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Non-Euclidian Metrics  and  the Robust Stabilization of 
Systems  with  Parameter  Uncertainty 

* 

PRAMOD P. KHARGONEKAR, hfEMBER, IEEE, AND ALLEN  TANNENBAUM 

Abstract-This paper considers, from a complex  function theoretic 
point of view, certain kinds of robust synthesis problems. In particular, 
we use a certain kind of metric on the disk (the “hyperbolic” metric) 
which allows us to reduce the problem of robust stabilization of systems 
with many types of real and complex parameter variations to an easily 
solvable problem in nowEuclidian geometry. It is shown that several 
apparently different problems can be treated in a unified general 
framework. A new result on the gain margin problem for multivariable 
plants is also given. Finally, we apply our methods  to systems with real 
zero or pole variations. 

NOTATION 

G {complex numbers} 
2 {real numbers} 
pl 6 u (m} 

H 
A 

open right  half plane = {s E g:Re s > 0} 

A 
closed right half plane = {s E ,%:Re s 2 0) 
A u {m} 

D 
D 

open unit disk = {s E 8:  Is1 < 1) 
closed unit disk = {s E :E:lsl I l }  

T unit circle = {s E $?:Is1 = 1} 
f? and D are well  known to be. conformally equivalent. 

T 
INTRODUCTION 

HIS paper is devoted to solving certain kinds  of robust 
stabilization problems using techniques from complex 

analysis, and, in particular, interpolation theory. Particular cases 
of these problems have been considered by Tannenbaum [26]- 
[28]. In this paper, we continue the investigation of these robust 
design problems. 

In general terms, the problem may be formulated as follows. 
Let P&) be a parametrized family of (linear, continuous-time, 
finite-dimensional, time-invariant, proper) plants, where the 
parameter vector k takes values in some compact set K .  Then we 
want to design a controller C(s) such that for each k in K ,  the 
closed-loop system as seen in Fig. 1 is (internally) asymptotically 
stable. 

The problem stated above, in its complete generality, is  very 
hard and no general solution is known. However, for certain 
special cases of importance in practical design, one can give a 
complete algorithmic solution. For example, consider the follow- 
ing family of SISO plants: 
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Fig. 1. 

where P&) is the (fixed) nominal plant and k is a vcviable 
parameter taking values in [a, 61, b > 1 > a > 0. Then the 
above problem ‘becomes one of finding (if possible) a proper 
compensato; C(s) which stabilizes the closed-loop system for all k 
in [a, b]. (ii such a compensator exists, then by definition, C(s) 
guarantees a gain margin of at least 20 log b/a dB  for the nominal 
plant P,(s). Even though the gain margin only depends on the 
ratio b/a,  the solution C(s) depends on the interval [a, b]. 
However, given intervals [al ,  bl],  [a2, b2], such that bl/al  = b2/ 
a2, and C,(s) which stabilizes kP,(s) for all k E [al ,  b,], clearly 
(bl/b2)CI(s) stabilizes kP,(s) for all k E [a2, b21.) It turns out  that 
given the nominal  model P,(s), one can compute a number 0 such 
that this problem is solvable if and only if 

b -< p. a 

Indeed, it  is easy to see that 20 log 0 is the maximal attainable gain 
margin for the nominal plant Po@) by suitable design of C(s). 
Thus, this special problem may be viewed as the problem of 
maximization of gain margin by feedback. It will be seen that this 
new invariant fl  depends only on the zeros and poles of P,(s),in 
the open right half plane. Given a, b such that (0.2) holds, we give 
an explicit parametrization of all controllers that solve this design 
problem. The above problem (which was considered in [14]  and 
[ 151, and solved by Tannenbaum [26]) is a very special case of a 
whole class of design problems for which our techniques work. In 
point of fact, we  will argue that some of the standard robustness 
and H”-sensitivity minimization problems can be embedded in a 
unified framework and solved using essentially the same tech- 
niques. 

Our techniques are complex analytic going back to some of the 
ideas of Nevanlinna and Pick [22], [ l] .  In particular, we make 
strong use of Pick’s formulation of the Schwarz lemma in terms of 
a certain non-Euclidian (hyperbolic) metric. This approach 
enables us to treat real  as  weIl  as complex variations in  the 
same framework. We feel that this is  an important contribution of 
this paper. 

The paper is organized as follows. In Section I, we discuss 
some general results on Nevanlinna-Pick interpolation which we 
will  need  in  the subsequent sections. Most  of the results in this 
section are standard. However, we observe some important (from 
a control-theoretic point  of view) facts about boundary interpola- 
tion. Moreover, we introduce a new invariant CY,,,,, in terms of 
which  many  bounds on robust design can be expressed. In Section 
11, for SISO systems, using the concept of hyperbolic metric, we 
formulate and solve a general problem under which  most 
problems involving multiplicative uncertainty and sensitivity 
minimization can be considered. This general formulation allows 
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us to consider real as well as complex variations in the same 
framework. In Section III, we present an interesting new result on 
the multivariable analog of the gain margin maximization prob- 
lem. Essentially, the result says that for plants with no blocking 
zeros in the open right half plane, one can obtain an arbitrarily 
large gain margin by suitable design of C(s). In Section !X, we 
apply our methods for certain types of pole-zero variations. In 
Section V, we draw some general conclusions. 

I. INTERPOLATION THEORY 

It is well  known that interpolation theory plays a major role in 
certain feedback design problems. See,  for example, [6]-[SI, 
[17], [26]-[28], [33], [34], and [36], [37], and the references 
cited therein. (We should mention that interpolation theory has 
also been used in the circuit theory literature. See,  e.g., [32] and 
[lo].) In this section, we will describe those aspects of the 
classical interpolation theory which are relevant to the design 
problems treated in the subsequent sections. See [l 11 for a 
thorough treatmznt of_ interpolation theory and related subjects. 

L , e t a ; E D , b ; E D , i =  1 , 2 ; * . , q w i t h a i # a j , i # j . T h e  
classical Nevadinna-Pick interpolation problem is to f z d  (if one 
exists) an analytic functionf:D + D such thatfla,) = bi, i = 1 ,  
2, - e ,  q. As is well known [23], [21] an interpolating function f 
exists if and only  if the following Neuanlinna-Pick matrix 

abi, i = 1, 2, - . - , q. We will assume for simplicity that all the 
ai’s are distinct. By using an appropriate conformal equivalence D 
+ D, if necessary, we  may clearly assume without loss of 
generality, that all  of the ai’s are nonzero. Let (Y < &,,. Then 

N, := A-a*B>O 

is  the appropriate Nevanlinna-Pick matrix. We  now follow the 
development in [ 181 to describe all the interpolating functions fa. 
In order to do this, let us first set up some notation 

yi : = B(O)/O;,  y ‘  : = Iv, yz * .  yq].  

k t  x‘ = [xIx2 - . x4] be the (unique) vector such that 

N,x=Y. (1 .1)  

Now let 

is positive semideffite. 
Our work depends on the following slight variation of the above 

problem. Let ai E D, bi E @, i = 1 ,  2, - . , q with the ai distinct 
as above. Let a 1 0 be in W. Then we are interested in finding an 
analytic f,:D + D such that f,(a;) = ab;, i = 1, 2, * * ,  q. 
Clearly, for a = 0, one can find such a function, narnelyf, = 0. 
Therefore, by continuity, one can do this for (Y sufficiently small. 
Indeed, it  is an easy exercise to compute the maximal a, tiYmaxr 

such that for each a 5 &-, f, exists. Explicitly, &ma can  be 
computed as follows. Defiie 

Clearly, in order  for the above problem to be solvable we  must 
requirethatA - a Z B > O . I f b i = O , i =   1 , 2 ; . * , q , t h e n A -  
aZB > 0 for all CY in 2. In this case, we set : = 03. On the 
other hand if at least one of the b, # 0, then 

&ma% = 1 /c 
where A- is the largest eigenvalue of A -IB. (It is  not difficult to 
see that X,, > 0 if B # 0.) Note that &ma : = &,,(a,, bi) only 
depends on the interpolation data ai, b;, i = 1 ,  2, - . . , q. We  will 
see in Section II that &ma plays a central role in robust 
stabilization problems. 

We should also note that the assumption of the distinctness of 
the ai’s is only done for simplicity. Indeed, if one wants to 
interpolate with multiplicities, i.e., put interpolation conditions on 
the derivatives off, at the points a,, one also has a corresponding 
Nevanlinna-Pick matrix from which may  be derived. See 
[lo],  [24l, and P I .  

Zn Section ZZ, we will show that the construction of 
solutions to certain kinds of robust stabilization problems 
amounts to finding solutions to Nevanlinna-Pick interpola- 
tion problems. Therefore, we  would  now like to sketch an 
explicit parameterization of all holomorphic functions .#,(ai) = 

P(z) : = B(z)P(l/z), Q(z)  : = B ( z ) ~ ( ~ / z ) .  

Then all solutions to our interpolation problem are given by 

f a  = 
P(z)g(z) + Q(z, 
P(z) + Q (z) g (z) (1 . a  

where g(z) is any arbitrary analytic function g:D + B. Note that 
the only nontrivial computation involves solving the linear 
equations ( 1 . 1 ) .  As N, is Hermitian, this is easily done. 

Finally, consider the degenerate case, when a = &-. Then N, 
is singular. In this case, there is a’unique functionf,:D .+ D such 
that f,(ai) = ab;. This function is an “all pass,” i.e., has 
constant modulus on the unit circle T. This is precisely the case 
which occurs in the work of Zames and Francis [37]. It is easy to 
use the parameterization given above to find this unique all-pass 
function. Indeed, let I be the rank of N,, l < q. After a suitable 
reordering of the a,’s, we  may without loss of generality, assume 
that the top left I X 1 principal minor M of N, is nonsingular. 
Now consider the restricted interpolation problem of finding all 
the holomorphic functions h:D + D such that h(aj) = &,,bj, j 
= 1, 2, . * , 1. Then M is the corresponding Nevanlinna-Pick 
matrix-which  is nonsingular. Then we can find, as above, P(z), 
Q(z), P(z), Q(z) for this restricted problem such that all solutions 
h are given by 

where g(z) is an analytic function from D + D .  Now, to solve the 
original problem, we must choose g(z) such that h satisfies the rest 
of the interpolation conditions, Le., h(ai) = &-b,, i = I + 1, 1 
+ 2, * * ,  q. Therefore, g(z) must satisfy 

Since rank N, = l < q, it is a standard fact from Nevanlinna- 
Pick interpolation theory that there is a unique constant go with 
lgol = 1 such that g(z) = go is the only function which satisfies 
the above requirements. Hence, the unique solution to the 
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degenerate interpolation problem for a = is given by 

This is the required all-pass function. 
We refer the interested reader to the excellent recent paper of 

Helton [ 1 11 for a comprehensive treatment of interpolation theory 
and an extensive list of references on the above topic. 

Remark 1.3: The formula (1.2) is the standard linear fractional 
representation of all solutions to the Nevanlinna-Pick interpola- 
tion problem. This formula occurs in various different forms in 
the system theory and mathematics literature. Specifically, we 
would like to  note that such formulas arise in certain types of 
spectral estimation problems in signal processing. In these 
problems, orthogonal polynomials on the unit circle and Toeplitz 
matrices play a major role. (See [9] and the references cited 
therein.) It is interesting to note that Delsarte, Denin, and Kamp 
[4] show that a general Nevanlinna-Pick matrix can be trans- 
formed into a Toeplitz m_atriz  by certain mamx operations. Thus, 
it seems, that P,   Q ,  P ,  Q are, in some sense, “orthogonal 
polynomials.” We feel that the various computational techniques 
developed in the signal processing literature to deal with Toeplitz 
matrices may prove very useful in computation aspects of the 
Nevanlinna-Pick interpolation problems. 

Finally, it  will be seen that  we  need to consider certain kinds of 
interpolation problems with some of the points lying on the 
boundary T of the unit disk D. Contrary to the seemingly popular 
impression, for the problems which arise in robust stabilization 
theory, boundary interpolation is easily treated. Here we extend 
our notation of 13- to cover boundary interpolation. Let aj E D ,  
j = 1 ; ~ ~ , I , a ~ + , E T ( r = 1 ; ~ ~ , q - I ) , a n d b i € ~ ~ , i = 1 ,  - * , q. Given a real-number CY 2 0, we are required to find an 
analytic function f,:D + D such that fa(ai)  = abj for i = 1, * . - , 
q. Let a1 be the for the “interior” interpolation data ai, bj,  j 
= 1,  2, - . - ,  1. Define 

for 

j=1 ,  - - - ,  I and i = l ,  * - - ,  q. (1.4) 

We  can  now state the geneLal theorem. 
Theorem 1.5: Let ai in D and bi  in #e, i = 1, 2, - * ,  q be  as 

above. Then there exists an analytic function  f,:D .+ D such 
that f,(ai) = abi if and only if a < am(aj, bj). 

Proof: Let h,:D -+ D be an analytic function such that 
h,(aj) = abj, j = 1, 2, . . e ,  1. This exists since CY < &kX. Then 
from (1.2) there exist rational-functions, completely determined 
by the interpolation data, P,  P ,  Q, Q such that 

where g:D -+ D is an arbitrary holomorphic function. We need, 
therefore, to find g such that h,(ac+,) = b/+,, r = 1, * * ,  q - 1. 
But from (1.6) we have 

g= 
Q - Ph, 
- P +  Qh, 

and, therefore, ha(a/+r) = br+,, r = 1, -.., q - l if  and  only if 

r = 1, . . * ,  q - 1. Consequently, we  need g : D  -+ D such that 
g(a[+,) = yr ,  a/+, E T,  yr E D,  r = 1, 0 .  e ,  q - 1. Such a g 
always exists. Indeed,  for E > 0, set : = (121 < 1 + E } .  
Then computing the corresponding Nevanlinna-Pick matrix for 
functions g:DI,, -+ D, it is trivial to check that for E sufficiently 

small, with the given interpolation data, the matrix will be positive 
definite. 

Remark I. 7: An identical result holds if we consider interpola- 
tion with multiplicities, Le., we impose interpolation conditions 
on  the function h, and its derivatives. (This fact was first seen by 
the authors, and later verified in a personal communication with J. 
Ball.) Indeed, this is an immediate corollary of the generalized 
Nevanlinna-Pick matrices for interpolation with multiplicities 
due to Helton [lo], Rosenblum and  Rovnyak [24]. To avoid a 
proliferation of multiindexes, we consider the case q = 2. Then 
we are intezested in the following problem. Find an analytic 
function $:D -+ D such that $(Xl) = wI1 ,  $‘(Al) = w12, $(A2) = 
wZ1, $’(X2) = wZ2. The main point of Theorem 1.7 is that this 
problem is always solvable if XI ,  A2, E T (=boundary of the 
disk). Note we are assuming (and this assumption is crucial) that 
wji E D,  i = 1, 2. Indeed if  we  mimic the proof of Theorem 1.7, 
and consider the functions $: Dl + ~ - D, as E --* 0 the Helton [ 101 
generalization of the Nevanlinna-Pick matrix will approach 

[ 
03 fiIIW12 ;& ”1p ] 

fi12w11 00 
ff &a 03 w 2 2  w 2  1 

AI6 0 . bo22w21, w 

where a : = (1 - f i l  I I V ~ ~ ) / (  1 - xIX2) .  ‘ 

In other words for E small, one gets a positive definite matrix. The 
same argument (using the full Helton matrix) shows that Remark 
1.7 extends for interpolation with multiplicities as required. 

n. ROBUST STABILIZATION AND OTHER PROBLEMS 

In this section, we will consider certain types of robust 
stabilization and related problems which were alluded to in the 
Introduction. To motivate our approach, let us begin by reviewing 
precisely how the problem of internal stabilization by feedback 
amounts to an interpolation problem. Let Po(s) be a fixed SISO 
nominal plant with closed right half plane zeros zI, 2 2 ,  . e ,  zm, 
and closed right half plane poles p I ,  p2,  . . , p n .  (Note that some 
of the zi’s will be 03 since we are dealing with a strictly proper 
plant.) For a given compensator C(s) define the sensitivity 
function 

S(s)=(l +P,(s)C(s))-‘. (2.1) 

As is well known (see, e.g., [31]) in order  for the closed-loop 
system to be internally asymptotically stable, it is necessary and 
sufficient that S(s) have the following properties: 

i) S(s) is  real  rational  and  analytic in H 

ii)  the  zeros of S(s) contain bI, ,p2, . . * , pn) 
multiplicities  included;  and 

iii) the  zeros  of S(s) - 1 contain { z l ,  zz, . . a ,  z,) 
multiplicities  included. (2.2) 

Given  any such S(s), one can find the corresponding (proper) 
compensator C(s) using (2.1). 

Let us begin  by considering the problem of internal stabilization 
for plants with parameter uncertainty as discussed in the Introduc- 
tion. Consider the family of SISO plants Pk(s) = kPo(s) as given 
by (0.1) where Po($ is the nominal model  and k belongs to the 
interval [a,   b] ,  b > 1 > a > 0. Let  C(s) be a proper 
compensator. We can  now state the following. 

Lemma 2.3: The  feedback system (Fig. I )  is internally 
asymptotically stable for  all k  in [a, b] if and only if the 
sensitivity function S(s) satisfies (2.2) and 

a-1 b-  1 
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Proof: Clearly (2.2) must hold. For internal stability, we 
must have 

I+kP,(s)C(s)#O, for a11 s in A. 

From the definition of S(s), and since 1 E [a, b ] ,  we have that 
S(s) is not contained in ( -  03, a/(a - I)] U [b/(b - l), 03). 0 

Gain Margin Problem 2.4: Lemma 2.3 shows that the gain 
margin problem of the lntroduction is equivalent to the following 
interpolation problem. For given P&) and interval [a, b ] ,  0 < a 
< 1 < 6, find a real rational function S(s) such that 

c /  

ii) S(s) satisfies (2.2). 

Next, let us consider the problem of sensitivity minimization of 
Zames [34], Zames and Francis [37], and Francis and Zames [8]. 
First we will consider the unweighted sensitivity function and 
then, a bit later, consider the weighted sensitivity function. Let 
Po@) be the fixed SISO plant. Then we are required to find 

inf {sup IS(s)l : C(s) internally  stabilizes P,(s)}. 
s € r i  

We can reformulate this problem in the following way. 

such that there exists 
Minimal Sensitivity Problem 2.5: Let r > 0 be a real number 

S(s) : A+D, := {s in IC : Isl<r) 

satisfying (2.2).  Clearly, the Francis-Zames problem stated 
above is to find the infimum r,, of all such real numbers r .  

Next  we  would like to consider a kind  of parameter variation 
which  is  motivated by the work of Doyle, Wall, and Stein [SI and 
Lehtomaki [ 191. These authors consider various types of uncer- 
tainties in modeling dynamics. Their work shows that in several 
cases these uncertainties are equivalent to complex uncertainties 
in the multiplicative factor. We will therefore consider the 
following family of plants. Let r > 0 be given. Define 

K, : =  { k  : k=( l+s) - '  where s E and I s l ~ r } .  (2.6) 

Now consider the family of plants 

where k belongs to K,, and P,(s) is the nominal plant. (Doyle, 
Wall, and Stein [5] consider other types of modeling uncertainties 
as well. Each of these cases can also be translated into 
interpolation problems with different data and interpolating 
functions.) For this family of plants we consider the correspond- 
ing robust stabilization problem. Using the same method as in 
Lemma 2.3, it is easy to see that this problem can be formulated as 
follows. 

Complex Parameter Variations 2.7: Let DL, : = {s E G: ( S I  
1 l / r } ,  and Dl,r = G\D,'ir = (s E C:lsl < l / r } .  Then for 
given Po@) and r > 0 ,  find 

i) S(s) : I?+D1/,, and 
ii) S(s) satisfies (2.2). 

We will  now solve problems 2.4, 2.5, and 2.7 (and their 
weighted analogs) in a unified way. Let us first note  that the 
conditions 2.4-i), 2.5-i). and 2.7-i) require the sensitivity function 
S(s) to have range in a domain which is simply connected and not 
all of C .  But  by the Riemann mapping theorem [25] these domains 
are all conformally equivalent to the unit disk D. In  point of fact, 
in all these cases it is trivial to write explicit conformal 
equivalences between these domains and D which we will do 
shortly. But first, let us abstract the problem. 

General Problem 2.8: Let G 5 C be given simply connected 
domain containing 0, 1. Find ($possible) a rational analytic 
function 

S(S) : A+G 

satisfying (2.2). 
[It is clear that the general problem 2.8 includes problems 2.5, 

2.6, and 2.7, and other problems such as gain-phase margin, etc., 
as special cases. As far as sensitivity optimization is concerned, 
2.8 includes the unweighted sensitivity minimization problem but 
does not include the weighted sensitivity minimization problem. 
For the weighted case, see [37], [8 ] ,  and (2.19).] 

We will  now give a simple procedure to solve this general 
problem which  will lead to explicit solutions of problems 2.4, 2.5, 
and 2.7. In order to do this, we will have to describe, briefly, a 
certain notion from complex function theory, namely the hyper- 
bolic or Poincare metric. For complete details, see the classic 
work of Nevanlinna [22]. We should note that in Helton [ 1 11 non- 
Euclidian metrics and their relations to problems in system @mry 
have been discussed. 

Hyperbolic Metrics 2.9: It is a classical fact that Nevanlinr,a- 
Pick interpolation is a generalization of the Schwarz lemma, and 
that the Schwarz lemma is a statement about the relationship 
between the properties of analyticity and a certain non-Euclidian 
metric on the disk called hyperbolic or Poincure metric. Smce 
this notion  will  be so important to us in the sequel we  would like to 
briefly review some of the basic properties of this metric. We 
follow the treatment of Ahlfors [l] to which  we refer the reader 
for proofs of all the facts which we state below. 

Let zl ,   z2  be in D. Define 

(2.10) 

The quantity 6(zl, z2) is a conformal invariant in the following 
sense. Given y : D + D is a conformal equivalence, 6(zl ,  z2) = 
6(y(zl), (y(zz)). Moreover, it  is easy to check that 6(zl, zz) < 1 .  
Letting zl approach z2, we get a metric on D, ( (dz ( ) / ( l  - 1 ~ 1 ~ ) .  
The hyperbolic metric on D is given infinitesimally by (21dz I)/( 1 
- 1 . ~ 1 ~ ) .  Explicitly, the hyperbolic distance between two points 
z I ,  z2 in D is given by 

(2.11) 

In particular, for r > 0,  

dD(O, r)=log - . 1 +r 
1 -r 

Next, let G E C U { 03) be a simply connected domain with at 
least two boundary points.  Then by the Riemann mapping 
theorem there exists X:G -+ D a conformal equivalence. We 
define the hyperbolic distance on G by 

(2.12) 

It is a fact that this definition is independent of the choice of 
conformal equivalence X .  (In [22], there are some variational 
formulas for dG. There  are also methods of finding this hyperbolic 
distance using a Green's function and the kernel functions for the 
domain G.) 

The key fact which  we  need  is the following version of the 
Schwarz lemma. See [ I ]  for a proof. 

Theorem 2.13: Let G I ,  G2 C G U {a> be simply connected 
domains with  at  least two boundary points.  Let f: GI + G2 be 
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Moreover, one has equality i f  and only i f f  is a conformal 
equivalence. 

This’result will be the key in our treatment of robust 
stabilization. Before stating our solutions to the general problem 
2.8, we  need to set up some notation. Let P,(s)-be the nominal 
p l q t  as above with zi in H the zeros and p j  in H the poles. Let  
r:H - D be a fixed conformal equivalence. Let ti : = cp(zi) and 
Gj : = r(pj). In the notation of Section I, define the interpolation 
data 

ai=t i ,  i = l ,  2 ,  . . a ,  m 

aj+m=$j, j = 1 ,  2, . - a ,  n 

b i = l ,   i = l ,  2, . e - ,  m 

bj+,,,=O, j = 1 ,  2, ..., n. 
As in (1.4) coniider now the a- defined relative to this 
interpolation data. Note that if P,(s) has at least one open right 
half plane zero and one open right half pole, then a, = &,x (see 
Section I). Moreover, since Po($ has a zero at 03, a,  5 1 .  
Indeed, if there is at least one zero of P&) in the open right half 
plane, then a, becomes independent of the zeros and poles of 
P&) on thejw-axis and 03. If P,(s) has no zeros in the open right 
half plane, then a,  = 1 .  We can now state the following key 
result. 

Theorem 2.14: The general problem 2.8 is solvable if and 
only i f  

Proof: Since G 5 8 is a simply connected domain, we can 
find a conformal equivalence 0:G --f D such that e(0) = 0. Now 
consider the following commutative diagram 

f7-G S 

where s: = 0 0 S 0 + - I .  clearly, we can find S satisfying (2.2) if 
and only  if  we can find S such that 

s($i)=o, i = l ,  2, . - . ,  n and 

By Theorem 1.5 and the definition (1.4) of a,,, it follows that we 
can find such an S if and only  if 

le(1)I <am,, 

or equivalently, 

dD(0, e(l))<dD(O, %ax). 

(Note-that the inequality must be strict. Indeed, suppose we could 
find S : 8  --f D such that (2.15) holds with 18(1)1 = a,,._B_ut 
S(@ is compact, and therefore there exists E > 0 such that S(D) 
G Dlzr := {lzl < 1 - €},Therefore, wecan find-anr > 1 such 
that r S : 8  --t D. Clearly, rS has zeros at the ti’s, rS($,) = rO(l), 
and Id(1)l > a,,,,. This contradicts the definition of a,.) Thus, 
by Theorem 2.13 we can find S : H  -+ G with the required 

properties if and only if 

Remark: Theorem 2.14 essentially solves problems 2.4,  2.5, 
and 2.7. Indeed, we see that solving these problems can be 
divided into two parts. The first part requires computation of amx 
which depends only on the zeros and poles of the nominal plant  in 
the open right half plane when the plant has at least one open right 
half plane zero, and is 1 otherwise. 

The second part of the solution of these problems is the 
computation of &(O, 1). Certainly, this depends on the choice of 
G which in turn depends on the kind of uncertainty in the given 
problem. Given the domahi, G, &(O, 1) can be computed as 
explained in 2.9. 

We shall now give explicit solutions to the above three 
problems. 

2.4’ Solution to 2.4: We need to find 

a conformal equivalence, such that e(0) = 0. Following standard 
procedures in conformal mapping theory (see, e.g., [26]), we find 

1 -  [(l-(y).>/(l-($).>] 

1 +  [(1-(y)s)/(1-(3s)]1’z* 
e (SI = 

It is easy to compute that 

Theorem 2.14 implies that the gain margin problem is solvable if 
and only  if 

which can be rewritten as 

1 - J a / b  
1 + & e r n  

or equivalently, 

;<( e)z =: p,. (2.17) 

From this expression, ceitain interesting control theoretic implica- 
tions can be drawn. For example, as a,  approaches 1, the 
maximal attainable gain margin goes to 03. If the nominal plant 
Po(s) has no zeros in the open right half plane, i.e., we have a 
minimum phase plant, then it is immediate that a,  = 1 .  Thus, 
for such plants given b > 1 > a > 0, one can always solve 2.4. 
In Section 111 we shall prove a similar result for multivariable 
plants. 

On the other hand as a, approaches zero, the maximal b/a  
approaches 1 .  In Theorem 2.21, we shall give a very simple 
useful upper bound for am,. 

2.5‘ Solution to 2.5: In this case we need to find e:D, + D 
such that e(0) = 0. Trivially e(s) = d r ,  and 

dD,(O, l)=dD(O, l/r)=log - 
1 + I / r  
1 - l / r  
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Applying Theorem 2.14, problem 2.5 is solvable if and only if 

1 + l/r 1 + f f m x  

1 - l/r 1 -a, log -- - dD,(O, 1) < dD(0, amx) = log - . 

That is, 

r > 1 /ama. 

Therefore, by definition, the minimal sensitivity 

inf sup IS(s)l= l/am (2.18) 
c S E A  

where the infi;num is taken over all internally stabilizing 
compensators. 

This result reveals a basic connection between the sensitivity 
minimization problem and the gain margin problem. From this 
new general viewpoint, it is clear that Tannenbaum [26] and 
Zames and Francis [37] have solved two aspects of the same 
general problem. 

2.7' Solution to  2.7: In this case 

G=DI/,= { S  E : Isl<l/r}. 

Thus, this is precisely the Zames-Francis [37] problem and for 
each r < amax, the problem is solvable. 

Theorem 2.14 gives a necessary and sufficient condition for the 
solvability of the-general problem 2.8. Moreover, the proof of 
Theorem 2.14 shows that the construction of a stabilizing 
compensator C(s) to solve problem 2.8 amounts to an interpola- 
tion problem from the unit disk to itself. Since in Section I, 
following classical interpolation theory, we  have reviewed a 
parameterization of all solutions to any given interpolation prob- 
lem, we can therefore explicitly write down all solutions to 2.8. 
For the gain margin problem, see [26] for explicit examples. 

It is not difficult to incorporate the question of weighted 
sensitivity minimization into our general framework. This is the 
general problem considered by Zames and Francis [37]. Specifi- 
cally, as above, let P&) be the given nominal plant transfer 
function. Let W(s) be a proper stable rational function with no 
zeros in r% Given a compensator C(s), define the weighted 
sensitivity function to be 

T(s) : = W(s)( 1 + P&) c (s)) - I .  

Then the problem is to find 

p( W )  : = inf {sup 1 T(s)l : C(s) is a stabilizing controller}. 
s E H  

Zames and Francis [37] showed that a compensator C(s) 
' internally stabilizes the plant Po(s) if and only if 

i) ~ ( s )  is  analytic  in r l ;  

ii)  the  zeros of T(s) contain  the  set 
{p,: i = l ,  2, * a * ,  T I } ;  a d  

iii) T(zi) = W(z;), i= 1, 2, - * a ,  m, multiplicities  included. 

In view of this result, we can define the following "interpola- 
tion  data" following the notation of Section 11: 

a;=,$;, i = l ,  2, e - . ,  m 

aj+,,,=1Ci., j =  1, 2, a * - ,  n 

bi=W(zj) ,  i = l ,  2, e . . ,  m 

bj+m=O, j = l ,  2, - . e ,  n. 

(Recall that l;, 1Cj are the images in D via cp:A + D of the zeros 

and poles of Po(s) in the closed right half plane.) Let am,(W) 
denote the a, defined relative to this interpolation data (see (1.4) 
above). Then as in the case of unweighted sensitivity minimiza- 
tion, it  is easy to see that 

p ( W ) = l / a , ( W ) .  (2.19) 

Remark 2.20: In the work of Doyle, Wall, Stein [5], Kimura 
[ 171, Lehtomaki [ 191, several synthesis problems arise which are 
very similar to the problems considered above. The analysis tests 
for robust stability lead to the question of finding holomo'rphic 
functions f : H  + D, subject to certain interpolation conditions 
which arise from the internal stability constraint. Each of these 
problems can be easily treated using the interpolation theory 
discussed in Section I. Indeed, our observation on boundary 
interpolation (see Theorem 1.5) allows us in certain cases, to 
extend previous results, and to consider poles and zeros on the j w -  
axis and 00. For example, using our techniques, we can relax the 
assumption (A2 in Section IV) of [ 171 on the relative degree of the 
uncertainty band function by multiple interpolation at 03. 

It is  of course useful to have an explicit formula for a,. Using 
the Nevanlinna-Pick matrix, or the theory of  Walsh [30, pp. 290- 
2911, one can write down an exact expression for amxx which is 
quite complicated. However, following some ideas of Nevanlinna 
[22, p. 521, it is easy to write down some very useful upper 
bounds for am. The exact result is the following. 

Theorem 2.21:  Let f : D  + D  be an analytic function such 
thatfla,) = 0,  i = 1 ,  a ,  k ,  f (a j+k)  = a, j = 1, ., 1. Define 

and 

Then 

la1 smin  (h, p ) .  

Proof: First via the conformal equivalence y : D  + D 
defined by 

y(z) := - 1-CiZ 

which sends 0 to a and (Y to 0, it is clearly enough to prove that I C Y (  
5 h (to show la1 5 u,  we merely consider y 0 f and apply the 
previous inequality). Moreover, via the equivalence 

Z - a  

ei(z) : =- 
a;- z 
1 - criz 

which sends 0 to ai (for each i = 1, - . - , k) and such that 

we are clearly reduced to proving the following assertion. Given 
gi:D + D analytic such that g(0) = 0 and gi(bjj) = a, j = 1 ,  

e . . ,  I, then 
I 

( J u s t t a k e g , = f o e i , i =  l;..,k.)Sincethiswillbetruefor 
each i, we  will be done. But the proof of this assertion is trivial 
using the following argument of Nevadinna [22, p. 521. Indeed 
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define 

Clearly, ui is analytic in D, and sup l z l = l  lui(z)( I 1 .  Therefore, 
by the maximum modulus principle 1 ui(z) I 5 1 for all z E D. For 
z = 0, we get then 

I 

IaI sn IPjiI 
j =  1 

# 

as required. 0 
Remark 2.22: Theorem 2.21 gives us a nice and useful upper 

bound on am=. From this upper bound, we see that generally as 
the number of right half plane poles or zeros of P,(s) increases, 
CY, decreases, and hence the minimal sensitivity increases, and 
the maximal obtainable gain margin decreases. This bound 
provides a justification for some of the classical observations of 
Horowitz [ 131. 

We conclude this section with some illustrative examples. 
Examples 2.23: i) Consider a nominal model Po(s) which has 

one open right half plane zero at z,, and one open right half plane 
pole at p , .  In this case, it is easy to compute that 

zo - P o  amax= - 
lZO+P0l. 

Note from this formula that as the distance between z,  and p ,  
increases, a,, approaches 1. For  the gain margin problem, this 
means  that as Iz, - p ,  I + 03, the maximal obtainable gain 
margin goes to 03 as well; and similarly for the minimal sensitivity 
problem, the minimal sensitivity goes to 1 .  Conversely, as I z,  - 
pol + 0, the maximal gain margin goes to 0 (dB),  and the minimal 
sensitivity approaches 03. [See formulas (2.17) and (2.18).] 

ii) In [26] for the nominal plant Po($ = (s - I)(s - 2)/(s - 
3)(s - 4), CY- was computed to be 0.027. It is interesting to 
compute a corresponding “am,” in case we restrict our internally 
stabilizing compensators to be stable themselves. A procedure for 
doing this was given in [28] where a generalization of the famous 
result of Youla, Bongiorno, and Lu [31] was derived for 
variations in the gain factor. (Moreover, using an argument 
involving the logarithm it is possible to give an explanation of the 
parity interlacing property of  that paper.) The value of “am,” 
taken over stable compensators turned out to be 0.0146. 

III. REMARKS ON THE MULTIVARIABLE CASE 

In this section, we present a simple result on the multivariable 
version of the gain margin problem. Let us consider the family of 
p X m real rational proper transfer matrices 

P(s)=kP,(s), k E [a, b],  b > l > a > O .  

We want to find a real rational compensator transfer matrix C(s) 
such that the feedback system shown in Fig. 1 is internally 
asymptotically stable for all k in [ a ,   b ] .  Let R denote the ring of 
stable proper rational functions. It is well known that R is a 
Euclidian domain (see [20] and [16]). Let P,(s) = N(s)D-’(s) be 
a coprime factorization of Po(s), where N(s), D(s) have their 
entries in R .  (See [29].) Let a(s) be the g.c.d. (over R )  of all 
entries of N(s). Then the  zeros of a(s) in H a r e  the blocking zeros 
of P&) in the open right half plane. We now can state the 

Theorem 3.1: Suppose P,(s) has no blocking zeros in the 
open right halfplane. Suppose that the roots of det D(s) in the 
open right half plane have multiplicity no greater than one. 
Then given any b > 1 > a > 0, there exists a compensator 
C(s) such  that the closed-loop system is  internally asymptoti- 
cally stable for  each k in [a,  b]. 

following. 

Proof: Let us consider the Smith-McMillan form of Po@) 
over R.  As  is well known, there exist unimodular matrices (I, V 
over R such that 

where 1 is the nominal rank of Po,  0 represents the zero matrix of 
appropriate size, nj divides n,+,, di divides d j - ] .  It is a standard 
fact that nl(s) is the g.c.d. of all the entries of N(s). Hence, by our 
assumption on blocking zeros of P,(s), nl(s) has no zeros in the 
open right half plane. Further, 

det D(s) = dld2 . * dl. 

By our assumption on the open right half plane zeros of det D(s), 
and  the divisibility properties of dj’s, it follows that for i 2 2, 
d;(s) has no roots in the open right half plane. Consequently, for 
each i = 1, *.., I 

P;(s) : = ni(s)/dj(s) 

has either no zeros in the open right half plane or no poles in the 
open right half plane. It follows from Section II that there exist 
c&), i = 1,  2, - - a ,  1 such that cj(s) internally stabilizes kPj(s) 
fo reachk in [a ,  b ] ,  i = 1 ,  2, 1. Nowdefiie 

It is now easy to check that C(s) internally stabilizes kP,(s) for 
each k in [a ,  b]. 0 

The above result shows that if the nominal plant Po(s) has no 
blocking zeros and has distinct right half plane poles, then there is 
no upper bound on the achievable gain margin by suitable design 
of stabilizing compensators. (At this point, we do not  know  if  it is 
possible to remove the hypothesis of distinct right half plane poles 
in Theorem 3.1. It is easy to see, however, that our proof goes 
over under the slightly weaker hypothesis that the denominator 
matrix D(s) has only one nontrivial invariant factor over the ring 
R.  Of course, the condition of distinct poles holds generically.) 
This result is similar to the known results on systems with  no right 
half plane transmission zeros. Zames [34], Zames and Bensous- 
san [35], Francis and Zames [8], and Helton [12] show that for 
systems with no right half plane transmission zeros, perfect 
tracking is possible. 

IV. POLE-ZERO VARIATIONS 

It is also possible to consider robust stabilization problems 
involving variations in poles and zeros in our general framework. 
As an illustration of our methods, we shall treat in this section the 
case of a variations of a real pole. (Analogous considerations 
apply in case of variations of a real zero.) 

Consider the following family of plants: 

where a E [a, - a, a, + Pla, ,!3 > 0, and 

P,(s) : = P,,(s) =- 
s -a ,  

is the nominal plant. In this case, we are required to fiid a proper 
compensator C(s) such that 

1 +C(s) -#O P ( S )  

s - a  

for all s E a, a E [a,  - CY, a, + 01, and, of course, we require 
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that there are no unstable pole-zero cancellations between P&) 
and C(s). 

Now clearly we can rewrite (4.1) as 

( S - ~ , ) + ~ ~ s ) C ( s ) = ( s - ~ , ) ( l + P , ( s ) C ( s ) )  B [ -a ,  PI 
(4.2) 

. for all s E A. Define 

Then it is easy to see that we are required to find a real rational 
holomorphic function 

T(s) : A + Q \ { ( - m ,  - l /a]  u [1/B, m)} (4.4) 

such that 

1 
i) T(zi)=- zi - a, 

m 

ii) T(pj)=O j = 1 ,  ... , n  (4.5) 

where z l ,  2 2 ,  * e ,  z,,, are $e zeros of Po($ in A, and p l ,  * . , pn 
are the poles of P(s) in H (multiplicities included). 

From our discussion in Section II it is clear that  in order to solve 
this problem, we can choose conforinal equivalences 

(01 : G\ { ( -m,  - l/a] u [up ,  m))-D 

lpz : A-D 

and  via pl,  p2 fierive a standard Nevanlinna-Pick interpolation 
problem from D + D which  can  be solved using  the techniques 
described in Section I.  Since the images pl(l/(zi - a,)) i = 1, 

m a - ,  m depend on the given uncertainty (i.e.. a,  p), the 
relationship of the “maximal” a, 0 to the poles and zeros of the 
plant may be quite complicated. However, it is possible to check 
the solvability in  any given instance and compute a compensator 
C(s) (if one exists).. 

We now conclude this section with some illustrative examples. 
Exampk  4.6: i) L e t  

(s- 1) 1 
P&) : = - - 

(s-a) (s+ 1) 

where a E [a, - a, a, + 61. a, > 1, be a family of plants with a 
zero at 1 ,  and an uncertain pole Q. We wish  to compute the 
maximal interval [a, - a, a, + 01 for which it is  possible to find 
a proper compensator C(s) which satisfies (4.1). 

Using the interpolating conditions (4.4), (4.5i),  (4.5ii), and the 
conformal equivalences c p I ,  ( 0 2  it  is easy to show  that for all CY, 0 
> 0 such that 1 [a,  - a,  a, + 01, one can find  an internally 
stabilizing compensator C(s). This means of course that we can 
internally stabilize the uncertain family P&) on any interval 
around the nominal a,, as long as  there are no unstable pole-zero 
cancellations. 

ii) In this example, we  would like to consider some of  the 
complications that  can arise if one considers simultaneous pole- 
zero variations. In point of fact, we would like to  show  that  even  if 
one has ‘‘small’’ simultaneous pole-zero variations in  which  an 
open right  half plane pole circles around an open right  half  plane 
zero, or vice versa, one may  not  be able to find an internally 
stabilizing compensator. The argument which follows below  is 
taken from Tannenbaum [27, pp. 136-1371 but because of its 
obvious relevance to our present discussion, we  wish to reproduce 
it in part. 

Consider a family of proper plants Pk(s) continuously parame- 
terized by a compact set K (i.e., k E K ) ,  and with no unstable 

pole-zero cancellations. Set 

where Pi&) E 3 [s] for each k E K ,  i = 1 ,  2. Then to fmd an 
internally stabilizing compensator C(s) for this family (as de- 
scribed in the Introduction), we are required in particular to find 
fixed polynomials Cl(s), C2(s) such that 

Plk(S)CI 6) + Pz!f(s)C2(s) f 0 (4.7) 

for all s E H ,  k E K .  

that 
Now suppose that there exist points zl, z2 E H (zl # z2) such 

a) Plk(z1) = Plk(z2) = O  for all k E K; 

b) Pa(zI)  circles  around 0 E c as k varies in K; 

c) P~k(z2) is a fixed  nonzero  constant for all k E K .  
Under these hypothesis, we claim that (4.7) has no solution 

even if  we require CI and C2 to be only continuous. To see this, 
suppose to the contrary that  we could find complex continuous 
functions CI, C, such that 

has no right  half plane zeros. Note that F , ( z l )  = C2(z1)P2k(zI) # 
0 (since otherwise z1 would be a right half  plane zero), and hence 
at z I ,  the function Fk circles around 0 as k varies in K .  Similarly, 
Fk(z2) = C2(z2)P2k(z2) is a fixed nonzero constant for all k E K .  
By continuity, since zl ,  z2 E H ,  and the line connecting zl and z2 
lies in H ,  for some point  on this line Fk must vanish, contradicting 
our supposition that Fk had  no right half  plane zeros. Indeed, to 
see this, just note  that as we move along the line from z1  to z2,  the 
closed loop which Fk(zl)  describes about the origin as k vanes in 
K is deformed to  the  point Fk(z2) # 0, and consequently must 
cross the origin. 

In [27], this failure of the possibility of robust stabilization in 
such cases of simultaneous pole-zero variations in the plant  is 
related to some results of [3] on the topology  of rational transfer 
functions. 

V. CONCLUSIONS 

In this paper we have used certain classical techniques from 
complex function theory to solve problems in robust control 
system synthesis. One of our main contributions is to show  that 
real parameter uncertainties, complex parameter uncertainties 
(arising from errors in modeling dynamics), and sensitivity 
minimization problems are essentially the same. We were able to 
decompose these problems into two parts: calculation of the 
invariant a,,, which depends on right-half plane poles and zeros 
of the  nominal plant and calculation of the hyperbolic distance. 
The first part can  be easily approached via the Nevanlinna-Pick 
method. The second part depends crucially on the kind of 
uncertainty  being considered. For the kinds of uncertainty we 
considered in this paper, this computation of the hyperbolic 
distance is relatively straightforward. It is possible to imagine 
parameter uncertainties which  can  lead to regions G in the general 
problem 2.8 which can be quite complicated. In this case, one 
may  be interested in obtaining upper and lower bounds  on &(O, 
1).  For getting these bounds the following fact is often useful. If 
GI C G2 5 Q are simply connected regions containing 0 and 1 ,  
then 

dC,(O, 1) 5 d C l  (0, 1). 

Thus, by finding suitable regions inside and outside G such as 
disks, one may be able to get  good upper and lower bounds on the 
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hyperbolic distance. It remains to be seen whether classical tools [24] 
such as Green’s function are useful  in this regard. 

In the multivariable case, we have given a result which is 
generically applicable (since generic multivariable systems do not I251 

have blocking zeros). However, a full investigation of the #.x’ 1261 
multivariable problem is still an open area for future research. 

Finally, one would like to be able to consider simultaneous [271 
variations in poles and zeros of the plant. This appears to be  a ;/ 1281 
difficult problem which we are currently investigating. 
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