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In a multi-item inventory system, such as an assemble-to-order manufacturing system or
an online-retailing system, a customer order typically consists of several different items in

different amounts. The average order-based backorders are the average number of customer
orders that are not yet completely filled. While this is an important measure of customer
satisfaction, it has not been widely studied in the operations management literature. This
is largely because its evaluation involves the joint distribution of inventory levels of differ-
ent items and other intricate relations, which is computationally dreadful. Taking a novel
approach, this paper develops a tractable way of evaluating this measure exactly. We also
develop easy-to-compute bounds, which require the evaluation of item-based backorders
only. Numerical experiments indicate that the average of the lower and upper bounds is
very effective.
The exact results show surprisingly simple structures, which shed light on how system

parameters affect the performance. Using these results, we study several examples to gain
managerial insights. Questions addressed include: What are the implications of item-based
inventory planning decisions on the order-based performance? What is the impact of intro-
ducing common components on inventory and service trade-offs? Would order-delivery per-
formance be improved if we restrict the number of choices in product configurations?
(Multi-Item Systems; Backorders; Demand Correlation; Performance Evaluation; Approximation;
Assemble-to-Order; Component Commonality; Product Structure)

1. Introduction
This paper is concerned with multi-item inventory
systems in which a customer order typically con-
sists of several different items in different amounts,
and different orders may have overlapping subsets
of items. A customer order is filled immediately if
all the items requested are available in inventory.
That is, as long as the inventories are available, the
order assembly time is negligible. One example is the
assemble-to-order manufacturing systems. Here, com-
ponents are kept in stock, but final products, which
may share common components, are assembled only
after customer orders are realized, like in Dell Com-

puter. Another example is mail-order systems, includ-
ing online retailing, such as in Lands End and Ama-
zon.com. In the move toward agile systems where
customization is delayed as long as possible, this kind
of system is becoming more and more important and
prevalent.
A key performance measure for such systems is the

average order-based backorders, which is the aver-
age number of customer orders that are not yet com-
pletely filled. This quantity is proportional to the aver-
age customer waiting time, so it directly measures
customer dissatisfaction due to delivery delays. As
customer satisfaction becomes a foremost priority in
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today’s corporations, it is of great interest to managers
to be able to evaluate this measure, so as to see how
inventory policies or other system parameters affect
performance. The purpose of this paper is to present
tractable analytical techniques for doing so. We also
discuss various insights through several examples.
Although the importance of order-based backorders

was recognized in the literature as early as the
1960s, the evaluation of this measure has not been
widely studied, largely because it is analytically intri-
cate and computationally dreadful. Most of the early
works make restrictive assumptions. Some essentially
assume independent demand and some consider only
a one-time demand (a static problem). See, for exam-
ple, Alt (1962), Hausman (1969), Kaplan (1971), Miller
(1971), and Muckstadt (1973, 1979). More recently,
Cheung and Hausman (1995) consider a multivari-
ate Poisson demand model. The replenishment lead
times of each item are i.i.d. random variables. How-
ever, complete cannibalization is assumed in order
to derive the average customer backorders. Song
et al. (1999) present a recursive procedure to com-
pute the order-based backorders for a system in which
demand forms a multivariate Poisson process, and
there is a dedicated facility with exponentially dis-
tributed processing times to process replenishment
orders for any given item. The procedure relies on
the computation of the steady-state joint distribu-
tion of the outstanding orders. Zhang (1995a) stud-
ies a discrete time, continuous demand model with
constant lead times, and discusses the computation
and approximation of expected order-based backo-
rders when there is only one type of order (i.e., one
final product). Zhang (1995b) derives a lower bound
for the average order-based backorders for a multi-
variate normal demand model with multiple types of
orders. Several other recent works also study order-
fulfillment performances in assemble-to-order sys-
tems with multicomponents and multiproducts; see,
for example, Agrawal and Cohen (2001), Glasserman
and Wang (1998), Hausman et al. (1998), and Song
(1998). However, these works focus on order fill rates.
The calculation of order-based backorders presents
additional challenges.
The current paper shows how to evaluate the order-

based backorders in a continuous review, base-stock

inventory system with constant lead times and multi-
ple types of orders. Instead of the traditional method
that uses the joint distribution of the item-backorder
vector, we take a novel approach to the exact anal-
ysis, which leads to a closed-form expression. Our
approach consists of two steps. The first step deals
with the case of equal lead times across the items.
The key here is to relate the customer waiting-time
distribution with the immediate order fill rate in a
revised system, applying a related result shown in
Song (1998). Using this relationship, we can obtain
the expected customer waiting time for the equal
lead-time case by integrating the waiting-time tail
distribution. Subsequently, the expected number of
backorders with equal lead times can be obtained by
applying Little’s law. The second step of the anal-
ysis deals with the general case with unequal lead
times. The key here is to reveal certain cyclical behav-
ior of the backorder process and then to focus on
the detailed analysis within a cycle using probabilis-
tic arguments. Section 3.1 presents the analysis for
the two-item, unit demand system, while §3.2 gener-
alizes the analysis to the J -item, unit demand system.
Section 8 extends the results to systems with batch
demands.
For a system as complex as the one studied here,

the exact result shows surprisingly simple structure.
This helps to shed light on the impact of system
parameters on both the computational complexity
and the service performance. For example, it shows
that a dominating factor for the computation time is
not how many items of which an order consists, but
rather the number of order types that have overlap-
ping items with this order. Thus, the easiest case is a
pure assembly system, where there is only one order
type. It also shows that the base-stock levels of dif-
ferent items affect the order-based backorders jointly
only through the common part of the component lead
times.
Although the exact result enjoys tremendous com-

putational advantage over simulation, it can still be
computationally demanding for systems with many
overlapping demand types (or, equivalently, sys-
tems with many common components among prod-
ucts). To overcome this difficulty, in §4 we develop
easy-to-compute bounds. These bounds are simple
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operations of the order-based demand rates and the
item-based backorders; no joint distribution evalua-
tion is involved. In our numerical studies, the average
of the lower and upper bounds performs extremely
well. Therefore, we recommend it be used in practice
as a quick estimate.
In §§5–7 we provide a few examples to illustrate

potential applications of the evaluation procedure
and to gain various managerial insights. Section 5
studies the implication of item-based forecasts and
inventory-planning decisions on the order-based per-
formance. Section 6 focuses on a two-product exam-
ple and investigates whether creating a common com-
ponent between the two products would improve the
inventory-service trade-off. Section 7 uses a personal
computer example to explore the effect of product
variety on total customer backorders. Section 9 con-
cludes the paper.

2. Model Description and
Preliminaries

We consider a continuous review, J -item inventory
system. There are multiple classes of demands, each
of which requires a fixed kit of items and arrives
according to an independent Poisson process. For any
subset of items K of �1� � � � � J �, we say a demand is
of type K if it requires one unit of item i in K and 0
units outside K. (We generalize the unit demand size
to random batch sizes in §8.) Let � be the set of all
demand types. When K contains a single item, say i,
we abbreviate type K by type i. Similarly, we say an
order is of type i1i2 · · · ik if K = �i1� i2� � � � � ik�. Notice
the demand process for each item is the superposition
of a finite number of Poisson processes. So, it again
forms a Poisson process whose rate is the sum of that
of the individual demand processes.
Throughout the paper, we use subscripts to indicate

item type and superscripts order type. For any item
i ∈ �1� � � � � J � and any subset K ⊂ �1� � � � � J �, let

	K = arrival rate of demand type K


	 = overall demand rate = ∑
K∈�

	K


qK = probability a demand is of type K = 	K/	


S�i� = the set of all demand types that consume
item i

= �K � i ∈ K and qK > 0�


	i = aggregate demand rate of item i = ∑
K∈S�i�

	K�

For any item i, the replenishment lead time is a con-
stant Li, and a base-stock policy with base-stock level
si is followed to control its inventory. We assume com-
plete backlogging for demands that cannot be filled
immediately. When an order arrives and we have
some of its items in stock but not all, we assume that
we can either ship the in-stock items or put them
aside as committed inventory. However, a customer
request is considered backlogged until it is satisfied
completely. Demands are filled on a First-Come-First-
Served (FCFS) basis. When there are backorders, they
are also filled on a FCFS basis.
Let t ≥ 0 be the continuous time variable, and for

each t denote

INi�t� = net inventory of item i


NK�t� = number of type-K demands by time t


Di�t� = cumulative demand for item i

by time t = ∑
K∈S�i�

N K�t�


BK�t� = type-K backorder at t

= number of type-K orders that are not yet
completely satisfied by t


Bi�t� = number of backorders for item i at t�

Let Di stand for the steady-state limit of Di�t−Li� t�=
Di�t�−Di�t − Li�, the lead-time demand of item i.
Then, Di has the same distribution as Di�Li�, a Pois-
son distribution parameter 	iLi. Let INi be the steady-
state limit of INi�t�, and define BK and Bi similarly.
The performance measure of primary interest in

this paper is �B K = E�BK� for any demand type K.
Knowing how to evaluate this measure, we can read-
ily obtain

�B =∑
K

�B K = the total average order-based

backorders.
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Because this is the average number of customers
being backlogged regardless of types, by Little’s law
we have:

�W = average waiting time of an arbitrary customer

= �B/	�
As a function of the base-stock levels, both �B and �W
can be used to demonstrate the quantitative trade-offs
between inventory investment and customer service,
and therefore to aid managerial decision making.
To highlight the dependence on the problem data,

we sometimes use �BK�s �L�=�BK�s1� � � � � sJ � L1� � � � �LJ �
to denote the expected type-K backorders in a system
with base-stock levels si and lead times Li. The bold-
faced letters are used to abbreviate vectors. When Li =
L for all i, we write �BK�s � L� as �BK�s � L�. Without
loss of generality, we index the items so that L1 ≤
L2 ≤ · · · ≤ LJ . We also assume nonnegative base-stock
levels, i.e., si ≥ 0 for all i. As a consequence, the max-
imum duration of a type-K backorder is maxi∈K Li.
Denote by g�· � �� and G�· � �� the probability mass

function (pmf) and cumulative distribution function
(cdf) of the Poisson distribution with parameter �,
respectively. Let G0 = 1−G. For any real numbers
u and v, let u∨v =max�u�v��u∧v =min�u�v� and
u+ = max�u�0�. Also, denote by ei the ith standard
unit vector and 1 the vector of ones.

3. The Exact Approach
It is well known that for each i

INi = si−Di�

From this, the average type-i backorder is easy to
evaluate. In particular, for each i, the item-based
backorder equals Bi�si � Li� = �−INi�

+ = �Di − si�
+, so

the average item-i backorder is

�Bi�si � Li� = E��Di− si�
+�=

∑
!=si

G0�!�	iLi�

= 	iLi−
si−1∑
!=0

G0�!�	iLi�� (1)

Since a request for item i is due to a type-i order with
probability 	i/	i, the average type-i backorder equals

�B i�si � Li�=
	i

	i

�Bi�si � Li�� (2)

The evaluation of type-K backorders when K con-
tains more than one item, however, is much harder.
Let BK

i �t� be the number of backorders for item i at
time t that are due to demand type K, where K ∈ S�i�.
Since BK�t�=maxi∈K BK

i �t� for any t, we have

�B K = E
[
max
i∈K

BK
i

]
� (3)

where BK
i is the steady-state limit of BK

i �t�. Clearly,
a direct approach for evaluating �BK is through (3).
Observe that, given Bi = n�BK

i is a binomial random
variable with n trials and success probability 	K/	i

in each trial. In principle, then, one can compute
(3) by using this fact and the joint distribution of
�Bi� i ∈ K�. However, because the Bi are correlated ran-
dom variables, computing its joint distribution alone
is a formidable task, not to mention the conditional
binomial distributions and the max operation within
the expectation. In what follows we present an alter-
native approach that is much simpler.
The first step of the new approach relies on the fol-

lowing fact. Suppose Li = L for all i. Let WK be the
steady-state waiting time of a type-K backorder, and
FK�w the type-K order fill rate with time window w,
that is, the probability of satisfying a type-K order
within time w. Then, for w ≤ L, we have

P�WK ≤w� = FK�w�s�L�= FK�0�s�L−w�

= P�Di�L−w� < si� i ∈ K�� (4)

where the second equality is due to Proposition 1.1 in
Song (1998).

3.1. The Two-Item System
To illustrate the idea, we first study the two-item, unit
demand system. Here, there are only three possible
types of demand: A Type-1 customer requires one unit
of Item 1 only; a Type-2 requires one unit of Item 2
only; and a Type-12 customer asks for one unit of each
item.
Observe that for any t,

Di�t�= Ni�t�+N 12�t�� i = 1�2�

Let N�t� be the total number of arrivals (regardless of
customer types) during t. Then

N�t�= N 1�t�+N 2�t�+N 12�t�
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has the Poisson distribution with parameter 	t. Since
NK�t� are independent, it follows that given N�t�= n,
�N 1�t��N 2�t��N 12�t�� has a multinomial distribution
with parameters n and qK = 	K/	, which is indepen-
dent of t. Moreover,

P�D1�t�<s1�D2�t�<s2�

=
s1∨s2−1∑
n=0

P�N�t�=n�

×P�N 1�t�+N 12�t�<s1�N
2�t�+N 12�t�<s2 �N�t�=n�

=
s1∨s2−1∑
n=0

P�N�t�=n�

× ∑
!+m<s1
!+j<s2

!+m+j=n

P�N 12�t�=!�N 1�t�=m�N 2�t�= j �N�t�=n�

=
s1∧s2−1∑
!=0

s1−!−1∑
m=0

s2−!−1∑
j=0

�!+m+j�!
!!m!j! �q12�!�q1�m�q2�j

× �	t�!+m+j

�!+m+j�!e
−	t� (5)

First, suppose L1=L2=L. This implies P�W 12>L�=
0. Using this fact and applying (4) and (5) we obtain

E�W 12�L� =
∫ 

0
P�W 12 >w�dw

=
∫ L

0
�1−P�W 12 ≤w��dw

= L−
s1∧s2−1∑
!=0

s1−!−1∑
m=0

s2−!−1∑
j=0

�!+m+ j�!
!!m!j!

× �q12�!�q1�m�q2�j
∫ L

0

�	�L−w��!+m+j

�!+m+ j�!
× e−	�L−w� dw

= L− 1
	

s1∧s2−1∑
!=0

s1−!−1∑
m=0

s2−!−1∑
j=0

�!+m+ j�!
!!m!j!

× �q12�!�q1�m�q2�jG0�!+m+ j � 	L��

The last equation follows because

∫ L

0

�	�L−w��n

n! e−	�L−w�dw = 1
	
G0�n � 	L�� (6)

According to Little’s law, �B12 = 	12E�W 12�, hence

�B 12�s�L� = 	12L− q12
s1∧s2−1∑
!=0

s1−!−1∑
m=0

s2−!−1∑
j=0

�!+m+ j�!
!!m! j!

× �q12�!�q1�m�q2�jG0�!+m+ j � 	L�� (7)

It is interesting to note that in standard single-item
inventory theory the average backorder is obtained
first through the lead-time demand distribution, and
then the average backorder-waiting time is derived
from Little’s law. Here, in the multi-item system, we
find that the reversed procedure is more convenient
and effective.
Observe that (7) is similar in form to (1), except that

in (7) the second term becomes a weighted sum with
multinomial weights. The complexity of the com-
putation obviously depends on how many different
demand types there are. If q12 = 0, i.e., there is no
Type-12 demand, then (7) reduces to 0. If q12 = 1
(which implies q1 = q2 = 0), then there is only Type-12
demand, and the system is essentially a single-item
system. In this case, (7) reduces to (1) with s1 ∧ s2
replacing si, i.e.,

�B 12�s�L�= 	L−
s1∧s2−1∑
!=0

G0�! � 	L�� (8)

Thus, for these special cases, the computational effort
needed to evaluate the order-based backorders is the
same as in the single-item system.
Equation (8) indicates that in a pure assembly sys-

tem with equal lead times the average number of
backorders of the final product depends on the base-
stock levels only through their minimum, so it does
not make sense to have different base-stock levels in
such systems.
The second step of the new approach focuses on

solving the case L1 < L2. Set L= L1 and += L2−L1 so
that L2 = L++. The following property is important
in the analysis, which is shown in the appendix:

Lemma 1. The process �B12�t�� t ≥ 0� is cyclical in the
sense that its statistic behavior repeats in all intervals
�m�L++�� �m+ 1��L++���m = 0�1�2� � � � . As a conse-
quence, �B12 is the expected number of Type-12 backorders
occurring during a cycle �0�L++� that remain to be back-
logged at �L++�−.
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Based on the above observation, and following a
detailed probabilistic analysis within a cycle in the
appendix, we obtain

Proposition 1. The expected number of Type-12 back-
orders has the following expression:

�B 12�s � L�L++� = 	12

	2
�B2�s2 � +�+	12LG0�s2−1 � 	2+�

+
s2−1∑
y=0

g�y � 	2+��B 12�s−ye2 � L�� (9)

where �B12�· � L� is given by (7). The first term of (9) is the
expected number of Type-12 backorders started in interval
�0�+�, which is independent of s1. The rest is the expected
number of Type-12 backorders started in interval �+�
L++�.

Because both G0�s2�	2+� and �B2�s2�	2+� equal 0
when + = 0, it is easy to check that in this case (9)
reduces to (7), as expected. The computational com-
plexity is dominated by the last term, which is a
convolution of single-variate Poisson pmf and the
Type-12 backorders under equal lead time. Again, it
depends on the magnitude of sis as well as the num-
ber of different demand types (positive qKs).
For the pure assembly system, i.e., q1 = q2 = 0,

applying (1) and (8) to (9) yields

�B 12�s � L�L++�

= 	�L++�−
s2−1∑
y=0

{
G0�y � 	+�+g�y � 	+�

×
s1∧�s2−y�−1∑

!=0
G0�! � 	L�

}
� (10)

Unlike in (8), the dependence of �B12 on s1 and s2 is
more intricate here. On the other hand, it is clear that
increasing s1 above s2 will not decrease �B12, so there
is no reason to have s1 > s2.

3.2. The General J -Item System
We now consider the evaluation of �BK for a fixed-
demand type K in the general J -item system. The
challenge here is to find the right combinatorial argu-
ment and workable notation.
Because �BK depends on �Di� i = 1� � � � � J � only

through �Di� i ∈ K�, it is more convenient to work on

a transformed smaller system that consists of only the
items in K. The overall demand rate to the new sys-
tem is

	̃= ∑
A� A∩K �=�

	A�

For convenience, let K1�K2� � � � �Kp be all the demand
types for the new system. Then, a demand to the new
system is of type-K/ with probability

q̃/ =
( ∑
A� K∩A=K/

	A

)/
	̃�

Similar to the definition of S�i� in the original system,
for any i ∈ K, we define S̃�i� to be the set of all the
demand types in the new system that require i. That
is,

S̃�i�= �K/ � i ∈ K/�/= 1� � � � � p��

For any t ≥ 0, let Ñ /�t� be the total number of arrivals
of type-K/ demand in the new system by t�/ =
1� � � � � p. Clearly, Ñ /�t� has a Poisson distribution with
rate q̃/	̃t. Also, the total number of arrivals by t in
the new system,

Ñ �t�= N 1�t�+· · ·+Np�t��

has a Poisson distribution with rate 	̃t. Given Ñ �t�=
n� �Ñ 1�t�� � � � � Ñ p�t�� has a multinomial distribution
with parameters n and q̃/�/= 1� � � � � p. Similar to (5),
letting S̃ =maxi∈K�si�, we obtain

P�Di�t� < si� i ∈ K�

=
s̃−1∑
n=0

P�Ñ �t�= n�

× ∑
j∈�n

K�s−1�
P�Ñ 1�t�= j1� � � � � Ñ

p�t�= jp�Ñ �t�= n�

= ∑
j∈�K�s−1�

n!
j1! · · · jp!

�q̃1�j1 · · · �q̃p�jp �	̃t�
n

n! e−	̃t � (11)

Here, n= j1+· · ·+ jp, and for any vector y,

�n
K�y�=

{
j= �j1���� �jp��

∑
/�K/∈S̃�i�

j/≤yi� i∈K�
p∑

/=1
j/=n

}
�

and

�K�y�=
{
j= �j1� � � � � jp��

∑
/�K/∈S̃�i�

j/ ≤ yi� i ∈ K

}
� (12)
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Suppose Li = L for all i. Then, applying (4), (11),
and (6), similarly to the proof of (7) we obtain

E�WK � L� =
∫ L

0
P�WK > w�dw

= L−
∫ L

0
P�WK ≤w�dw

= L− 1

	̃

∑
j∈�K�s−1�

n!
j1! · · · jp!

�q̃1�j1 · · · �q̃p�jp

×G0�n � 	̃L��
where n= j1+· · ·+ jp. Using Little’s formula leads to

�B K�s�L� = 	KE�WK �L�

= 	KL− 	K

	̄

∑
j∈�K�s−1�

�j1+· · · jp�!
j1! · · · jp!

�q̃1�j1 · · · �q̃p�jp

×G0�j1+· · ·+ jp � 	̃L�� (13)

which is a generalization of (7).
In the general case of unequal lead times, let L0 = 0

and +i = Li−Li−1, then Li = +1+· · ·++i. Without loss
of generality, suppose K = �1�2� � � � � k�. For any j ≤ k
define a k-vector

L�j� = �L1� � � � �Lj−1�Lj�Lj� � � � �Lj��

That is, L�j� is a lead-time vector that has equal entries
for components j through k. So, L�k� = L, and L�1� is a
lead-time vector with equal entries of value L1. Using
similar arguments as in the two-item case, we can
show that

�B K�s � L� = 	K

	k

�Bk�sk � +k�+	KLk−1G
0�sk−1 � 	k+k�

+
sk−1∑
y=0

g�y � 	k+k��B K�s−yek � L�k−1��� (14)

Proposition 2. The expected number of type-K back-
orders in a general J -item system can be evaluated by
applying (14) recursively, until the lead-time vector is
reduced to L�1�, at which point Formula (13) applies. As a
result, we can express �BK�s � L� as the sum of convolutions
of single-variate Poisson distributions and �BK�· � L�1�� =
�BK�· � L1�.
Note that the procedure reduces the general prob-

lem with different lead times to a problem with equal

lead times in k− 1 steps. The computational time of
(13) and (14) depends on the following factors: k (the
size of K), the size of si� i ∈ K, the structure of the
region �K , and the number of different lead times
(i.e., positive +is). Among these, the complexity of
�K , which is determined by the number of demand
types interacting with K (i.e., sharing common com-
ponents), is the most dominating factor. This is due
to the multinomial terms in (13).
The simplest case is when none of the items in K is

required by any other demand types. That is, the sub-
system �1� � � � � k� is a pure assembly system. (When
k= J , the entire system is a pure assembly system.) In
this case, (13) reduces to

�B K�s � L�= 	KL−
mini∈K si∑

!=0
G0�! � 	KL�� (15)

This is a generalization of (8), which depends
on the number of components k only through
min�s1� � � � � sk�; the rest of the computation is exactly
the same as in the single-item system. Combining (14)
and (15), we can see that the computational effort is
of the order of up to k convolutions of single-variate
Poisson distributions, which depends on the magni-
tude of sis. The number of convolutions is determined
by the number of positive +is.

4. Bounds and Approximations
Relying on the joint distribution of the inventory
levels, the order-based backorders are considerably
more complicated to compute than item-based ones.
It is therefore interesting and important to know
whether the item-based backorders, which are com-
puted through the marginal distributions, can be used
to provide useful information about the order-based
backorders. We discuss this issue in this section.
Using (3), we can establish lower and upper bounds

on �BK that require simple operations of the order-
based demand rates and the item-based backorders.
All the expectations involved only use marginal dis-
tributions. Specifically,

max
i∈K

�B K
i ≤ �B K ≤∑

i∈K
�B K

i �

But �BK
i = �	K/	i��Bi, so
LBK def= 	Kmax

i∈K

�Bi
	i

≤ �B K ≤ 	K
∑
i∈K

�Bi
	i

def= UBK�
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Summing up all the lower bounds and upper bounds,
respectively, we obtain a lower bound and an upper
bound on the total average order-based backorders
�B =∑

K
�BK . That is,

LB
def= ∑

K

LBK ≤ �B ≤∑
K

UBK def= UB�

It can be verified that

UB =
J∑

i=1
�Bi

= the total average item-based backorders �= �BI �
So,

�B ≤ �BI �
That is, the total item-based backorders always dom-
inate the total order-based backorders.
A natural approximation for �BK is to take the aver-

age of LBK and UBK , denoted by ABK . (“AB” stands
for “Average of Bounds.”) That is,

ABK = 	K

2
max
i∈K

�Bi
	i

+ 	K

2

∑
i∈K

�Bi
	i

= 	Kmax
i∈K

{�Bi
	i

+ 1
2

∑
j∈K\�i�

�Bj
	j

}
� (16)

Consequently,

AB =∑
K

ABK = 1
2
�LB+UB� (17)

is an approximation of �B.
In particular, in the two-item system, we have

AB12 = 	12 max
{�B1
	1

+
�B2
2	2

�
�B2
	2

+
�B1
2	1

}
= max

{
�B 12
1 + 1

2
�B 12
2 ��B 12

2 + 1
2
�B 12
1

}
� (18)

Applying (18) to (17) yields

AB = �B 1+�B 2+max
{
�B 12
1 + 1

2
�B 12
2 ��B 12

2 + 1
2
�B 12
1

}
= max

{
�B1+�B2−

1
2
�B 12
2 ��B1+�B2−

1
2
�B 12
1

}
= �B1+�B2−

	12

2
min

{�B1
	1
�
�B2
	2

}
� (19)

Thus, to approximate the total order-based back-
orders, AB takes some “correction” from the total
item-based backorders �B1+�B2.
We tested the effectiveness of the bounds and

the approximation through some numerical exam-
ples. In a two-item system with L1 = 1�L2 = 2,
and 	 = 20, four vectors �q12� q1� q2� were chosen,
representing different levels of demand correlation.
They are �0�2�0�4�0�4�� �0�5�0�25�0�25�� �0�8�0�1�0�1�,
and �0�5�0�33�0�17�. With each system configura-
tion, the base-stock levels were set following the
form of

si = 	iLi+zi
√
	iLi� (20)

with zi varying among 0�0�67, and 1.64. Since si are
integers in our model, we assigned to si the integer
part of the right-hand-side value in (20). We observe
that the approximation AB provides reliable informa-
tion on �B, especially for higher values of zi. In partic-
ular, in this set of 36 examples, the percentage error of
AB, defined by 100�AB−�B�/�B, is 2.82. The percentage
errors of LB and �BI (defined similarly), on the other
hand, are 11.27 and 10.37, respectively. This observa-
tion remains true for other experiments with different
values of 	 and Li. (Section 7 provides more evidence
in a six-item, six-product system.) Therefore, we rec-
ommend AB be used in practice as a quick estimate
of �B.
Before concluding this section, it is worth explain-

ing the rationale of using (20). First, recall that the
lead-time demand Di has the Poisson distribution
with mean 	iLi. Because a Poisson distribution with
a large mean can be approximated well by a normal
distribution, we can treat Di as a normal random vari-
able with mean 	iLi and standard deviation

√
	iLi,

assuming 	iLi is not too small. (See the accurate per-
formance of this approximation when 	iLi = 5 and 10
in Figure 6.4.1 of Zipkin 2000). Standard inventory-
planning models suggest that the base-stock level
for item i takes the form of (20), where zi is called
the safety factor. This policy is optimal if we min-
imize the average inventory-holding cost of item i
subject to an item-i fill rate constraint. In particular,
zi = 0�0�39�0�67�1�04, and 1.64 correspond to item-i’s
fill rates 50%, 65%, 75%, 85%, and 95%, respectively.
This policy is also optimal if we minimize the aver-
age inventory and backorder cost. Assuming hi to be
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the unit-holding cost rate and bi the unit backorder
cost rate, then 5�zi� = bi/�bi + hi�, where 5�·� is the
standard normal cdf. See, for example, §§6.4.2 and
6.5.2 in Zipkin (2000). Finally, this total cost minimiza-
tion model is equivalent to a problem minimizing the
average inventory-holding cost subject to an upper
bound on the average number of backorders. The unit
backorder cost rate in the former model corresponds
to the Lagrangian multiplier of the constraint in the
latter.
Given that the form of the optimal policy is

unknown for the system studied here, (20) repre-
sents reasonable and plausible policy parameters—
those widely used in practice employing the standard
item-based inventory-planning tools. We follow (20)
to set the base-stock levels in all the numerical exam-
ples in this paper.

5. The Value of Order-Based
Demand Information

In practice, managers often make inventory decisions
based on the item-based information, such as the
demand rates 	i and the lead times Li. There are two
reasons. First, the item-based information is much
easier to obtain; its forecast can be made indepen-
dent of other items. Second, the standard inventory-
planning models are mostly item based; they assume
the demands for different items are independent. We
now investigate the implication of such a practice if
the demands for different items can occur at the same
time and hence are correlated. This would help reveal
the value of identifying different demand types and
estimating demand correlation. To keep notation sim-
ple, we focus on the two-item system. Here, the Type-
12 demand couples the demand processes of both
items.
Assume 	i� i = 1�2 are fixed, which are the item

demand rates forecasts. Suppose that we control the
item inventories using the base-stock levels given in
(20), but the real demand environment is multiclass
as captured in our model. Indeed, the proportion of
Type-12 demand q12 is a measure of demand correla-
tion. Note that the relation

	i = �qi+ q12�	� i = 1�2

leads to

	= �	1+	2�/�1+ q12�� (21)

Because 	1 and 	2 are fixed, the higher q12 is, the
lower is the overall demand rate 	. Also, as q12

changes, to keep 	i fixed, we must have

qi = 	i

	1+	2
−
(
1− 	i

	1+	2

)
q12� i = 1�2

and

q12 ≤min
{
	1
	2
�
	2
	1

}
�

Under any fixed inventory policy, the average item
backorders �B1��B2 and the average item backorder
waiting times �W1 = �B1/	1 and �W2 = �B2/	2 are all con-
stant as q12 changes. The question is: How would the
total average order-based service measure behave? Is
it sensitive to q12? If it is not, then it is not very impor-
tant to identify the demand correlation, in particu-
lar, to estimate q12. In other words, it is sufficient to
forecast 	i alone. Otherwise, it is worthwhile investi-
gating the demand correlation. In that case, a natural
question would be: Can safety factors zi be chosen
cleverly so that the order-based service measure is rel-
atively insensitive to q12?
These questions can be addressed by examining

the average customer waiting time �W = �B/	 as q12

increases. Given that the overall demand rate 	

decreases as q12 increases, it makes sense to study
the effect on the average waiting time only. Numeri-
cal results (not reported here) show that �W increases
in q12 regardless of the level of the safety factors.
Increasing the safety factor of one item improves
the overall order-based waiting time. However, there
does not appear to be a simple way of adjusting
the item-based inventory planning to keep the order-
based performance at a constant level. This suggests
that acquiring order-based demand information is
important.
This can also be seen from the approximation

derived in the last section. Let Ŵ = AB/	 be the
approximate average waiting time. Then, accord-
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ing to (19) and (21) and assuming �W1 ≤ �W2, we
have

Ŵ = �1+ q12���B1+�B2�/�	1+	2�−
q12

2
min��W1� �W2�

= �1+ q12��	1 �W1+	2 �W2�/�	1+	2�−
q12

2
�W1

=
(

	1
	1+	2

�W1+
	2

	1+	2
�W2

)
+
[

	2
	1+	2

��W2− �W1�+
1
2
�W1

]
q12� (22)

(A symmetric equation can be obtained by assuming
�W2 ≤ �W1.) Since �W2− �W1 ≥ 0, the coefficient of q12 is
positive. Thus, approximately, the average customer
waiting time increases linearly in q12.

6. A Two-Product Example:
The Effect of Component
Commonality

In this section we consider an example of two sym-
metric products, each of which consists of two com-
ponents. Product 1 is made from Components 1 and
3, and Product 2 is made from Components 2 and 4.
Also, both products have the same demand rate �.
Components 1 and 2 are product specific and have the
same lead times L. Components 3 and 4 have longer
lead times L′ = L++. Our objective is to examine the
changes in the inventory-service trade-offs after com-
bining Components 3 and 4 into one common compo-
nent, Component 5. Assume the lead time for Com-
ponent 5 remains L′.
This two-product example has been used in a num-

ber of studies on the effect of component commonal-
ity issues. See, for example, Baker et al. (1986), Eynan
and Rosenblatt (1996), Hillier (1999), and the refer-
ences therein. However, these works assume either
there is only a single period or there are no replen-
ishment lead times. In both cases, L = L′ = 0. It was
recognized that the analysis of models with dynamic
demand and positive lead times, such as the one stud-
ied in the current paper, is considerably harder; see,
e.g., Baker (1985). It is therefore of interest to see
whether the findings drawn from the single-period

models can be extended to a more general and realis-
tic setting.
The inventory measure we use is the total invest-

ment in the base-stock levels, i.e.,
∑

i cisi, where ci is
the unit cost of item i. The service measure is the aver-
age total product backorders �B, which is proportional
to the average customer waiting time. We would like
to see, for the same service level, how much inventory
investment can be saved by introducing a common
component. The overall optimization of this problem
is a difficult one, and we shall pursue it in future
research. What we are interested in here is whether
we can see the benefit of component commonality by
simple alterations of the original inventory policy.
Clearly, for the original system, Components 1

and 2 should have the same base-stock levels, say s1.
Similarly, let s3 be the base-stock level for Compo-
nents 3 and 4. In the new system, we set the same
base-stock levels for the product-specific Components
1 and 2 as in the original system, while changing the
base-stock level for the common Component 5, say
s5. We plot the total average backorders of the new
system as a function of s5 and compare it against
the total average backorders in the old system, which
is a constant over s5. Without loss of generality, we
assume c3 = 1. Further assuming c5 = c3, the difference
between the inventory investments before and after
introducing the common component equals 2s3 − s5.
(Note that this is an upper bound for inventory sav-
ings if c5 > c3.) It is thus interesting to see whether the
two curves cross before s5 increases to 2s3, implying
that the new system can reach the same service level
with less inventory investment.
For convenience, we refer to the original system as

“System-NC,” where “NC” indicates “No Commonal-
ity.” Applying (10), we obtain the following common
expression of the average backorders for each prod-
uct:

�BNC�s1� s3� = ��L++�−
s1−1∑
y=0

[
G0�y � �+�+g�y � �+�

×
s1∧�s3−y�−1∑

!=0
G0�! � �L�

]
�

Similarly, we refer to the new system as “System-
C,” where “C” indicates “with Commonality.” Note
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that in System-C Component 5 has a demand rate
2�, and Product 1 corresponds to the type-K demand
with K = �1�5�. Since K has only two items, we also
say this is a Type-15 demand. In the subsystem con-
sisting of Components 1 and 5, there are two demand
types: Type-15 and Type-5. The overall demand rate is
	̃= 2�. The relative proportion of each demand type
is given by q̃15 = q̃5 =�/�2��= 1/2. Now, applying (9),
(7) (replacing Index 2 by Index 5), and (1) yields the
following expression for the average backorders for
Product 1:

�BC�s1� s5�
= 1
2
�B5�s5 � +�+�LG0�s5−1 � 2�+�

+
s5−1∑
y=0

g�y � 2�+��B 15�s1� s5−y � L�

Figure 1 Effect of Commonality

= ��L++�− 1
2

s5−1∑
y=0

[
G0�y � 2�+�+g�y � 2�+�

×
s1∧�s5−y�−1∑

!=0

s5−y−!−1∑
j=0

�!+ j�!
!!j!

(
1
2

)!+j
G0�!+ j � 2�L�

]
�

Due to symmetry, the above formula is also the aver-
age backorder for Product 2.
Let s1 and s3 be set as in (20). Also, let both items

have the same safety factor, z1 = z3 = z, where z varies
from 0 to 1.64. For a given value of z�L, and +�s1 and
s3 are fixed, therefore �BNC�s1� s3� is a constant. Figure 1
shows the changes of �BC�s1� s5� as s5 increases from
2�L′ (corresponding to the safety factor z3 = 0) to 2s3.
(Note that 2s3 > 2�L′.)
Case 1 in Figure 5 shows a surprising result: If

L = L′, then there is no inventory saving in System-
C. Even at the point s5 = 2s3, we still have �BC slightly
larger than �BNC. This is perhaps due to the fact that
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we use the same base-stock level for Component 1
in both systems. It is likely that the optimal pol-
icy for System-C is to increase the stock level for
the product-specific component (Component 1) but
to keep less combined stock level for the common
component, i.e., s5 < 2s3. However, in that case the
overall inventory savings can still be hard to see if
Component 3, and hence the common Component
5, have much higher costs than the product-specific
components.
Nonetheless, in the other cases in which L′ >

L, we do see �BC reaches �BNC before s5 reaches
2s3, and this effect is more pronounced when
L′ increases. Comparing all these cases, we can
see that, within the type of policies specified
here, the benefit of using common components is
larger when the lead time of the common compo-
nent differs more from that of the product-specific
component.
But exactly how much inventory savings can one

expect from using a common component when L′ >
L? One conjecture is that if we use the same safety
factor for both Items 3 and 5, i.e., let z3 = z5 = z, then
�BC ≤ �BNC. If so, then the safety stock savings is at
least 1−z

√
2�L′/�2z

√
�L′�= 1−1/

√
2= 29%. Numer-

ical results show (not reported here), however, that
this is not always the case. In some cases within this
setting, �BC > �BNC.
In conclusion, using a model with dynamic

demands and positive lead times, we find that the ben-
efit of using component commonality is not as easy
to see as one would imagine. The benefit depends
on how carefully inventory is managed. Simple alter-
ations of the inventory policies for systems without
common components may not lead to the advantage
of using common components. This is specially true
when the lead times for both product-specific compo-
nents and common components are close. It is also
possible that we do not see the benefit if the unit cost
of the common component is much higher than those
of the product-specific components.
Finally, we note that the analysis and formulas in

this section apply to systems with any number of
components and products, as long as each product is
made of two components.

7. A Personal Computer Example:
The Impact of Product Structure

In this section we consider an assemble-to-order per-
sonal computer setting. Suppose there are six items
that play a key role in differentiating major demand
types. These items are:
(1) built-in zip drive;
(2) standard hard drive;
(3) high-profile hard drive;
(4) DVD-Rom drive;
(5) standard processor; and
(6) high-profile processor.
There are six major demand types resulting from

different choices and combinations of these items;
their compositions are, respectively, �2�5�, �3�5�,
�1�2�5�, �1�3�6�, �1�3�4�5�, and �1�3�4�6�. (See Fig-
ure 2.) The percentages of the individual types of
demands relative to the total demand are q25 =
0�10, q35 = 0�40, q125 = 0�15, q136 = 0�10, q1345 = 0�20,
q1346 = 0�05. The overall demand rate 	 is 8. The
item lead-time vector is L = �L1�L2�L3�L4�L5�L6� =
�1�1�1�1�2�2�.
For simplicity and ease of presentation, we focus

on base-stock policies with equal safety factors across
items. That is, the base-stock levels are chosen accord-
ing to (20) with zi = z for all i. This kind of policy is
commonly used in practice; see, for example, Agrawal
and Cohen (2001) and Hausman et al. (1998).
Figure 3 plots �B�AB�LB, and �BI as the common

safety factor z increases from 0 to 1.64 gradually. It is

Figure 2 The PC Example: Product Structure
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Figure 3 Personal Computer Example: Exact Result vs. Approximations

easy to observe that the approximation AB performs
extremely well for higher values of the safety factor,
corresponding to item fill rates 85% and above. The
same observation applies to other experiments with
different values of 	 and Li.
We now discuss the impact of product structure. In

the current setting, the PC manufacturer/distributer
allows the customers to specify what they want
in terms of the combination of standard or high-
profile hard drives and processors. Suppose the com-
pany wants to simplify the product feature offerings
by grouping the standard and high-profile options
together. That is, it offers the standard option �2�5�
and the high-profile option �3�6� only and eliminates
the demand types that consist of �3�5� and �2�6�.
In other words, customers now can choose from the
combinations of the following:
(1) built-in zip drive;
(4) DVD-Rom drive;
(2, 5) standard option for processor and hard drive;

and

(3, 6) high profile option for processor and hard
drive.
(See Figure 2.) Here, options (2�5) and (3�6) are exclu-
sive, that is, choose either one but not both. The ques-
tion is: What is the operational implication of the new
strategy? Would this significantly improve the aver-
age customer waiting time, or equivalently the total
order-based backorders �B?
We need to determine the market demand for the

new product line. First, we assume that the total
demand rate 	 is not affected. Second, we assume
that half of the original demand Type 35 will divert
into Type 25, and half into Type 136. Third, the
original Types 1345 and 1346 will converge to Type
1346. This is the simplest such scenario, though
of course not the only plausible one. Thus, there
are four major demand types in the new strategy.
They are �2�5�� �1�2�5�� �1�3�6�, and �1�3�4�6�. The
corresponding percentages are

q25 = 0�30� q125 = 0�15� q136 = 0�30� and q1346 = 0�25�
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Figure 4 compares the average backorders in the
original and revised systems. Here, we use the same
common safety factor z in both systems. (Note that
by changing the product structure, the item demand
rates have been changed in the revised system. There-
fore, the base-stock levels in the revised system are set
according to the revised item demand rates.) It is sur-
prising to observe that simpler product structure does
not necessarily lead to fewer total order-based back-
orders for the same level of common safety factor.
One plausible explanation is that the type of policy we
employed here, though commonly used in practice,
is suboptimal for this system. The true optimal pol-
icy should take into account the demand correlation
across items, which likely results in different ways
of setting item safety factors. For example, Item 1 is
shared by more products than any other item, so its
safety factor perhaps should be higher too. However,
exactly how much higher, and how to relate the safety
factors of all items, should be addressed in future
research.

Figure 4 Effect of Product Structure: Total Backorders vs. Common Safety Factor

It is tempting to conjecture that in the revised sys-
tem the total inventory investment is less. This is
harder to measure, however, because it depends on
the unit cost of each item. In the literature, the sum
of the base-stock levels

∑
i si is sometimes used as a

measure of inventory investment. This is viable if the
item costs are similar. Applying this measure here, we
find many counterexamples to the conjecture. In par-
ticular, Figure 5 presents the same set of data as in
Figure 4 in an alternative way. Instead of viewing the
average backorder as a function of the common safety
factor, we now view it as a function of the total base
stock �

∑
i si� corresponding to the safety factor. As the

figure shows, �B is not necessarily smaller under the
revised product structure, even with the same num-
ber of base-stock units. Thus, the presumed value of
simplified product structure cannot be easily achieved
by simple adjustments of the item-based inventory
policies. It depends critically on how carefully in-
ventory is managed by taking into account demand
correlation.
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Figure 5 Effect of Product Structure: Total Backorders vs. Total Base Stock

8. Batch Demands
Although the paper focuses on the unit demand sys-
tems, the analysis can be extended to systems with
batch demands. For any fixed K ⊆ �1� � � � � J �, assume
that the number of units of item i requested by a type-
K demand, ZK

i , is a positive integer random variable,
i ∈ K. Let 8K and 9K be the joint pmf and cdf of the
batch size vector ZK = �ZK

i �i∈K , respectively. Define

Zi = demand batch size for item i = ZK
i with

probability 	K/	i


9i = cdf of batch size Zi =
∑

K∈S�i�
�	K/	i�9

K
i �

Let Di be the steady-state lead-time demand of item i.
Then, Di has a compound Poisson distribution with
jump parameter 	i =

∑
K∈S�i� 	K and batch size Zi.

Denote by :�· � ��U� and ;�· � ��U� the pmf and
cdf, respectively, of the compound Poisson distribu-
tion with jump parameter � and batch size distribu-
tion U , and denote ; 0 = 1−; . Then the average item-i

backorder is given by

�Bi�si � Li�= E��Di− si�
+�=

∑
k=si

; 0�k�	iLi�9i��

To compute �B K again, it is more convenient to work
with a transformed system that contains items in K

only, as in §3.2. In addition to the transformed quan-
tities introduced in §3.2, let Y / be the demand size of
type K/ in the new system and let =/ be its probability
mass function. Then, with probability qA�=/ = 8A if
A∩K =K/. Let ��t�= �Di�t� � i ∈K� be the cumulative
demand vector by t, and define for every i ∈ K:

V/
i =

{
Y /
i � if i ∈ K/


0� otherwise.

Denote V/ = �V /
i � i ∈ K�. Then

��t�=
N 1�t�∑
m1=1

V 1�m1�+· · ·+
Np�t�∑
mp=1

V p�mp��
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where V/�m/� are independent copies of V/. Condi-
tioning on N/�t�= j/�/= 1� � � � � p, ��t� has the prob-
ability mass function

=�j� = �=1�j1 ∗ �=2�j2 ∗ · · · ∗ �=p�jp �

where ∗ means convolution and �=/�j stands for j-
fold convolution of =/. Using a similar approach as
in §3.2, we can show that

�B K�s�L� = 	KL− 	K

	̃

∑
z≤s

8K�z�

× ∑
j∈�K�s−z�

n!
j1! · · · jp!

�q−1�j1 · · · �q−p�jp

× ∑
x≤s−z

=�j��x�G0�n � 	̃L�

with n= j1+· · ·+jp. Suppose K = �1�2� � � � � k�, we also
have

�B K�s � L� = 	K

	k

�Bk�sk � +k�+	KLk−1G
0�sk−1 � 	k+k�

+
sk−1∑
y=0

:�y � 	k+k�9k��BK�s−yek � L′��

Here, L′ = �L1�L2� � � � �Lk−1�Lk−1�. Applying the same
technique to �BK�s− yek�L′�, and continuing in the
same fashion, we can express �BK�s�L� as the sum of
convolutions of one-dimensional compound Poisson
distributions and �BK�·�L�.
Clearly, the exact result for the batch demand case

is much more computationally demanding, due to the
complication of convolutions of the batch size distri-
bution. Therefore, it is of practical use only if the latter
has a simple form. In general, we propose the follow-
ing approximation, building on the lower-bound idea
used in the unit demand case. First, the average num-
ber of backorders of item i that are due to demand
type K is approximately

	KE�ZK
i �∑

A∈S�i� 	AE�ZA
i �

�Bi�

This quantity divided by E�ZK
i � approximates the

average number of type-K backorders that have item i
in short. Since the type-K backorder is the maxi-
mum of the latter among all items, applying Jensen’s
inequality we obtain an approximation

�B K ≈ 	Kmax
i∈K

{
�Bi
/ ∑

A∈S�i�
	AE�ZA

i �

}
�

The approximation is quite effective; we refer the
reader to Lu et al. (2001), in which a more general
model with independent, identically distributed lead-
times is studied, for more details.

9. Concluding Remarks
In this paper we studied continuous review, multi-
item inventory systems with multiple demand classes.
Each demand class requires a specific subset of
the items in stock. The model also applies to the
assemble-to-order manufacturing systems. The pri-
mary concern is how to evaluate the average order-
based backorders or the average number of customers
whose orders are not yet filled, for a given base-stock
policy. Both exact and approximation approaches
were developed. As shown in Song (2000), these
methods can be easily adapted to more general sys-
tems with batch ordering policies.
The results developed here greatly enhance the ana-

lytical and computational tractability of performance
analysis. As such, they lay a foundation for fur-
ther development of performance optimization tech-
niques, including characterization of optimal policies
for such systems.
The results can also be used as an analytical tool

to study broader strategic and operational issues. Sec-
tions 5 to 7 provided preliminary examples; many
insights have been derived with regard to multi-
item inventory-planning decisions and product struc-
ture issues. Much more effort is needed, however, to
resolve related modeling issues such as performance
optimization, and to identify the key determinants of
optimal inventory policies. We intend to study these
issues in future research. Indeed, some progress has
been made; see, for example, Song and Yao (2000) and
Lu et al.
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Appendix
Proof of Lemma 1. Because this is a base-stock system, each

item demand triggers a replenishment order for that item. Also,
since we assume nonnegative base-stock levels and the lead times
are constant, each item backorder must be filled by a replenishment
triggered by an earlier demand. In other words, a backorder for
item i occurred at time t must be filled by an order placed earlier
than t, i.e., it must be filled by time t+ Li . This implies that all
the existing Type-12 backorders at time 0− will have been cleared
by L++. As a consequence, �B12�t�� t ≥ 0� demonstrates a cyclical
behavior. In particular,

B12�t�= C�t�+R�t�� t ∈ �0�L++��

where

C�t� = cumulative new Type-12 backorders incurred since time 0

R�t� = remaining Type-12 backorders incurred before time 0�

C�t� is increasing and R�t� is decreasing in the interval �0�L++�.
Also, C�0�= 0�R�L++−�= 0�R�L++�=C�L++−�, and C�L++�=
0. This pattern repeats in all intervals �m�L++�� �m+ 1��L++��,
m = 0�1�2� � � � . Also, the statistical behavior of the two processes
C�t� and R�t� is identical in each of these intervals. Hence, �B12 is the
expected number of Type-12 backorders occurred during a cycle
�0�L++� that remain to be backlogged at �L++�−. �

Proof of Proposition 1. According to Lemma 1, �B12 is the
expected number of Type-12 backorders occurring during a cycle
�0�L++� that remain to be backlogged at �L++�−. We now cal-
culate this expected value by conditioning on the time interval in
which the backorders started. First, define

IO2�+� = outstanding orders of Item 2 at time +

IOold

2 �+� = orders of Item 2 that were placed before the cycle but
remain outstanding at time +;

IOnew
2 �+� = orders of Item 2 that were placed during [0�+)

IPi�+� = inventory position of Item 2 at time += INi�+�+

IOi�+�� i = 1�2�

Obviously,
IO2�+�= IOold

2 �+�+ IOnew
2 �+��

Also, since L2 = L++� IOold
2 �+� will have arrived to the system by

time L++ while IOnew
2 �+� will still remain outstanding at that time.

According to the law of flow conservation, we have

IN2�L++�= IN2�+�+ IOold
2 �+�−D2�+�L++�� (A1)

By the definition of base-stock policy, we have IP2�+� = s2. Also,
IOnew

2 �+�=D2�+�. So

s2 = IN2�+�+ IO2�+�= IN2�+�+ IOold
2 �+�+D2�+��

which leads to

IN2�+�+ IOold
2 �+�= s2−D2�+�� (A2)

In other words, at + the Item 2 base-stock coverage until L++ is
s2−D2�+�. (A2) is the key for the rest of the proof.

Suppose the quantity in (A2) is positive, then it means that any
backorders occurred before + will be filled by L++. If the quan-
tity is negative, then we must have IOold

2 �+� = 0 and IN2�+� < 0.
But, backorders occurred before 0 should be filled by orders that
were triggered before 0. So, IOold

2 �+�= 0 implies that the backorders
of Item 2 at +� �−IN2�+��

+ all occurred during �0�+�. Combining
these arguments, we conclude that the expected number of Item 2
backorders that started in interval �0�+� equals

E��D2�+�− s2�
+�= �B2�s2 � +��

Notice that for Type-12 demands that arrived during �0�+�, only
those backlogged for Item 2 may remain backlogged at �L++�−,
because all the backlogs for Item 1 that occurred in �0�+� will have
been filled by then. Thus, the number of Type-12 backorders started
in interval �0�+� have expected value

	12

	2
�B2�s2 � +�� (A3)

Now consider Type-12 backorders in �+�L++�. Applying (A2)
to (A1) yields

IN2�L++�= s2−D2�+�−D2�+�L++�� (A4)

By the definition of IP1 and the law of flow conservation, we also
have

IN1�L++�= IP1�+�−D1�+�L++�= s1−D1�+�L++�� (A5)

Recall that Di�+�L++� has the same distribution of Di�L�. Using
(A4) and (A5), the number of Type-12 backorders started in �+�L+
+� have expected value

E�max��−IN1�L++��+� �−IN2�L++��+��

= E�max��D1�L�− s1�
+� �D2�L�− �s2−D2�+���

+��

=
s2−1∑
y=0

P�D2�+�= y��B 12�s−ye2 � L�

+P�D2�+�≥ s2�E�D
12�L��� (A6)

The second term in the last equation follows because if D2�+�≥ s2,
then from (A2) IN2�+� ≤ 0, and therefore all the Type-12 demands
during �+�L++�will be backlogged, with expected value E�D12�L��.

Combining (A3) and (A6) yields (9). �
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