}(\chi, \omega)\right]=\sum_{s \in S} p_{s} Q_{\mathrm{MIR}}\left(\chi, \omega_{s}\right)$.

In Section 4.1, we present a branching strategy that prioritizes the order of branching variables in the model. Auxiliary branching variables are introduced to provide new branching directions for our branch-and-cut (B\&C) procedure. In Section 4.2, we develop a multicut aggregation approach with the goal of avoiding an increase in the number of constraints in the $\mathrm{B} \& \mathrm{C}$ node subproblems. In Section 4.3, we summarize the modified L-shaped method with the proposed solution enhancements.

4.1. Thin direction branching strategy

We present a heuristic branching strategy that prioritizes the order of branching variables in the model. The proposed branching strategy implicitly performs branching on thin directions of the polyhedron. We first introduce a more detailed description of the staffing model. The iStaff model considers full-time, part-time, and casual employments, denoted by FT, PT, and CA, respectively, and six shift types, denoted by $3 \mathrm{~S} 12 \mathrm{H}, 2 \mathrm{~S} 12 \mathrm{H}, 1 \mathrm{~S} 12 \mathrm{H}, 3 \mathrm{~S} 8 \mathrm{H}, 2 \mathrm{~S} 8 \mathrm{H}$, and 1 S 8 H . The employment and shift types are defined in Table 2. A full-time staff works 36 hours per week, part-time staff works 24 hours per week, and casual staff works less than 24 hours per week. Casual staff fills in when additional staff is required. The casual staff (nurses) is called PRN (pro re nata) employment in hospitals and is part of the overall nurse pool.

Let E be the set of employment types (full-time, part-time, and casual), and let H be the set of shift types. We additionally introduce auxiliary variables $\phi_{e}, e \in E$ and $\psi_{h}, h \in H$ that represent the number of workers in each employment type e and the number of workers in each shift

Table 2 Definition of employment and shift types considered in the iStaff model

Employment Type	Shift Type	Work Hours per Week
FT: Full-time	3S12H: Three 12-hour shifts	36
PT: Part-time	2S12H: Two 12-hour shifts	24
PT: Part-time	3S8H: Three 8-hour shift	24
CA: Casual	2S8H: Two 8-hour shift	16
CA: Casual	1S12H: One 12-hour shift	12
CA: Casual	1S8H: One 8-hour shift	8

type h, respectively. We denote $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{|E|}\right)$ and $\boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{|H|}\right)$. The following additional constraints are added to the model (TSSIP):

$$
\begin{align*}
& \sum_{i \in I_{e}} x_{i}=\phi_{e} \quad e \in E \tag{10a}\\
& \sum_{i \in I_{h}} x_{i}=\psi_{h} \quad h \in H \tag{10b}
\end{align*}
$$

where I_{e} and I_{h} are the subsets of I representing the scheduling patterns for employment type e and shift type h, respectively. Theorem 1 remains applicable after adding these constraints to iStaff. We now consider the following convex mixed-integer programming formulation of (TSSIP):

$$
\begin{array}{ll}
\min & \sum_{i \in I} c_{i} x_{i}+\sum_{s \in S} p_{s} \theta_{s} \\
\text { s.t. } & Q_{\mathrm{MIR}}\left(\boldsymbol{\chi}, \omega_{s}\right) \leq \theta_{s}, \quad \forall s \in S, \\
& (\mathbf{x}, \boldsymbol{\chi}, \boldsymbol{\phi}, \boldsymbol{\psi}, \boldsymbol{\theta}) \in \bar{X} \cap \mathbb{Z}^{|I|} \times \mathbb{Z}^{|T|}, \tag{11b}
\end{array}
$$

where $\bar{X}=\{(\mathbf{x}, \boldsymbol{\chi}, \boldsymbol{\phi}, \boldsymbol{\psi}, \boldsymbol{\theta}) \mid(1 \mathrm{a}),(10 \mathrm{a}),(10 \mathrm{~b}), \mathbf{x} \in X\}$ and $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{|S|}\right)$. Note that the objective function of (TSSIP) is reformulated by the objective function of (CMIP) and the convex constraints (11a). In the L-shaped method, the convex constraints (11a) are outer approximated by linear inequalities (9) in Corollary 3.

The branching priority order for the first-stage variables is defined such that first ϕ is considered for branching, followed by $\boldsymbol{\psi}, \boldsymbol{\chi}$, and \mathbf{x}. If multiple fractional variables exist with the same branching priority, then branching is performed on the most fractional variable. This branching order can be viewed as a heuristic from the following standpoints. First note that branching on thin directions can be beneficial for solving mixed-integer programming problems as suggested by the theoretical results of Lenstra (1983), Lovász and Scarf (1992), and Mehrotra and Li (2011). More specifically, a polynomial time algorithm is available for mixed-integer linear programs and mixed-integer convex programs in fixed dimensions. Unfortunately, generation of thin branching directions by following the theory can be computationally expensive, since it requires a certain lattice basis reduction. Other strategies have been proposed to identify good thin directions adaptively while simplifying this computation (Aardal et al. 2002, Owen and Mehrotra 2001, Mahajan
and Ralphs 2009, Karamanov and Cornuéjols 2011, Cornuéjols et al. 2011, Mehrotra and Huang 2013). Our proposed thin direction branching scheme can be viewed as preidentifying thin branching directions represented by (10). These directions are expected to be thin in cost-effective feasible solutions because ϕ_{e} and ψ_{h} (the total number of full-time workers and the number of workers in a certain shift type) will have values only in a limited range to satisfy demand.

4.2. Multicut aggregation of outer linearization of node subproblems

We now present an outer linearization approach with multicut aggregation to solve (CMIP) in a B\&C framework. The multicut aggregation proposed here heuristically aggregates the cuts by using the dual variable values of $\mathrm{B} \& \mathrm{C}$ node LP relaxation subproblem. The optimal value of dual multiplier corresponding to the outer linearization inequality in a B\&C node subproblem is used. All the cuts with zero dual variable value are aggregated into a single cut. In an abuse of notation, we now describe this aggregation procedure in some detail and distinguish it from other approaches.

Let k be the index for outer linearization iterations, where optimality cuts are added. Specifically, for a given value of tender variables χ^{k}, at iteration k an outer linearization cut is generated for each scenario $s \in S$. These cuts are aggregated into M^{k} cuts, one for each subset S_{m}^{k}. Let the set of scenarios be divided into mutually exclusive subsets $S_{m}^{k}, m=1, \ldots M^{k}$, (i.e., $S=\cup_{m=1}^{M^{k}} S_{m}^{k}$ and $S_{i}^{k} \cap S_{j}^{k}=\emptyset$ for any $i \neq j$ and $\left.i, j \in\left\{1, \ldots, M^{k}\right\}\right)$. Let $\bar{X}^{\mathcal{N}} \subseteq \bar{X}$ be the set of feasible solutions at a given node \mathcal{N} in the $\mathrm{B} \& \mathrm{C}$ tree \mathcal{T}. A B\&C node subproblem after adding l rounds of optimality cuts at node $\mathcal{N} \in \mathcal{T}$ is given by

$$
\begin{array}{ll}
\min & \sum_{i \in I} c_{i} x_{i}+\sum_{s \in S} p_{s} \theta_{s} \\
\text { s.t. } & \sum_{s \in S_{m}^{k}}\left(\mathbf{G}_{k s}^{T} \boldsymbol{\chi}+\theta_{s}-\mathbf{g}_{k s}\right) \geq 0, \quad m=1, \ldots, M^{k}, k=1, \ldots, l, \\
& (\mathbf{x}, \boldsymbol{\chi}, \boldsymbol{\phi}, \boldsymbol{\psi}, \boldsymbol{\theta}) \in \bar{X}^{\mathcal{N}}, \tag{12b}
\end{array}
$$

where equation (12a) gives the aggregated cuts generated at outer linearization iterations $k=$ $1, \ldots, l$. These cuts are denoted by using coefficient matrices $\mathbf{G}_{k s}:=\boldsymbol{\mu}^{k}\left(\omega_{s}\right)+\boldsymbol{\pi}^{k}\left(\omega_{s}\right)+r^{-} \mathbf{e}$, righthand side vectors $\mathbf{g}_{k s}:=\mathbf{d}\left(\omega_{s}\right)^{T} \boldsymbol{\mu}^{k}\left(\omega_{s}\right)+\left\lfloor\mathbf{d}\left(\omega_{s}\right)\right\rfloor^{T} \boldsymbol{\pi}^{k}\left(\omega_{s}\right)+r^{-} \mathbf{e}^{T} \mathbf{d}\left(\omega_{s}\right)$ and use optimal dual variable values $\boldsymbol{\mu}^{k}\left(\omega_{s}\right)$ and $\boldsymbol{\pi}^{k}\left(\omega_{s}\right)$ corresponding to constraints (8b) and (8c). The convex constraints (11a) are now approximated by linear inequalities (12a) generated from the k th outer linearization for each scenario $s \in S$. Note that the inequalities (12a) are valid at any node $\mathcal{N} \in \mathcal{T}$.

The standard multicut approach adds up to $|S|$ cuts in each outer linearization iteration, whereas for a single-cut approach $M^{1}=\cdots=M^{l}=1$. A hybrid-cut approach sets $1<M^{k}<|S|, M^{1}=\cdots=$ M^{l} (Birge and Louveaux 1988). We note that the cut aggregation level can change from an outer
linearization iteration to a subsequent one. Based on this observation, our approach is a variant of the hybrid-cut approach, where S_{m}^{k} and M^{k} may be different for each $k=1, \ldots, l$. We call this approach multicut aggregation (MCA). The proposed MCA approach is described in Algorithm 1.

```
Algorithm 1 Multicut Aggregation (MCA)
Initialization. For a given \(\boldsymbol{\chi}^{k}\), outer linearization cuts are given by
```

$$
\begin{equation*}
\sum_{s \in S_{m}^{k}}\left(\mathbf{G}_{k s}^{T} \chi+\theta_{s}-\mathbf{g}_{k s}\right) \geq 0, \quad m=1, \ldots, M^{k} \tag{13}
\end{equation*}
$$

Step 1. Add these cuts (13) to ($\mathrm{SP}^{\mathcal{N}}$).
Step 2. Solve $\left(\mathrm{SP}^{\mathcal{N}}\right)$, and let $\boldsymbol{\lambda}_{m}^{*}$ be the optimal dual variable values corresponding to the cuts (13) for $m=1, \ldots, M^{k}$.

Step 3. Let m_{0} be the number of outer linearization cuts with the corresponding dual multipliers equal to zeros, say $\boldsymbol{\lambda}_{m}^{k}=0$ for $m=\left(M^{k}-m_{0}+1\right), \ldots, M^{k}$. Generate the aggregated cut

$$
\begin{equation*}
\sum_{m=M^{k}-m_{0}+1}^{M^{k}} \sum_{s \in S_{m}^{k}}\left(\mathbf{G}_{k s}^{T} \boldsymbol{\chi}+\theta_{s}-\mathbf{g}_{k s}\right) \geq 0 \tag{14}
\end{equation*}
$$

Step 4. Update $M^{k}:=M^{k}-m_{0}$.

Suppose that an integer L-shaped method applies a multicut approach (i.e., $M^{k}=|S|$ for all $k)$ and that outer linearization cuts are generated for a given $\boldsymbol{\chi}^{k}$. In Algorithm $1, S_{m}^{k}$ for $m=$ $1, \ldots, M^{k}$ are initialized by singletons of the set $S .\left(\mathrm{SP}^{\mathcal{N}}\right)$ is first solved with these cuts added according to M^{k} and S_{m}^{k} for $m=1, \ldots, M^{k}$. Next, we aggregate the cuts that have the corresponding dual variable values equal to zeros at the optimum solution of the LP subproblem. The following proposition states that the optimum solution of the current relaxation problem does not change after aggregating the cuts.

Proposition 2. Suppose that outer linearization cuts (12a) are generated for a given χ^{k} and that $\left(\mathrm{x}^{k+1}, \boldsymbol{\chi}^{k+1}, \boldsymbol{\phi}^{k+1}, \boldsymbol{\psi}^{k+1}, \boldsymbol{\theta}^{k+1}\right)$ is an optimal solution of ($\left.\mathrm{SP}^{\mathcal{N}}\right)$ with these cuts. Then, $\left(\mathrm{x}^{k+1}, \boldsymbol{\chi}^{k+1}, \boldsymbol{\phi}^{k+1}, \boldsymbol{\psi}^{k+1}, \boldsymbol{\theta}^{k+1}\right)$ is an optimal solution of ($\mathrm{SP}^{\mathcal{N}}$) after aggregating the cuts by Algorithm 1.

4.3. Modified L-shaped method

The modified integer L-shaped method with the thin direction branching branching strategy and the MCA approach is summarized in this section. Algorithm 2 provides the steps of the method.

Algorithm 2 Modified Integer L-Shaped Method
Initialization. Create a root node \mathcal{N} with $\bar{X}^{\mathcal{N}}:=\bar{X}$, and set $k:=0$ and $\bar{z}:=-\infty$. Set an initial value for M^{0}, and define S_{m}^{0} for $m=1, \ldots, M^{0}$.

Step 1. Convex relaxation programming problem:
a. Solve $\left(\mathrm{SP}^{\mathcal{N}}\right)$ to optimality. If the problem is infeasible, then stop. Otherwise, let $(\hat{\mathbf{x}}, \hat{\chi}, \hat{\phi}, \hat{\boldsymbol{\psi}}, \hat{\boldsymbol{\theta}})$ be an optimal solution.
b. If $\sum_{s \in S} p_{s} \hat{\theta}_{s}<\sum_{s \in S} p_{s} Q\left(\hat{\chi}, \omega_{s}\right)$, then set $k:=k+1, M^{k}:=M^{0}$ and $S_{m}^{k}:=S_{m}^{0}$ for $m=$ $1, \ldots, M^{0}$, add outer linearization cuts (13), and go to Step 1a.
c. If the current solution is fractional in $\hat{\mathbf{x}}, \hat{\boldsymbol{\chi}}, \hat{\boldsymbol{\phi}}$, or $\hat{\boldsymbol{\psi}}$, then aggregate the inequalities (13) as described in Algorithm 1, and go to Step 2. Otherwise, an optimal solution has been found: stop.

Step 2. Branch-and-cut procedure:
a. Select a node $\mathcal{N} \in \mathcal{T}$ according to a best-bound rule. If none exists (i.e., $\mathcal{T}=\emptyset$), then an optimal solution has been found: stop.
b. Solve $\left(\mathrm{SP}^{\mathcal{N}}\right)$, and let $z^{\mathcal{N}}$ be the optimal objective value. If $z^{\mathcal{N}}>\bar{z}$, then fathom the current node, and go to Step 2a. Otherwise, let $(\hat{\mathbf{x}}, \hat{\boldsymbol{\chi}}, \hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\psi}}, \hat{\boldsymbol{\theta}})$ be an optimal solution.
c. Check the integrality of $\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\psi}}, \hat{\boldsymbol{\chi}}$, and $\hat{\mathbf{x}}$ in a certain branching priority. If the current solution is fractional, then create two nodes \mathcal{N}_{1} and \mathcal{N}_{2} by branching on the most fractional variable, update $\mathcal{T}:=\mathcal{T} \cup\left\{\mathcal{N}_{1}, \mathcal{N}_{2}\right\}$, and go to Step 2a. Otherwise, the current solution is integral in $\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\psi}}, \hat{\boldsymbol{\chi}}$, and $\hat{\mathbf{x}}$.
d. If $\bar{z}>\sum_{i \in I} c_{i} \hat{x}_{i}+\sum_{s \in S} p_{s} Q\left(\hat{\chi}, \omega_{s}\right)$, then update upper bound $\bar{z}:=\sum_{i \in I} c_{i} \hat{x}_{i}+$ $\sum_{s \in S} p_{s} Q\left(\hat{\boldsymbol{\chi}}, \omega_{s}\right)$. Otherwise, fathom the current node, and go to Step 2a.
e. If $\sum_{s \in S} p_{s} \hat{\theta}_{s}<\sum_{s \in S} p_{s} Q\left(\hat{\chi}, \omega_{s}\right)$, then set $k:=k+1, M^{k}:=M^{0}$ and $S_{m}^{k}:=S_{m}^{0}$ for $m=$ $1, \ldots, M^{0}$, generate outer linearization cuts (13), aggregate the cuts as described in Algorithm 1, and go to Step 2b. Otherwise, fathom the current node, and go to Step 2a.

We assume that the proposed method solves $\left(\mathrm{SP}^{\mathcal{N}}\right)$ with a cut generation approach specified by the subsets S_{m}^{0} of scenario indices for $m=1, \ldots, M^{0}$, a predefined number M^{0} of outer linearization inequalities.

The outer linearization cuts added at the root node are aggregated when an optimal solution to the convex relaxation node subproblem is found (Step 1c). This approach decreases the time spent in solving the convex relaxation programming problem at the root node, while starting with a smaller number of node subproblems in the B\&C procedure. The MCA approach presented in Section 4.2 has helped in keeping the memory needs for the solver relatively low (Step 2e). In the $\mathrm{B} \& \mathrm{C}$ procedure, outer linearization inequalities are generated only at incumbent solutions. This approach avoids a significant increase in the memory required to save a larger size of node

Figure 2 Fluctuations in patient census and required staffing levels for HM

subproblems (see Appendix F) and also avoids a number of computations for solving the secondstage problems. The algorithm terminates if the B\&C tree becomes empty.

Remark 1. Algorithm 2 stops after a finite number of steps for problems with a bounded set feasible set X. To see this, first note that the dual multipliers $\boldsymbol{\mu}, \boldsymbol{\pi}$ correspond to one of the bases of $Q_{\mathrm{LR}}(\boldsymbol{\chi}, \omega)$ for a given $\boldsymbol{\chi}, \omega$. The finite convergence of Step 1 follows from the fact that there are a finite number of different combinations of the dual multipliers $\boldsymbol{\mu}, \boldsymbol{\pi}$. Moreover, Step 2 terminates finitely by branching on variables, since the set X is bounded.

5. Empirical Study: Nurse Staffing at NMH Department of Hospital Medicine

We now present results from an empirical study for nurse staffing and scheduling in the Department of Hospital Medicine (HM) at Northwestern Memorial Hospital (NMH). This empirical study aims to (1) evaluate the value of the stochastic programming approach as compared with the decisions recommended by a deterministic version of the model based on a point forecast and (2) examine the computational performance of the integer L-shaped method with enhancements presented in Section 4.

5.1. Model instances and input data

5.1.1. Patient census data Hourly patient census data was collected for HM service from the Northwestern Medicine Enterprise Data Warehouse from January 2009 to June 2012. Figure 2a shows patient volume during a week for the HM service over the entire study period. The shaded region represents the minimum and maximum patient volume observed during the study period.

The solid line shows the mean patient volume. Two standard deviations of the patient volume above and below the mean are shown by dashed lines. The nurse-to-patient ratios were provided by NMH operations managers. A 1:4 nurse-to-patient ratio is applied to the patient volume from 8 am to 4 pm , and a $1: 5$ ratio is applied for the rest of the day. The ideal nurse count required to provide patient care is shown in Figure 2b. The detailed patient volume characteristics are given in Appendix B.
5.1.2. Problem instances Using the patient census data, we created 20 problem instances in our empirical study. Each problem instance considers an 18-week planning horizon that rolls by 4 weeks. Rolling by 4 weeks allowed us to generate a sufficient number of problem instances for numerical testing. Each problem instance is generated as follows.

Based on the employment types, nurses at the NMH Department of Hospital Medicine work either 8 hours or 12 hours per shift (see Table 2). Each 12-hour shift starts from 8AM, 10AM, 12 PM , or 8 PM ; and each 8 -hour shift starts from $12 \mathrm{AM}, 8 \mathrm{AM}, 12 \mathrm{PM}$, or 4 PM . We assume a $12-$ hour break between two successive shifts worked by a nurse. Scheduling patterns were generated by using a recursive procedure (see Appendix D). For a given shift type, the procedure checks over hours of a week whether the hour is valid for a shift start time. For a valid shift start time, the procedure adds it to the set of start times and calls itself with the set. In subsequent calls, the procedure generates a scheduling pattern if the required number of shifts (i.e., start times) is generated. As a result, we generated $3,913(=|I|)$ viable weekly scheduling patterns. Similarly, eight adjustment patterns were generated on the basis of one 12 -hour shift and one 8 -hour shift for each day with start times given above. In the model, adjustment decisions are made once a week for all days of the week. Thus the model has $56(=|J|)(8 \times 7)$ adjustment patterns. The adjustment decision for day i is not chained by the decisions for day $(i-1)$ over the adjustment horizon. Hence, the adjustments are separable by day as well as week.

The full model has 3,913 first-stage integer variables. The second stage has 112 integer variables and 336 continuous variables for each week of the 12 -week staffing horizon and for each scenario. Note that the second-stage problem is separable by each of the 12 weeks since the schedules are based on weekly patterns. Consequently, each problem instance has 1,347,913 general integer variables and $4,032,000,000$ continuous variables. 1,344,000 integer variables in the second stage are treated as continuous variables after adding MIR inequalities due to Theorem 1. Hence, the resulting integer program has only 3,913 integer variables. However, the CPLEX MIP optimizer resulted in an out-of-memory error (128 GB) on our computation server when we attempted to solve the extensive form formulation.
5.1.3. Scenario generation We used empirical forecast errors to generate demand scenarios for our model. We used the available 3.5 years of data as follows for generating the forecast errors. A 613-day time window was used for generating the forecasts and computing the errors in these forecasts. The window was moved by an hour between January 1, 2009, and June 17, 2010, for 532 days. Note that the test problems are generated for Sept. 2010 - Feb. 2012; hence, the empirical forecast errors are generated by using data for a period that does not overlap with the decision period. On our data, the autoregressive integrated moving average (ARIMA) method outperformed the other methods among a variety of known forecasting techniques for long-term forecasts. The MAPE for the forecast are shown in Figure 3 in Appendix B. Details of the predictability of different time series forecasting methods to the HM patient volume are discussed by Kim et al. (2014). An ARIMA model was estimated for each time window, and forecasting errors were evaluated for the next 18 -week forecasts generated from the time window. These steps provided a pool of 12,768 $(=532 \times 24)$ forecast error vectors that reflect the past behavior of the ARIMA forecasting method. From this pool, we randomly selected 1,000 error vectors using a uniform distribution over the error vectors. A selected error vector was added to a mean point forecast to generate a demand scenario. The choice of using 1,000 scenarios for the results reported in our empirical study is arbitrary. Results in Appendix C show that using a smaller number of scenarios results in larger staffing costs and lower value of stochastic solution.
5.1.4. Additional parameter settings and model modifications We set the cost coefficients $c_{i}, q_{j}^{+}, q_{j}^{-}, r^{+}$, and r^{-}as relative weights to staffing cost per hour. Staffing cost c_{i} is set to 1 per hour, while the underage cost q_{j}^{+}is 1.5 per hour. The reason is that the nurses called to do an overtime shift get paid 50% more than the base salary. We assume that the salvage value (overage cost) of a nurse is zero $\left(q_{j}^{-}=0\right)$. The labor surplus benefit is usually zero unless better service is provided (Easton and Rossin 1996) or alternative work is found. In the base model, the penalty costs r^{+}and r^{-}are set sufficiently large ($r^{+}=r^{-}=50$) to have a model that tracks the nurse-to-patient ratio as closely as possible at the time of service. The need to track patient census was suggested to us by NMH operations managers for patient safety reasons (see also Woodall et al. (2013)). However, we also report results with alternative penalty cost parameters in Section 5.2.3. The model also assumes that the number of full-time nurses should be more than 80% of the total number of nurses and that the number of part-time nurses should be more than 10% of the total number of nurses. This full-time/part-time/casual staff mix is the current policy at NMH. Therefore, the following additional constraints were added to the model:

$$
\sum_{i \in I_{\mathrm{FT}}} x_{i} \geq 0.8 \sum_{i \in I} x_{i} \quad \text { and } \quad \sum_{i \in I_{\mathrm{PT}}} x_{i} \geq 0.1 \sum_{i \in I} x_{i},
$$

where I_{FT} and I_{PT} are the subsets of scheduling patterns for full-time shifts and part-time shifts, respectively. Note that Theorem 1 remains applicable even after adding these constraints.

Table 3 Comparison of deterministic solutions and stochastic solutions, and the value of the stochastic solutions for the 20 problem instances

Instance	Deterministic Solutions				Stochastic Solutions				VSS
	Staffing	Overtime	Paid Time-Off	Total	Staffing	Overtime	Paid Time-Off	Total	
	Hours	Hours	Hours	Cost	Hours	Hours	Hours	Cost	
20FEB2012	5000	230	343	5344	4676	365	165	5223	121
23JAN2012	5556	252	425	5934	5096	455	188	5778	156
26DEC2011	5064	216	315	5388	4760	344	149	5276	112
28NOV2011	5272	228	337	5614	4928	376	152	5492	122
310 CT 2011	5392	268	377	5794	5012	438	183	5669	125
03 OCT 2011	5204	241	394	5566	4760	446	174	5430	136
05SEP2011	5108	258	381	5495	4676	462	171	5368	127
08AUG2011	5704	288	407	6136	5236	511	184	6003	133
11JUL2011	5564	255	391	5947	5180	422	189	5813	135
13JUN2011	5544	240	384	5903	5132	420	169	5762	141
16MAY2011	5712	253	407	6091	5236	472	170	5944	147
18APR2011	5588	255	379	5970	5180	443	176	5844	126
21MAR2011	5296	232	359	5644	4928	388	160	5511	134
21FEB2011	5588	263	383	5982	5180	452	181	5858	124
24JAN2011	5388	230	390	5733	5012	384	182	5588	145
27DEC2010	5252	229	351	5595	4928	360	169	5468	127
29NOV2010	5120	226	337	5460	4760	386	148	5339	121
01NOV2010	5224	225	332	5562	4928	344	165	5444	118
04OCT2010	5316	238	371	5673	4928	403	163	5533	140
06SEP2010	5296	226	333	5635	4928	390	140	5512	123
Mean	5359	243	370	5723	4973	413	169	5593	130
Stdev	214.3	18.1	29.9	233.8	182.8	46.1	13.9	227.7	11.1

5.1.5. Computational environment We implemented the modified integer L-shaped method (see Algorithm 2) in C++ and used the CPLEX 12.5.0 callable library (CPLEX 2009) to solve the generated linear and mixed integer programming subproblems. CPLEX callback functions were used for the branch-and-cut procedure in Algorithm 2. The CPLEX parameters used with nondefault values in our empirical study are given in Appendix A. Note that the relative optimality gap was set to zero. The code was run on a 32 -core Intel Xeon 2.2 GHz machine with 128 GB RAM, although we report only the total CPU time in this paper. Patient volume forecasts were generated by using the procedures in the R software package (Eddelbuettel and François 2010, Kim et al. 2014).

5.2. Value of the stochastic solution (VSS)

5.2.1. VSS based on scenarios We now evaluate the value of the stochastic solutions (VSS; see Birge (1982)) resulting from our iStaff model when compared with the solutions from the deterministic model that considers the iStaff model with a single scenario based on point forecast of patient volume. Table 3 provides solutions resulting from the deterministic model, the stochastic programming iStaff model, and the VSS. The problem instance is named by the first date of the
planning horizon. The column "Staffing Hours" gives the number of nursing hours per week. The columns "Overtime Hours" and "Paid Time-Off Hours" give the expected number of hours for which HM will need to call in an overtime nurse or have a nurse with no salvage value. The total cost is the sum of the staffing cost and the expected adjustment cost per week. The VSS calculates the difference between two total costs. In calculating the total cost we excluded the penalty cost, which corresponds to $\mathbb{E}\left[r^{+} \sum_{t \in T} u_{t}(\omega)+r^{-} \sum_{t \in T} v_{t}(\omega)\right]$, because the penalty cost is not out-of-pocket of hospital operating cost.

As can be seen in Table 3, the use of the stochastic iStaff model saves the cost of staffing 130 nursing hours a week on average, which is equivalent to the cost of hiring 3.6 full-time nurses on average. The VSS was also evaluated by using all 12,768 error vectors (see Appendix C). This value is not significantly different from that reported in Table 3 . On average the stochastic model staffs 386 fewer nursing hours while calling in only 170 nursing overtime hours in comparison with the deterministic solutions. The deterministic solutions have more paid time-off hours than do the stochastic solutions. In Appendix E, we report computation time and other computational results for solving the deterministic models. The average CPU time for the deterministic model was 13 seconds. The optimal solutions were found at the root node for 16 of 20 problem instances.
5.2.2. VSS based on actual patient census The VSS reported in Table 3 assumes that (1) the scenarios generated from the ARIMA models follow the empirical demand distribution for the planning horizon and (2) improved demand information by a week-ahead forecast represents actual patient volume at the adjustment decision epoch. In practice, however, improved demand information could still have forecast error. In our empirical setting, a week-ahead forecast has 9% mean absolute percentage error on average, whereas a six-week-ahead forecast has an average 12% error. Hence, one may be interested in the VSS based on actual realizations of patient census for the planning horizon. Table 4 gives results from the deterministic solutions and the stochastic solutions using actual patient census. On our data during the study period, the use of the stochastic iStaff model on average saves the cost of staffing 108 nursing hours a week (i.e., three full-time nurses). Unlike the results in Table 3, the stochastic solutions incurred more cost than the deterministic solutions did for some instances (26DEC2011, 29NOV2010, and 04OCT2010 in Table 4). In addition, the VSS was low for instances 28NOV2011, 01NOV2010, and 06SEP2010. The reason is that the patient volume forecast used for the recourse considerations was significantly lower than that actually realized. Consequently, the plan required significantly more overtime hours for these cases.

Table 4 The deterministic solutions and the stochastic solutions evaluated using the actual realizations of patient census

Instance	Deterministic Solutions				Stochastic Solutions				VSS
	Staffing Hours	Overtime Hours	Paid Time-Off Hours	Total Cost	Staffing Hours	Overtime Hours	Paid Time-Off Hours	Total Cost	
20FEB2012	5000	19	285	5028	4676	216	162	5001	28
23JAN2012	5556	45	657	5623	5096	160	312	5336	288
26DEC2011	5064	248	216	5437	4760	466	132	5459	-23
28NOV2011	5272	229	355	5615	4928	454	235	5609	6
31 OCT 2011	5392	95	597	5535	5012	287	408	5443	92
03OCT2011	5204	73	695	5314	4760	267	446	5161	153
05SEP2011	5108	26	594	5148	4676	218	355	5004	144
08AUG2011	5704	1	944	5706	5236	70	546	5342	365
11JUL2011	5564	65	484	5662	5180	225	262	5518	144
13JUN2011	5544	81	388	5665	5132	293	190	5572	93
16MAY2011	5712	31	595	5758	5236	206	297	5545	213
18APR2011	5588	0	531	5588	5180	121	247	5362	226
21MAR2011	5296	43	424	5361	4928	248	262	5300	61
21FEB2011	5588	49	601	5662	5180	205	349	5488	174
24JAN2011	5388	104	445	5545	5012	300	266	5463	82
27DEC2010	5252	142	370	5466	4928	302	207	5381	85
29NOV2010	5120	204	247	5427	4760	451	135	5436	-10
01NOV2010	5224	220	342	5554	4928	400	228	5528	26
04OCT2010	5316	204	318	5623	4928	465	191	5626	-3
06SEP2010	5296	216	338	5620	4928	456	212	5613	7
Mean	5359	105	471	5517	4973	291	272	5409	108
Stdev	214	85	180	187	182	121	106	182	106

5.2.3. Sensitivity analysis in model parameters In this section, we give results showing the absolute VSS and the relative VSS under different parameter settings. Table 5 presents the results by varying the recourse function cost r^{+}and r^{-}and patient volume characteristics. Absolute and relative savings (in parentheses) are given in this table. We experimented with different patient volume by taking $\max \left\{0, d_{t}(\omega)-\Delta\right\}$, where Δ are 0,40 , and 70 . Hence, the mean patient volume is reduced by a given Δ. Note that the standard deviation does not change. We calculated the mean absolute percentage error of each patient volume forecast reduced by Δ. The combinations of r^{+} and r^{-}are taken with the following justifications: (1) $r^{+}=0.75, r^{-}=1.25$: some salvage cost and low cost nurse addition; (2) $r^{+}=0.5, r^{-}=2$: low salvage cost and agency nurse short notice; (3) $r^{+}=r^{-}=50$: closely track demand; (4) $r^{+}=5, r^{-}=10$: loosely track demand; (5) $r^{+}=0.5, r^{-}=50$: low salvage cost and significant safety costs due to understaffing; and (6) $r^{+}=0, r^{-}=50$: no salvage cost and significant safety costs due to understaffing.

For a given recourse function cost, the absolute VSS shows a decreasing tendency as mean absolute percent error increases. The largest absolute VSS was obtained when some salvage cost and low nurse replacement cost were used in the model with high MAPE, whereas the smallest absolute VSS was obtained when the adjustment decisions were made to strictly meet the patient volume demand regardless of overstaffing level.

Table 5 Sensitivity analysis of the value of the stochastic solutions on different cost function coefficients (r^{+}and r^{-}) and mean absolute percentage errors of patient volume forecast

		Mean Absolute Percentage Error		
r^{+}	r^{-}	12%	18%	27%
0.75	1.25	$547.5(10.7 \%)$	$524.6(20.6 \%)$	$480.2(34.0 \%)$
0.5	2	$180.73(3.4 \%)$	$167.89(6.0 \%)$	$162.45(9.6 \%)$
50	50	$130.01(2.3 \%)$	$122.84(3.9 \%)$	$115.94(5.6 \%)$
5	10	$83.45(1.5 \%)$	$76.68(2.5 \%)$	$76.95(3.8 \%)$
0.5	50	$52.11(0.8 \%)$	$49.42(1.3 \%)$	$51.04(1.8 \%)$
0	50	$52.75(0.8 \%)$	$51.01(1.3 \%)$	$48.32(1.7 \%)$

Note that the relative VSS decreases as the recourse function costs r^{+}and r^{-}increase. The reason is that the denominator of the relative VSS is the optimal objective value of the model, which increases in the recourse function cost. Moreover, since $d_{t}(\omega)$ are fractional in the model, positive residuals $u_{t}(\omega)$ and $v_{t}(\omega)$ must exist regardless of any model parameter setting. Hence, one can easily see that the relative VSS goes to zero as the recourse function cost increases.

We also evaluated the objective values of the solutions based on 100 scenarios by using all 12,768 error vectors. The average VSS based on a choice of 100 scenarios was significantly lower than that based on the 1,000 scenarios (110 vs. 130 with p-value <0.01). Moreover, the standard deviation of the objective function values based on the 100 scenarios was larger than that based on the 1,000 scenarios on average (599 vs. 559). Detailed results are given in Appendix C.

5.3. Expected value of perfect information

We evaluate the maximum staffing cost saving if perfect patient volume were available in the iStaff model. The expected value of perfect information (EVPI) has been used in the context of decision analysis to measure the amount that a decision maker is willing to pay in return for perfect information about uncertain factors (Pratt et al. 1995, Birge and Louveaux 1997). The EVPI is calculated as follows. We call the staffing cost resulting from (TSSIP) the wait-and-see staffing cost. We compare the wait-and-see staffing cost with the so-called here-and-now staffing cost, which is obtained by solving $\min \left\{\mathbb{E}_{\omega}\left[\sum_{i \in I} c_{i} x_{i}+Q(\boldsymbol{\chi}, \omega)\right] \mid(1 \mathrm{a})-(1 \mathrm{~b})\right\}$. Then, the EVPI is the difference between the wait-and-see staffing cost and the here-and-now staffing cost.

Table 6 provides the wait-and-see staffing cost, the here-and-now staffing cost, and the EVPI for each problem instance. The EVPI for the iStaff model is the cost of staffing 300 nursing hours a week on average. The HM service would save 5.4% of the staffing cost more than the wait-andsee staffing cost resulting from (TSSIP) if perfect and accurate patient volume information were available to the iStaff model.

Table 6 Expected value of perfect patient volume information (EVPI) for the iStaff model

Instance	Wait-and-See Staffing Cost	Here-and-Now Staffing Cost	EVPI	
20FEB2012	5223	4946	277	5.3%
23JAN2012	5778	5443	335	5.8%
26DEC2011	5276	5025	251	4.8%
28NOV2011	5492	5223	269	4.9%
31OCT2011	5669	5346	324	5.7%
03OCT2011	5430	5111	318	5.9%
05SEP2011	5368	5046	322	6.0%
08AUG2011	6003	5644	359	6.0%
11JUL2011	5813	5491	322	5.5%
13JUN2011	5762	5461	301	5.2%
16MAY2011	5944	5619	325	5.5%
18APR2011	5844	5526	318	5.4%
21MAR2011	5511	5229	281	5.1%
21FEB2011	5858	5531	328	5.6%
24JAN2011	5588	5288	300	5.4%
27DEC2010	5468	5190	278	5.1%
29NOV2010	5339	5069	270	5.0%
01NOV2010	5444	5177	267	4.9%
04OCT2010	5533	5243	290	5.2%
06SEP2010	5512	5250	263	4.8%
Mean	5593	5293	300	5.4%
Stdev	227	206	29	0.4%

5.4. Computational experience with the modified L-shaped method

We now discuss the computational performances of our algorithmic approach. In Section 5.4.1 we compare our multicut aggregation (MCA) approach with the single-cut approach and the hybridcut approach given in Section 4.2. The outer linearization cuts were generated only at the incumbent solutions. More aggressive cut generation increased the computation time. For example, when the cuts are generated at every feasible integer solution, the computation time is doubled (see Appendix F). However, the maximum memory (128 GB) available on our computation server was not enough when the cuts are generated at all fractional solutions. In Section 5.4.2 we discuss the computational results from the proposed thin direction branching strategy.
5.4.1. Computational performance of multicut aggregation We now give results comparing the computational performance of the single-cut approach, the hybrid-cut approach, and the proposed MCA approach within the framework of the L-shaped method. Table 7 gives the average computational performances of different approaches on the 20 problem instances. The single-cut approach adds only one cut (i.e., $M^{k}=1$) generated for each χ^{k} at iteration k. The hybrid-cut approach adds M^{k} number of cuts generated for each χ^{k} at iteration k. The MCA approach also adds M^{k} number of cuts generated for each χ^{k} but aggregates those having dual multipliers equal to zero. We consider the hybrid cut and the MCA approaches to add $10,100,500$, and 1,000 cuts for

Table $7 \quad$ Average computational performances of different cut aggregation approaches for the 20 problem instances

Approach	No. of Cuts	No. of Nodes	Root Node CPU Time (sec.)	B\&C CPU Time (sec.)	Total CPU Time (sec.)	Absolute Optimality Gap at the First Feasible Solution
Single cut	533	944	56492	2917	59409	15
Hybrid cut (10 cuts)	3284	1133	35020	5860	40879	48
Hybrid cut (100 cuts)	11309	1919	12290	52091	64381	46
Hybrid cut (500 cuts)	NA ${ }^{\dagger}$	NA ${ }^{\dagger}$	NA^{\dagger}	NA^{\dagger}	NA ${ }^{\dagger}$	NA ${ }^{\dagger}$
Hybrid cut (1000 cuts)	NA ${ }^{\dagger}$	NA^{\dagger}	NA^{\dagger}	NA^{\dagger}	NA ${ }^{\dagger}$	NA ${ }^{\dagger}$
MCA (10 cuts)	94	1831	34704	38382	73086	48
MCA (100 cuts)	615	2572	11828	53908	65736	44
MCA (500 cuts)	2944	1653	6468	20524	26991	31
MCA (1000 cuts)	4354	918	5261	4749	10010	26

\dagger Hybrid cut (500 cuts) and hybrid cut (1,000 cuts) reached the maximum memory (128 GB) available in our computation server.
each χ^{k} (i.e., $M^{k}=10,100,500$, and 1,000). The subsets S_{m}^{k} of scenario indices are constructed in a round-robin fashion for $m=1, \ldots, M^{k}$. The absolute optimality gap at the first feasible solution is given by the absolute difference between the optimal objective value and the objective value at a feasible solution that was first found.

The MCA approach used the least total CPU time (10,010 sec.) when allowing 1,000 cuts. The known hybrid-cut approach had the least total CPU time ($40,879 \mathrm{sec}$.) for 10 cuts among different parameter settings. The total CPU time was reduced by a factor of 4.1 on average for our problem instances. In addition to the reduced root node CPU time, the branch-and-cut (B\&C) CPU time resulting from the MCA with 1,000 cuts approach was also reduced by a factor of 1.2 when compared with that of the hybrid cut with 10 cuts. The hybrid cut with 500 cuts and that with 1,000 cuts could not find a solution as they reached the maximum memory (128 GB) available in our computation server. The single-cut approach required more than ten times the CPU time at the root node, but it did produce better root node solutions that required less time subsequently to reach optimality. Overall, MCA with 1,000 cuts required about one-sixth the time to solve the test problems.

Appendix G reports the results from a different multicut approach that purges the cuts with zero dual multipliers. Although this multicut purge approach resulted in nearly the same computational performances for 16 of the 20 instances, the proposed MCA approach outperformed in the other four instances.
5.4.2. Computational performance of the thin direction branching strategy We now examine the computational performance of the thin direction branching strategy devised by introducing the auxiliary variables $\boldsymbol{\phi}, \boldsymbol{\psi}$, and $\boldsymbol{\chi}$ with priority as discussed in Section 4.1. Recall that with this branching strategy, we first seek integrality in the number of full-time and part-time nurses
and the number of nurses in each shift type. Table 8 gives results comparing the computational performance of our priority branching with a tender variable branching strategy that gives priority to branching on tender variables $\boldsymbol{\chi}$, followed by branching on the original variables \mathbf{x}.

The proposed thin direction branching strategy on average used 918 nodes in the $\mathrm{B} \& \mathrm{C}$ tree. This is smaller by a factor of 1.6 when compared with the tender variable branching strategy (1,499 nodes). The thin direction branching strategy branched on original variable \mathbf{x} only a few times (i.e., 32 vs. 1,484). Moreover, in the B\&C procedure, the thin direction branching strategy found 19 feasible solutions on average, whereas the tender variable branching strategy found 56 feasible solutions on average. This increased B\&C CPU time from the tender variable branching results, because of the additional efforts required in objective function evaluation. Hence, the thin direction branching strategy took less time per node subproblem for all the problem instances (i.e., 5.2 vs. 9.4 CPU-seconds per node on average). As a result, the B\&C CPU time resulting from the thin direction branching strategy is lower than that from the tender variable branching by a factor of 3. This result implies that by branching on thin directions, $\boldsymbol{\phi}$ and $\boldsymbol{\psi}$, the integrality of the solution is more efficiently achieved in the $\mathrm{B} \& \mathrm{C}$ search tree.

In Appendix H we report the results from the standard branching strategy that considers branching on original variables x only. The reduction in the B\&C CPU time by the tender variable branching is not significant (14,068 vs. $14,175 \mathrm{sec}$. on average). The reason is that the tender variable branching strategy on average performed branching 15 times on tender variables compared with 1,484 times on original variables. Note that in contrast the prioritized branching strategy performs most of its branching on the tender variables $\boldsymbol{\chi}$, after generating some branches using ϕ and $\boldsymbol{\psi}$. This result suggests the benefits of branching on the implied thin directions by the proposed prioritized branching strategy.

6. Concluding Remarks

The integrated staffing and scheduling model studied in this paper is applicable for a single unit. This model assumes that nurses are identical in their skill set. This assumption is justified for a single unit (e.g., hospital medicine) problem. In more general hospital-wide settings, nurses across different units have different certifications and skill sets. In certain situations, or with additional skill sets, these nurses are interchangeable across units. An example is the nurse float pool, which is often maintained in a large hospital. Nurses in the float pool may work in many different units. Developing and studying hospital-wide staffing and scheduling models are a topic of future research. Another important issue in developing schedules is individual preferences (see, e.g., Bard and Purnomo 2005b,c, Maenhout and Vanhoucke 2013b). There are two possible approaches to address this issue. The first approach is to develop a detailed preference-based optimization model
Table 8 Computational performance of the proposed priorty branching strategy and tender variable branching

Instance	Thin Direction Branching										Tender Variable Branching								
	No. of Nodes	No. of Feasible Solutions	No. of Branching on				B\&CCPU Time(sec.)		TotalCPU Time(sec.)		No. of Nodes	No. of Feasible Solutions	No. of Branching on		B\&CCPU Time(sec.)		TotalCPU Time(sec.)		
			ϕ	ψ	χ	x			χ	x									
20FEB2012	294	10	36	38	152	11		2020				8405	1256	66	6	1254		10887	17204
23JAN2012	2118	44	99	59	1784	112		10565		15734	1111	53	0	1114		11791	16908		
26DEC2011	2131	26	107	141	1692	59		7107		13047	1508	70	49	1453		18078	23959		
28NOV2011	926	17	72	56	699	12		4032		9356	1808	74	11	1801		14609	19837		
31 OCT 2011	621	28	52	45	477	18		5728		10512	1915	75	0	1890		25221	30041		
03 OCT 2011	1159	22	115	78	852	12		5722		10726	1568	46	5	1566		15008	20012		
05SEP2011	536	14	57	48	364	15		2953		7740	1418	39	12	1405		7460	12179		
08AUG2011	1213	23	79	71	913	81		7746		12322	1403	37	13	1390		8339	12839		
11JUL2011	655	19	49	37	475	23		5930		11095	2409	65	0	2408		18311	23506		
13JUN2011	626	23	58	63	448	14		4556		10100	295	30	0	298		4372	10063		
16MAY2011	1206	25	122	114	866	18		6127		11270	2045	48	164	1870		21560	26690		
18APR2011	830	14	69	64	592	26		3315		8045	1592	54	0	1595		9837	14856		
21MAR2011	800	14	96	67	502	60		3501		8286	1544	60	0	1546		12346	17519		
21FEB2011	1146	29	90	47	859	80		5870		10745	1585	64	11	1574		15649	20990		
24JAN2011	777	18	68	59	584	5		3400		8497	1627	72	32	1597		27468	32924		
27DEC2010	658	13	45	37	500	17		3560		9278	1824	67	0	1828		16804	22527		
29NOV2010	292	7	68	41	177	7		1795		7218	946	40	0	949		8271	13864		
01NOV2010	722	7	47	32	557	18		3019		8628	2348	76	0	2350		18569	24174		
04OCT2010	1536	15	79	95	1237	46		6372		11599	722	41	0	730		8544	13754		
06SEP2010	111	10	11	16	46	4		1653		7590	1059	51	0	1061		8244	14067		
Mean	918	19	71	60	689	32		4749		10010	1499	56	15	1484		14068	19396		
Stdev	540	9	28	29	457	31		2258		2144	515	14	37	504		6200	6203		

and optimize for overall satisfaction. The alternative approach is to first create schedules without preferences and then offer these schedules to the nurses for their bidding. The issue of scheduling preference was discussed with the NMH administration in the context of changing schedules based on our results. The suggestion was that, based on nurse preferences, use of certain scheduling patterns could be further restricted by additional lower and upper bounds on the first-stage decision variables.

Despite these limitations, this paper takes several important steps in the direction of incorporating uncertainty in the workforce planning. For a single-unit problem, the computational results in this paper show that realistic integrated staffing and scheduling problems, modeled as two-stage stochastic mixed-integer programs, can be solved in a reasonable amount of time. A key to solving such problems is the ability to add inequalities that tighten the relaxation of the second-stage mixed-integer sets. For the problems studied in this paper we showed that the tighter relaxations obtained by adding parametric mixed-integer inequalities were sufficient to specify the convex hull of the second-stage mixed-integer set. This remarkably reduced the complexity of the model. Further algorithmic enhancements to the L-shaped method resulted in another tenfold improvement in solution time and significant reduction in memory usage. On the practical side, the empirical study based on real data showed that one can achieve significant cost savings by appropriately modeling the future uncertainty. This result was demonstrated by evaluating the value of stochastic solution, as well as testing the performance of the model against real demand data. We also observed that the value of stochastic solution increases with mean percentage forecast error.

Appendix A: CPLEX Parameter Setting

In Table 9, we list the CPLEX parameters with nondefault values used in our computational study. The first four parameter (CPX_PARAM_MIPSEARCH, CPX_PARAM_MIPCBREDLP, CPX_PARAM_PRELINEAR, and CPX_PARAM_REDUCE) settings are necessary for the implementation of our algorithm. Parameter CPX_PARAM_PARALLELMODE is set to 1 in order to enable deterministic parallel search mode in the CPLEX MIP optimizer. With the parameter setting to turn on all the CPLEX internal cut procedures, we observed that CPLEX did not generate any cut throughout the branch-and-cut procedure.

Appendix B: Characteristics of Patient Census Data and Problem Instances

Patient census during the study period has a mean of 125 and a standard deviation of 19. As can be seen in Figure 2a, the patient volume fluctuates during different times of the day and days of the week. The patient volume is typically higher during Tuesdays through Fridays. Figure 2a also shows a large variability in patient volume on a given day of the week. NMH manages its nurse staffing levels using nurse-to-patient ratios for HM.

Table 9	CPLEX parameters used with nondefault values in the computational study
Parameter Name	Value
CPX_PARAM_MIPSEARCH	CPX_MIPSEARCH_TRADITIONAL
CPX_PARAM_MIPCBREDLP	CPX_OFF
CPX_PARAM_PRELINEAR	0
CPX_PARAM_REDUCE	CPX_PREREDUCE_PRIMALONLY
CPX_PARAM_PARALLELMODE	1
CPX_PARAM_THREADS	32
CPX_PARAM_EPGAP	0.0
CPX_PARAM_LPMETHOD	CPX_ALG_DUAL
CPX_PARAM_MIPEMPHASIS	3
CPX_PARAM_BNDSTRENIND	1
CPX_PARAM_VARSEL	2
CPX_PARAM_DIVETYPE	3
CPX_PARAM_PRESLVND	2
CPX_PARAM_PROBE	3

Table 10 Characteristics of problem instances and patient census data

Instance	Training Horizon					Planning Horizon			
	Date Range (613 days)	Mean	Stdev	Max	Min	Mean	Stdev	Max	Min
20FEB2012	06/17/2010-02/19/2012	120	18.9	188	62	112	12.4	152	84
23JAN2012	05/20/2010-01/22/2012	121	19.1	188	62	114	12.8	152	84
26DEC2011	04/22/2010-12/25/2011	122	19.1	188	62	114	13.3	152	73
28NOV2011	03/25/2010-11/27/2011	123	18.8	188	62	113	14.8	152	70
31 OCT 2011	02/25/2010-10/30/2011	125	18.3	188	73	109	15.4	146	62
03OCT2011	01/28/2010-10/02/2011	126	18.4	188	73	109	15.5	146	62
05SEP2011	12/31/2009-09/04/2011	127	18.7	188	73	109	15.2	146	62
08AUG2011	12/03/2009-08/07/2011	127	18.9	188	73	113	14.6	146	62
11JUL2011	11/05/2009-07/10/2011	127	18.9	188	73	117	10.9	146	79
13JUN2011	10/08/2009-06/12/2011	128	18.9	188	73	118	10.9	147	77
16MAY2011	09/10/2009-05/15/2011	129	18.8	188	73	119	11.4	148	77
18APR2011	08/13/2009-04/17/2011	129	18.6	188	73	117	12.0	148	77
21MAR2011	07/16/2009-03/20/2011	130	18.8	189	73	117	12.9	152	77
21FEB2011	06/18/2009-02/20/2011	132	18.9	203	73	116	12.7	152	83
24JAN2011	05/21/2009-01/23/2011	133	18.3	203	73	115	13.6	152	74
27DEC2010	04/23/2009-12/26/2010	133	17.9	203	73	116	14.2	174	74
29NOV2010	03/26/2009-11/28/2010	135	17.2	203	78	113	15.2	174	73
01NOV2010	02/26/2009-10/31/2010	136	16.7	203	85	114	16.2	174	73
04OCT2010	01/29/2009-10/03/2010	136	16.5	203	85	121	21.6	177	73
06SEP2010	01/01/2009-09/05/2010	135	16.5	203	85	129	23.1	181	73

Table 10 shows the characteristics of patient census data used for each problem instance. The first column presents the problem instances, which are named by the first date of each planning horizon. For each problem instance, 613 days of patient census data were taken to train the ARIMA forecasting model. Mean, standard deviation, and maximum and minimum of patient census data are given for each of the training horizon and the planning horizon.

Figure 3 Mean absolute percentage error resulting from the base scenarios in our empirical study.

In our empirical setting, a set of demand scenarios is generated by using an ARIMA model and empirical error vectors, which simulate hourly patient volume for an 18-week planning horizon. The forecast resulting from the ARIMA model has 11% mean absolute percentage error (MAPE) on average for a 6 -week period (see Figure 3). For weekly adjustment, a patient census forecast made a week ahead of the adjusting week is used and has 9% MAPE on average in our empirical setting. Note, however, that such forecast for the adjusting week is not based on actual patient census but on the scenarios. Therefore, overall performance of the stochastic solution does not depend on the weekly adjusting forecasts but on the scenarios generated for the 18 -week planning horizon.

Appendix C: Value of the Stochastic Solution Resulting from 100 Patient Volume Scenarios

Table 11 reports the value of the stochastic solution (VSS) obtained by solving (TSSIP) with 100 -patient volume scenarios. The 100 patient volume scenarios were generated from an arbitrary choice of 100 error vectors. We compare the deterministic solution, the stochastic solution from the 100 -patient scenario, and the stochastic solution with the 1,000 -patient scenario. Moreover, p-values were calculated from Welch's t-test in order to see whether the staffing cost from the 1,000 -patient scenario is significantly lower than that from the 100 -patient scenario. To achieve a greater statistical power, we evaluate the solutions using 12,768 error vectors available from our empirical study.

The stochastic solution from the 100-patient scenario results in the cost saving of 110 nursing hours a week on average. This is smaller than that from the 1,000 -patient solution by average 20 nursing hours a week. Moreover, the difference of the staffing cost between the 100-patient scenario solution and the 1,000-patient scenario solution is statistically significant with a p-value <0.01.

Table 11 Staffing cost and value of the stochastic solutions resulting from the different number of scenarios. estimated using 12,768 error vectors

Instance	Deterministic Solution		100-Patient Scenario Solution				1000-Patient Scenario Solution				p-value
	Mean	Stdev	Mean	Stdev		VSS	Mean	Stdev		VSS	
20FEB2012	5360	375	5263	564	97	1.8\%	5240	508	119	2.2\%	<0.01
23JAN2012	5956	431	5825	654	132	2.2\%	5803	620	153	2.6\%	<0.01
26DEC2011	5384	310	5285	489	99	1.8\%	5262	444	121	2.3\%	<0.01
28NOV2011	5624	357	5516	527	108	1.9\%	5495	501	129	2.3\%	<0.01
31 OCT 2011	5823	448	5721	658	102	1.7\%	5699	602	124	2.1\%	<0.01
03OCT2011	5591	425	5475	630	116	2.1\%	5456	604	135	2.4\%	0.01
05SEP2011	5523	441	5424	651	98	1.8\%	5401	613	122	2.2\%	<0.01
08AUG2011	6154	467	6049	696	106	1.7\%	6028	658	126	2.0\%	0.01
11JUL2011	5973	434	5860	648	112	1.9\%	5843	590	130	2.2\%	0.01
13JUN2011	5933	404	5810	614	123	2.1\%	5790	575	143	2.4\%	<0.01
16MAY2011	6116	430	5994	648	122	2.0\%	5977	620	139	2.3\%	0.01
18APR2011	5993	439	5892	636	101	1.7\%	5875	600	118	2.0\%	0.01
21MAR2011	5668	387	5551	565	116	2.1\%	5531	539	136	2.4\%	<0.01
21FEB2011	6010	447	5909	654	101	1.7\%	5888	611	122	2.0\%	<0.01
24JAN2011	5758	401	5636	611	122	2.1\%	5618	554	139	2.4\%	0.01
27DEC2010	5615	381	5506	573	109	1.9\%	5485	516	131	2.3\%	<0.01
29NOV2010	5468	355	5364	530	104	1.9\%	5341	505	127	2.3\%	<0.01
01NOV2010	5563	353	5463	535	100	1.8\%	5442	476	121	2.2\%	<0.01
04OCT2010	5698	398	5579	585	119	2.1\%	5557	559	141	2.5\%	< 0.01
06SEP2010	5636	333	5527	514	108	1.9\%	5504	489	132	2.3\%	<0.01
Mean	5742	401	5632	599	110	1.9\%	5612	559	130	2.3\%	<0.01

```
Algorithm 3 Scheduling Pattern Generation
    ReqShifts \(\leftarrow\) the required number of shifts for a given shift type.
    ShiftLength \(\leftarrow\) the number of work hours per shift for a given shift type.
    Schedules \(\leftarrow \emptyset\)
    Call GeneratePatterns(Schedules, \(\emptyset, 0\) )
    function GeneratePatterns(Schedules, Shifts,StartTime)
        if \(\mid\) Shifts \(\mid=\) ReqShifts then
            Schedules \(\leftarrow\) Schedules \(\cup\{\) Shifts \(\} ;\) return
        end if
        for \(t=\) StartTime \(, \ldots, 168\) do \(\quad \triangleright 168\) hours \(=1\) week.
            if \(t\) is a valid shift start time then
                Call GeneratePatterns(Schedules, Shifts \(\cup\{t\}\), StartTime + ShiftLength)
            end if
        end for
    end function
```

Table 12 Computational results from the deterministic iStaff model

Instance	Root Node			Branch-and-Cut							CPUTotal Time (sec.)
	No. of Iterations	No. of Cuts	$\begin{aligned} & \hline \text { CPU } \\ & \text { Time } \\ & \text { (sec.) } \end{aligned}$	No. of Cuts	No. of Nodes					$\begin{gathered} \text { CPU } \\ \text { Time } \\ \text { (sec.) } \end{gathered}$	
20FEB2012	136	30	10	5	0	0	0	0	0	2	11
23JAN2012	134	30	10	2	0	0	0	0	0	1	11
26DEC2011	150	30	11	4	0	0	0	0	0	1	12
28NOV2011	128	30	10	3	0	0	0	0	0	1	11
31 OCT 2011	131	30	10	4	0	0	0	0	0	2	11
03OCT2011	137	30	10	4	0	0	0	0	0	1	11
05SEP2011	196	30	15	2	0	0	0	0	0	1	16
08AUG2011	155	30	11	4	0	0	0	0	0	1	12
11JUL2011	154	30	12	3	0	0	0	0	0	1	13
13JUN2011	132	29	10	3	0	0	0	0	0	1	11
16MAY2011	173	30	13	7	90	6	7	3	75	12	25
18APR2011	164	28	12	11	10	5	2	2	2	4	16
21MAR2011	127	30	9	4	0	0	0	0	0	2	11
21FEB2011	156	30	12	4	0	0	0	0	0	1	13
24JAN2011	138	29	10	3	0	0	0	0	0	1	11
27DEC2010	132	30	9	4	0	0	0	0	0	1	10
29NOV2010	197	30	15	5	50	19	15	8	8	6	21
01NOV2010	120	29	9	12	50	13	4	12	22	8	17
04OCT2010	170	30	13	4	0	0	0	0	0	1	14
06SEP2010	134	30	10	4	0	0	0	0	0	1	12
Mean	148	30	11	5	10	2	1	1	5	3	13
Stdev	22	1	2	3	24	5	4	3	17	3	4

Appendix D: Algorithm for Generating Scheduling Patterns

For generating scheduling patterns in our iStaff model, Algorithm 3 calls a recursive function GeneratePatterns for a given shift type and results in a set of schedules, Schedules, where each schedule, Shifts, consists of a set of valid start times.

Appendix E: Computational Results from the Deterministic iStaff Model

We present computational results from the deterministic iStaff model that considers a single scenario based on the mean point forecast. A deterministic problem instance has 4,025 integer variables and 336 continuous variables and was solved by the proposed L-shaped method. Table 12 shows the computational results for 20 problem instances. The column "No. of Iterations" presents the number of times that the master problem was resolved. The column "No. of Cuts" presents the number of optimality cuts after aggregation at the end of Step 1 of Algorithm 2. The deterministic problems were solved to optimality in 13 CPU-seconds on average. Of the 20 problem instances, 16 were solved at the root node of the branch-and-cut tree as the CPLEX MIP optimizer found optimum solutions using its internal heuristic procedures.

Table 13 Computational performance from generating outer linearization cuts only at incumbent solutions and generating outer linearization cuts at any feasible solutions

Instance	Generating Cuts Only at Incumbent Solutions				Generating Cuts at Any Feasible Integer Solutions			
	No. of Cuts	No. of Nodes	CPU Time (sec.)	Wallclock (sec.)	No. of Cuts	No. of Nodes	$\begin{array}{r} \text { CPU Time } \\ \text { (sec.) } \end{array}$	Wallclock (sec.)
20FEB2012	3323	294	2020	334	5647	552	4745	532
23JAN2012	3987	2118	10565	904	2000	318	3777	302
26DEC2011	1998	2131	7107	563	4369	1226	10620	703
28NOV2011	2314	926	4032	377	2147	210	2498	255
31 OCT 2011	3947	621	5728	538	7668	1020	7681	775
03OCT2011	2724	1159	5722	479	10302	768	7190	863
05SEP2011	2678	536	2953	340	17269	1382	18499	2002
08AUG2011	3471	1213	7746	661	2780	320	4362	353
11JUL2011	6931	655	5930	692	14381	1090	10729	1156
13JUN2011	3889	626	4556	453	8399	945	6651	791
16MAY2011	3372	1206	6127	555	15730	2237	17873	3293
18APR2011	2790	830	3315	361	3000	287	3883	294
21MAR2011	2508	800	3501	382	4000	920	3341	342
21FEB2011	2981	1146	5870	536	19891	989	14294	1987
24JAN2011	4601	777	3400	341	3539	789	5470	469
27DEC2010	2935	658	3560	368	8026	540	5850	624
29NOV2010	2868	292	1795	272	9484	982	5679	942
01NOV2010	2522	722	3019	343	5497	625	7345	805
04OCT2010	2692	1536	6372	538	3000	127	2487	233
06SEP2010	3963	111	1653	306	4322	646	5412	513
Mean	3325	918	4749	467	7573	799	7419	862
Stdev	1082	540	2258	158	5399	488	4713	760

Appendix F: Computational Results from More Aggressively Generating Outer Linearization Cuts in the Branch-and-Cut Procedure

We compare computational results from generating outer linearization cuts only at incumbent solutions with those from generating the cuts at any feasible integer solutions. When the cuts were generated at any feasible integer solutions, average computation time increased from 4,749 to 7,419 CPU-seconds. The reason is that the size of the B\&C node subproblem becomes larger with more cuts, which results in longer computation time spent per B\&C node subproblem on average. Specifically, the number of cuts generated at any feasible integer solutions was nearly twice that generated only at incumbent solutions. By generating the cuts at any feasible integer solutions, the number of nodes solved in the B\&C tree was reduced because of tighter lower bounds.

Appendix G: Computational Results from Multicut Purge Approach

We compare computational results from two different multicut approaches. One approach purges the cuts whose dual multipliers equal zero, while the other aggregates these cuts as presented in Section 4.2. Results are given in Table 14. Two approaches resulted in the nearly same computational performances for 16 of the 20 instances. The multicut aggregation approach generated

Table 14 Computational performance resulting from multicut approach with cut purge and cut aggregation

Instance	Multicut Purge					Multicut Aggregation				
	No. of Cuts	No. of Nodes	Root Node CPU Time (sec.)	B\&C CPU Time (sec.)	Total CPU Time (sec.)	No. of Cuts	No. of Nodes	Root Node CPU Time (sec.)	B\&C CPU Time (sec.)	Total CPU Time (sec.)
20FEB2012	4352	294	6452	2002	8454	4352	294	6384	2020	8405
23JAN2012	5016	2118	5184	10638	15822	5016	2118	5168	10565	15734
26DEC2011	3027	2132	5913	6987	12900	3027	2131	5940	7107	13047
28NOV2011	3343	926	5294	4113	9407	3343	926	5324	4032	9356
$310 C T 2011$	5972	689	4778	6166	10944	4976	621	4784	5728	10512
03OCT2011	3753	1156	5069	5691	10760	3753	1159	5004	5722	10726
05SEP2011	3707	535	4787	2887	7674	3707	536	4788	2953	7740
08AUG2011	4500	1212	4606	6405	11011	4500	1213	4576	7746	12322
11JUL2011	7737	887	5141	7226	12367	7960	655	5164	5930	11095
13JUN2011	4918	626	5592	4581	10173	4918	626	5544	4556	10100
16MAY2011	4401	1205	5182	5939	11121	4401	1206	5143	6127	11270
18APR2011	3819	830	5037	3547	8584	3819	830	4730	3315	8045
21MAR2011	3537	800	5199	3766	8965	3537	800	4785	3501	8286
21FEB2011	5006	1214	5315	6929	12244	4010	1146	4875	5870	10745
24JAN2011	8621	5874	5562	106371	111933	5630	777	5097	3400	8497
27DEC2010	3964	658	5802	3576	9378	3964	658	5718	3560	9278
29NOV2010	3897	292	5632	1846	7478	3897	292	5423	1795	7218
01NOV2010	3551	724	5582	2988	8570	3551	722	5609	3019	8628
04OCT2010	3721	1536	5281	6480	11761	3721	1536	5227	6372	11599
06SEP2010	4992	111	5900	1639	7538	4992	111	5937	1653	7590
Mean	4592	1191	5365	9989	15354	4354	918	5261	4749	10010
Stdev	1472	1225	446	22798	22830	1082	540	477	2258	2144

fewer nodes in the branch-and-bound tree for instances 31OCT2011, 11JUL2011, 21FEB2011, and 24JAN2011. This resulted in the B\&C CPU time reduction for these problems. In particular, for the 24JAN2011 instance, the B\&C CPU time was reduced by a factor of 31 .

Appendix H: Computational Results from the Standard Branching Strategy

In Table 15 we report computational results from the standard branching strategy that considers branching on original variables \mathbf{x} only. The computational performances are not significantly different from those that first use tender variable branching (see Table 8).

Table 15	Computational performance resulting from branching on tender variable with priority over original variable				
Instance	No. of Nodes	No. of Feasible Solutions	No. of Branching on \mathbf{x}	B\&C CPU Time (sec.)	Total CPU Time (sec.)
20FEB2012	1303	69	1307	12803	19155
23JAN2012	1111	53	1114	11220	16373
26DEC2011	1978	54	1972	18857	24787
28NOV2011	1808	74	1812	14667	19980
31 OCT 2011	1915	75	1890	25221	30041
03OCT2011	1784	46	1783	14760	19806
05SEP2011	1418	40	1417	7824	12579
08AUG2011	1404	37	1403	8732	13352
11JUL2011	2409	65	2408	18311	23506
13JUN2011	295	30	298	4372	10063
16MAY2011	1757	40	1748	12239	17391
18APR2011	1592	54	1595	9837	14856
21MAR2011	1544	60	1546	12346	17519
21FEB2011	2001	82	2002	17733	23074
24JAN2011	1925	99	1934	34151	39721
27DEC2010	1824	67	1828	16804	22527
29NOV2010	946	40	949	8271	13864
01NOV2010	2348	76	2350	18569	24174
04OCT2010	722	41	730	8544	13754
06SEP2010	1059	51	1061	8244	14067
Mean	1557	58	1557	14175	19529
Stdev	535	18	533	6897	6947

Acknowledgments

The research was partially supported by grant NSF-CMMI-0928936 and ONR-N00014210051.

References

Aardal, Karen, Arjen K Lenstra, HW Lenstra. 2002. Hard equality constrained integer knapsacks. IPCO. Springer, 350-366.

Abernathy, William J, Nicholas Baloff, John C Hershey, Sten Wandel. 1973. A three-stage manpower planning and scheduling model—a service-sector example. Operations Research 21(3) 693-711.

Ahmed, Shabbir, Mohit Tawarmalani, Nikolaos V Sahinidis. 2004. A finite branch-and-bound algorithm for two-stage stochastic integer programs. Mathematical Programming 100(2) 355-377.

Bard, Jonathan F, David P Morton, Yong Min Wang. 2007. Workforce planning at USPS mail processing and distribution centers using stochastic optimization. Annals of Operations Research 155(1) 51-78.

Bard, Jonathan F, Hadi W Purnomo. 2004. Real-time scheduling for nurses in response to demand fluctuations and personnel shortages. Proceedings of the 5th International Conference on the Practice and Theory of Automated Timetabling. 67-87.

Bard, Jonathan F, Hadi W Purnomo. 2005a. A column generation-based approach to solve the preference scheduling problem for nurses with downgrading. Socio-Economic Planning Sciences 39(3) 193-213.

Bard, Jonathan F, Hadi W Purnomo. 2005b. Hospital-wide reactive scheduling of nurses with preference considerations. IIE Transactions 37(7) 589-608.

Bard, Jonathan F, Hadi W Purnomo. 2005c. Preference scheduling for nurses using column generation. European Journal of Operational Research 164(2) 510-534.

Bard, Jonathan F, Hadi W Purnomo. 2005d. Short-term nurse scheduling in response to daily fluctuations in supply and demand. Health Care Management Science 8(4) 315-324.

Bard, Jonathan F, Hadi W Purnomo. 2007. Cyclic preference scheduling of nurses using a Lagrangian-based heuristic. Journal of Scheduling 10(1) 5-23.

Benders, Jacques F. 1962. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1) 238-252.

Birge, John R. 1982. The value of the stochastic solution in stochastic linear programs with fixed recourse. Mathematical Programming 24(1) 314-325.

Birge, John R, Francois V Louveaux. 1988. A multicut algorithm for two-stage stochastic linear programs. European Journal of Operational Research 34(3) 384-392.

Birge, John R, François V Louveaux. 1997. Introduction to Stochastic Programming. Springer.
Bodur, Merve, James Luedtke. 2014. Integrated Service System Staffing and Scheduling via Stochastic Integer Programming. www.optimization-online.org .

Burke, Edmund K, Patrick De Causmaecker, Greet Vanden Berghe, Hendrik Van Landeghem. 2004. The state of the art of nurse rostering. Journal of Scheduling 7(6) 441-499.

Burke, Edmund K, Jingpeng Li, Rong Qu. 2012. A pareto-based search methodology for multi-objective nurse scheduling. Annals of Operations Research 196(1) 91-109.

Carøe, Claus C, Jørgen Tind. 1997. A cutting-plane approach to mixed 0-1 stochastic integer programs. European Journal of Operational Research 101(2) 306-316.

Cheang, Brenda, Hao Li, Andrew Lim, Brian Rodrigues. 2003. Nurse rostering problems-a bibliographic survey. European Journal of Operational Research 151(3) 447-460.

Cornuéjols, Gérard, Leo Liberti, Giacomo Nannicini. 2011. Improved strategies for branching on general disjunctions. Mathematical Programming 130(2) 225-247.

CPLEX, IBM ILOG. 2009. V12. 1: Users manual for CPLEX. International Business Machines Corporation 46(53) 157.

Davis, Ashley, Mark S. Daskin, Sanjay Mehrotra, Jane Holl. 2013. Nurse staffing to reduce costs and enhance patient safety. To appear in Asia-Pacific Journal of Operations Research .

Easton, Fred F, Nashat Mansour. 1999. A distributed genetic algorithm for deterministic and stochastic labor scheduling problems. European Journal of Operational Research 118(3) 505-523.

Easton, Fred F, Donald F Rossin. 1996. A stochastic goal program for employee scheduling*. Decision Sciences 27(3) 541-568.

Eddelbuettel, D, R François. 2010. RInside: $\mathrm{C}++$ classes to embed R in $\mathrm{C}++$ applications. R package version 0.23.

Gade, Dinakar, Simge Küçükyavuz, Suvrajeet Sen. 2012. Decomposition algorithms with parametric gomory cuts for two-stage stochastic integer programs. Mathematical Programming 1-26.

Jaumard, Brigitte, Frédéric Semet, Tsevi Vovor. 1998. A generalized linear programming model for nurse scheduling. European Journal of Operational Research 107(1) 1-18.

Kao, Edward PC, Maurice Queyranne. 1985. Budgeting costs of nursing in a hospital. Management Science 31(5) 608-621.

Karamanov, Miroslav, Gérard Cornuéjols. 2011. Branching on general disjunctions. Mathematical Programming 128(1-2) 403-436.

Kim, Kibaek, Changhyeok Lee, Kevin O'Leary, Shannon Rosenauer, Sanjay Mehrotra. 2014. Predicting patient volumes in hospital medicine: A comparative study of different time series forecasting methods. Tech. rep., Northwestern University.

Kong, Nan, Andrew J. Schaefer, Shabbir Ahmed. 2013. Totally unimodular stochastic programs. Mathematical Programming 138(1-2) 1-13.

Kong, Nan, Andrew J Schaefer, Brady Hunsaker. 2006. Two-stage integer programs with stochastic righthand sides: a superadditive dual approach. Mathematical Programming 108(2-3) 275-296.

Laporte, Gilbert, François V Louveaux. 1993. The integer l-shaped method for stochastic integer programs with complete recourse. Operations Research Letters 13(3) 133-142.

Lenstra, Hendrik W. 1983. Integer programming with a fixed number of variables. Mathematics of Operations Research 538-548.

Louveaux, François V, Rüdiger Schultz. 2003. Stochastic integer programming. Handbooks in Operations Research and Management Science 10 213-266.

Lovász, László, Herbert E Scarf. 1992. The generalized basis reduction algorithm. Mathematics of Operations Research 17(3) 751-764.

Maenhout, Broos, Mario Vanhoucke. 2013a. Analyzing the nursing organizational structure and process from a scheduling perspective. Health Care Management Science 1-20.

Maenhout, Broos, Mario Vanhoucke. 2013b. An integrated nurse staffing and scheduling analysis for longerterm nursing staff allocation problems. Omega 41(2) 485-499.

Mahajan, Ashutosh, Theodore K Ralphs. 2009. Experiments with branching using general disjunctions. Operations Research and Cyber-Infrastructure. Springer, 101-118.

Mehrotra, Sanjay, Kuo-Ling Huang. 2013. On implementing a general disjunctive branching algorithm using lattice basis reduction for mixed integer convex programming. Tech. rep., Northwestern University.

Mehrotra, Sanjay, Zhifeng Li. 2011. Branching on hyperplane methods for mixed integer linear and convex programming using adjoint lattices. Journal of Global Optimization 49(4) 623-649.

Miller, Andrew J, Laurence A Wolsey. 2003. Tight formulations for some simple mixed integer programs and convex objective integer programs. Mathematical Programming 98(1-3) 73-88.

Nemhauser, George L, Laurence A Wolsey. 1988. Integer and Combinatorial Optimization, vol. 18. Wiley New York.

Owen, Jonathan H, Sanjay Mehrotra. 2001. Experimental results on using general disjunctions in branch-and-bound for general-integer linear programs. Computational Optimization and Applications 20(2) 159-170.

Parr, D, Jonathan M Thompson. 2007. Solving the multi-objective nurse scheduling problem with a weighted cost function. Annals of Operations Research 155(1) 279-288.

Pratt, John Winsor, Howard Raiffa, Robert Schlaifer. 1995. Introduction to Statistical Decision Theory. MIT press.

Punnakitikashem, Prattana, Jay M. Rosenberger, Deborah F. Buckley-Behan. 2008. Stochastic programming for nurse assignment. Computational Optimization and Applications 40(3) 321-349.

Punnakitikashem, Prattana, Jay M. Rosenberger, Deborah F. Buckley-Behan. 2013. A stochastic programming approach for integrated nurse staffing and assignment. IIE Transactions 45(10) 1059-1076.

Schultz, Rüdiger, Leen Stougie, Maarten H Van Der Vlerk. 1998. Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis. Mathematical Programming 83(1-3) 229252.

Sen, Suvrajeet. 2005. Algorithms for stochastic mixed-integer programming models. Handbooks in Operations Research and Management Science 12 515-558.

Sen, Suvrajeet, Julia L Higle. 2005. The C^{3} theorem and a D^{2} algorithm for large scale stochastic mixedinteger programming: set convexification. Mathematical Programming 104(1) 1-20.

Sen, Suvrajeet, Hanif D Sherali. 2006. Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming. Mathematical Programming 106(2) 203-223.

Sherali, Hanif D, Barbara MP Fraticelli. 2002. A modification of Benders' decomposition algorithm for discrete subproblems: An approach for stochastic programs with integer recourse. Journal of Global Optimization 22(1-4) 319-342.

Sherali, Hanif D, Xiaomei Zhu. 2006. On solving discrete two-stage stochastic programs having mixed-integer first-and second-stage variables. Mathematical Programming 108(2-3) 597-616.

Trukhanov, Svyatoslav, Lewis Ntaimo, Andrew Schaefer. 2010. Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. European Journal of Operational Research 206(2) 395-406.

Van Slyke, Richard M, Roger Wets. 1969. L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics 17(4) 638-663.

Venkataraman, R, MJ Brusco. 1996. An integrated analysis of nurse staffing and scheduling policies. Omega 24(1) 57-71.

Woodall, Jonathan C, Tracy Gosselin, Amy Boswell, Michael Murr, Brian T Denton. 2013. Improving patient access to chemotherapy treatment at Duke Cancer Institute. Interfaces 43(5) 449-461.

Wright, P Daniel, Kurt M Bretthauer. 2010. Strategies for addressing the nursing shortage: Coordinated decision making and workforce flexibility. Decision Sciences 41(2) 373-401.

Wright, P Daniel, Kurt M Bretthauer, Murray J Côté. 2006. Reexamining the nurse scheduling problem: Staffing ratios and nursing shortages. Decision Sciences 37(1) 39-70.

Wright, P Daniel, Stephen Mahar. 2013. Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction. Omega 41(6) 1042-1052.

Zhu, Xiaomei, Hanif D Sherali. 2007. Two-stage workforce planning under demand fluctuations and uncertainty. Journal of the Operational Research Society 60(1) 94-103.

