
EventSummarizer: A tool for summarizing large event
sequences

[Demo Paper]

Jerry Kiernan
IBM Almaden
San Jose,CA

jkiernan@us.ibm.com

Evimaria Terzi
IBM Almaden
San Jose, CA

eterzi@us.ibm.com

ABSTRACT
We present EventSummarizer - a tool for extracting com-
prehensive summaries from large event sequences. EventSum-
marizer takes as input a sequence with events of differ-
ent types that occur during an observation period, and cre-
ates a partitioning of this time period into contiguous non-
overlapping intervals such that each interval can be described
by a simple model. Within each interval local associations
between events of different types are reported. EventSum-
marizer runs on top of any Relational DataBase Manage-
ment System (RDBMS), on tables with a timestamp at-
tribute. Our system is parameter free and has a visual inter-
face that provides the user with a global view of the input
sequence via the segmentation of the timeline. The easy-
to-use interface provides the user with the option to further
examine the activity and associations of event types within
each segment.

1. INTRODUCTION
Monitoring the activities of systems and users produces large
event sequences, i.e., logs where each event has an associated
time of occurrence. Network traffic and activity logs are
examples of large event sequences. Summarization of such
data is largely motivated by administrators’ pressing need
to understand the usage and activity of their systems over
time.

The objective of our demonstration is to present EventSum-
marizer, a flexible tool that showcases the event summa-
rization algorithms that we developed in [3] and demon-
strates their effectiveness on real data sets and in different
usage scenarios. Thus, this demo paper should be viewed as
an extension of our work in [3]. The underpinnings of the
methods used in EventSummarizer are described in [3].
Due to space limitations here we only give a high-level de-
scription of these methods and mostly focus on the descrip-
tion of our running prototype.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

To the best of our knowledge, our methodology developed
in [3] is the first to address the need for short and compre-
hensive summaries that give a global overview of the his-
tory of events, as well as local associations among events of
different types. Previous data-mining methods for event se-
quences mostly focus on finding recurring local structures,
e.g., episodes (see for example [1, 2, 4, 5, 7]). Moreover,
such data-mining algorithms usually output too many pat-
terns which may be overwhelming for data analysts. Our
method summarizes event sequences instead of focusing on
pattern extraction. These summaries exhibit the following
characteristics:

• Brevity and accuracy: The summaries are short
and accurately describe the input data. This is achieved
by using the Minimum Description Length (MDL) prin-
ciple ([6]) that seeks a balance between summaries’
length and descriptions’ accuracy. Using MDL in its
core, EventSummarizer becomes parameter free and
thus no extra tuning is required in order to get infor-
mative and useful results.

• Global data description: The summaries give an
indication of the global structure of the event sequence
and its evolution through time. This is achieved by
using a segmentation model that provides a high-level
view of the sequence by identifying intervals on the
timeline. The events appearing within each interval
exhibit local regularity.

• Local pattern identification: The summaries re-
veal information about local patterns. Each interval
in the segmented timeline is described by a local model
similar to clustering. That is, event types with simi-
lar rates of appearance within the interval are grouped
together.

The above advantages of our method allowed us to develop
EventSummarizer into a tool that is extremely simple to
use by any non-expert. More specifically:

• EventSummarizer is parameter free and therefore,
no extra knowledge about the specifics of the dataset
or the details of the underlying methods is required by
the user.

• EventSummarizer has an easy-to-use interface. It
only assumes familiarity of the user with very basic
classical SQL syntax, required for loading the data.

1136

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357249197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of the interaction between the user and EventSum-
marizer is based on simple mouseclicks. Finally, the
visualization of the output is simple and yet indicative
of the trends appearing in the dataset.

• Cross-platform operation: EventSummarizer can
be used on top of any RDBMS. This cross-platform
flexibility does not restrict the usage of the tool to a
specific domain or application.

2. SEGMENTAL GROUPINGS OF EVENT
SEQUENCES

In this section we provide a high-level description of the
models and algorithms used in order to implement the core
functionality of EventSummarizer. The details of these
methods are given in [3].

Let S be an event sequence that records occurrences of
events over a time interval [1, n]. All the events appearing
on S belong to a finite set of event types. At a high-level, a
segmental grouping is a model of S that partitions the obser-
vation interval [1, n] into segments of local activity. Within
each segment, event types that exhibit similar frequency of
occurrence in the segment are grouped together .

Figure 1 shows an example of an input event sequence and
the output of our method (that is, a segmental grouping)
for this particular sequence. The input sequence is shown
in Figure 1(a). The sequence contains events from a set of
three event types {A, B, C} and it spans timeline [1, 30] that
consists of 30 discrete timestamps.

Figure 1(b) shows the actual segmental grouping produced
by our method. Three segments are identified: [1 . . . 11],
[12 . . . 20] and [21 . . . 30]. Within each segment, the events
are grouped into two groups: event types with similar fre-
quency in a segment are grouped together. In the first seg-
ment, the two groups consist of event types {A, B} and {C};
A and B are grouped together as they appear much more
frequently than C in the interval [1 . . . 11]. Similarly, the
groups in the second and third segment are

{{A}, {B, C}}
and

{{A, C}, {B}} respectively.

Finally, Figure 1(c) pictorially illustrates the concept of seg-
mental grouping. The coloring of the groups within a seg-
ment is indicative of the probability of appearance of the
events in the group; darker colors correspond to higher oc-
currence probabilities (higher frequency).

For any given event sequence S there are exponentially many
possible segmental groupings. In [3] we tackled the problem
of finding the best of them. We achieved that by assign-
ing a cost to every segmental grouping and then solving the
corresponding optimization problem. Our cost function was
based on the MDL principle. By penalizing both complex
and simple models, we developed a parameter-free method-
ology and provided polynomial-time algorithms that opti-
mally solve the corresponding optimization problem. More
specifically, we developed an optimal polynomial-time algo-
rithm that we called DP-DP. For a timeline with n times-
tamps and m distinct event types this algorithm runs in
time O(n2m2). Additionally, we developed sub-optimal but
faster heuristics like DP-Greedy, Greedy-DP and Greedy-

Greedy algorithms that run in O(n2m log m), O(n log nm2)
and O(n log nm log m) time respectively. The experiments
in [3] demonstrated that our algorithms are much faster and
their performance with respect to the objective function is
not far from the optimal.

A A A A A A A A A A A A A A A A A A A A

B B B B B B B B B B B B B B B B B B B B

1 30

C C CC C C C C C C C C C C C C C C C

time

(a) Input event sequence

A A A A A A A A A A A A A A A A A A A A

B B B B B B B B B B B B B B B B B B B B

1

C C CC C C C C C C C C C C C C C C C

time

12 21

(b) Illustration of the segmental grouping

C

B

AA

B,C
C

A,B

1

time

12 21

(c) Output summary

Figure 1: Visual representation of an event sequence
that contains events of three event types {A, B, C}
and spans timeline [1, 30]. Figure 1(a) shows the
input sequence; Figure 1(b) shows the segmental
grouping and Figure 1(c) shows the high-level view
of our summary. Same tone of gray correspond to
same group.

3. THE EventSummarizer DEMONSTRA-
TION

In this section we first give an overall review of the EventSum-
marizer’s architecture and then demonstrate its function-
ality by going through an example run of the system.

3.1 System architecture
The EventSummarizer architecture is shown in Figure 2.
The system is built in Java and it runs on top of any RDBMS
through JDBC. In the examples we give here, we use DB2.
Using a Graphical User Interface (GUI), the user can mainly
perform two tasks: load the data and summarize it. The
data loading is done using standard SQL queries. The sum-
marization task is then performed on the retrieved data. For
the summarization, the user with simple mouseclicks spec-
ifies the summary attribute that defines the timeline, and
the summarization algorithm to be used for producing the
segmental grouping.

Notice that for segmental groupings to be meaningful, the

1137

Users (DB or System admin, Forensic Investigator, etc)

GUI

Event-sequence databases

DB logs
System

logs
Network

logs
……

DB Query

DB Query DB Query
Result

DB Query
Result

Summarization algorithms

DP-DP

DP-Greedy

Greedy-DP

Greedy-Greedy

Summarization
Query

Segmental
Grouping

MDL cost model

Figure 2: The EventSummarizer architecture

summary attribute should define a timeline and thus should
be of type timestamp. Otherwise, our system simply sorts
the tuples on the specified summary attribute. The user can
specify the desired algorithm by selecting the appropriate
option on EventSummarizer’s menu bar. There are four
algorithmic options: the DP-DP, the DP-Greedy, the Greedy-

DP and the Greedy-Greedy algorithms. The details of these
algorithms, as well as their respective advantages and dis-
advantages, are thoroughly discussed in [3]. Once the best
segmental grouping of the input sequence is computed, the
visual presentation of the results is shown to the user. The
results include both the segmentation of the input timeline
into intervals and the illustration of the groups within every
segment. Details on the graphical illustration of segmental
groupings is given in the next section.

3.2 Demonstrated functionality
In this section we give a description of EventSummarizer’s
functionality and present an illustrative example of how it
can be used. The dataset we use here is from the system log
file displayed by the Windows XP Event Viewer on our ma-
chines. The system log contains events logged by Windows
XP system components. The records of the corresponding
system table contain four fields: Type, Source, Event, and
TS. The TS attribute is of type timestamp.

In the example we will present in the rest of this section,
we project the system table on attributes Event and TS.
Since TS is of type timestamp we use it as a summary at-
tribute. The timestamps appearing in TS span the period
from November 2005 to November 2007.

Figure 3 shows EventSummarizer’s graphical interface.
The same figure also shows the part of the interface that
allows the user to select the data for summarization using

standard SQL queries. The matching tuples to the imposed
query (in this case select event, ts from system) are
rendered in the lower part of the interface.

Once the selected data is fetched, the user can then sum-
marize it. The summarization algorithm is selected on the
menu bar of EventSummarizer. Figure 4 shows how this
selection can be made. In our example, we use the Greedy-

Greedy summarization algorithm.

classical SQL-queries interface

Figure 3: Data selection in EventSummarizer using
standard SQL queries

Figure 4: EventSummarizer’s menu bar; algorithm’s
selection

Once the data and the algorithm are selected the actual
summarization task can be performed. Figure 5(a) shows
the segmentation of the input timeline that is produced as
a result of summarization on (summary) attribute TS. The
specification of the summary attribute is done by a sim-
ple mouseclick on the attribute’s name as it appears on the
rendered data. In our example, a mouseclick on the TS at-
tribute results in the segmentation bar shown in Figure 5(a).
The bar shows the partition of the input timeline. The ac-
tual segments correspond the black-colored segments. Here,
there are five relatively large intervals and thirteen smaller
ones. The original input data is still shown in the lowest
part of the screen. However, the tuples are ordered on TS

and then colored according to the segment they belong to.

Figure 5(b) shows the actual grouping of the tuples within a
single (in this case the last) segment. The segment is selected
by a simple mouseclick on it. The grouping of the event
types within this interval is rendered below the segmentation
bar in a table form. The first attribute of this new table
is the Key attribute and it corresponds to the event type.
The second attribute is the Count attribute and it shows
for every event type the number of its occurrences within

1138

result of
mouseclick
on TS

observation period

tuples from
segment 1

tuples from
segment 2

(a) EventSummarizer’s visualization of the time-
line’s segmentation

result of
mouseclick
on the last
segment

group # 1

group # 2

group # 3

group # 4

(b) Grouping of event types within a segment

Figure 5: Demonstration of the functionality of EventSummarizer. Figure 5(a) shows the visualization of
the segmentation output by EventSummarizer and Figure 5(b) shows the grouping of event types within a
selected segment.

the examined time interval. The last attribute, Group, takes
integer values that denote the group-id in which the different
event types belong to. Local associations are identified by
event types sharing the same group-Id. In the illustrated
example, group # 1 contains just a single event type, group
2 contains four event types and so on. Notice that event
types that belong in the same group have similar occurrence
counts within the interval.

4. CONCLUSIONS
In this demo paper, we presented EventSummarizer, a
tool for summarizing large event sequences. The algorith-
mic principles used in the implementation of the tool are
described in detail in [3]. Here we focused on presenting an
overview of the EventSummarizer architecture and demon-
strating its functionality from the user’s point of view. For
example, a system administrator can use EventSumma-
rizer as a standalone application to periodically review
system activities. In the paper, we illustrated the useful-
ness of EventSummarizer by focusing on a selected event
sequence example and demonstrated its main functionali-
ties using this dataset. In the demo itself, we will show
that EventSummarizer is easy to use and gives easy-to-
interpret results. We will further showcase its usefulness
using a diverse set of event sequences that arise in practical
settings.

5. REFERENCES
[1] R. Agrawal and R. Srikant. Mining Sequential Patterns.

In Proc. of the 11th Int’l Conference on Data
Engineering, Taipei, Taiwan, March 1995.

[2] D. Chudova and P. Smyth. Pattern discovery in
sequences under a markov assumption. In KDD, pages
153–162, 2002.

[3] J. Kiernan and E. Terzi. Constructing comprehensive
summaries of large event sequences. In KDD, pages

417–425, 2008.

[4] H. Mannila and H. Toivonen. Discovering generalized
episodes using minimal occurrences. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 146–151, 1996.

[5] J. Pei, J. Han, and W. Wang. Constraint-based
sequential pattern mining: the pattern-growth
methods. J. Intell. Inf. Syst., 28(2):133–160, 2007.

[6] J. Rissanen. Modeling by shortest data description.
Automatica, 14:465–471, 1978.

[7] J. Yang, W. Wang, P. S. Yu, and J. Han. Mining long
sequential patterns in a noisy environment. In ACM
SIGMOD International Conference on Management of
Data, pages 406–417, 2002.

1139

