
Scaling impacted structures
R. E. Oshiro, M. Alves

Summary The problem of non-scalability of structures under impact loads caused by strain-
rate effects is solved in this article by properly correcting the impact velocity. The technique
relies on the use of an alternative dimensionless basis, together with a mathematical model
which allows the calculation of a correction factor for the impact velocity. This new velocity,
when applied to the model, makes it to assure the satisfaction of the scaling laws. The indirect
similitude method detailed here is applied to two strain-rate sensitive structures, a double plate
under in-plane impact and a beam subjected to a blast load. The results show a very good
agreement so that the model and a prototype made from strain rate sensitive materials behave
the same.
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1
Introduction
Structures subjected to severe dynamic loads present many features whose understanding and
analysis can be rather troublesome. Inertia effects, material response due to strain-rate effects
and thermal loading, material failure and stability are a few topics which have been attracting
the attention of many researchers. Despite substantial advances in theoretical and numerical
models, it is not accepted as yet by regulating authorities the certification of sophisticated
structures, e.g. airplanes, without full-scale experimental tests. Full-scale tests can obviously be
quite expensive and time consuming, demanding for special rigs and instrumentation. Clearly,
the number of these tests can be drastically reduced as numerical and theoretical models
advance. They can also be reduced in number and cost by performing tests in scaled models,
i.e. in structures whose dimensions have been increased or decreased in concerto by a single
factor.

Scaled models can be very attractive when considering the dimensions of structures like
trains, ships and airplanes. Testing a scaled airplane to impact loads, for instance, is much
more practical than a full scale test. Of course, that if scaled models are to be used, care
must be exercised in order to ensure that the so-called scaling laws are valid for the
structure under analysis. They were developed in the past on a strong theoretical basis and
an overview of them applied to impacted structures is given in [13]. However, we shall see
that, for structures under impact loads, the scaling laws may become, so to say, distorted. If
this is the case, test results on models cannot be traced back reliably to the prototype,
loosing the advantage of the approach.

Many authors have investigated the problem of scaling impacted structures, [3], [4], [7],
[9], [10],[12], [16], [19]. The Authors of paper [8] have highlighted some important issues
of the problem by investigating, a beam under transverse impact using a numerical and an
experimental technique. Dimensionless quantities related to impact structures have been
also suggested, like the Johnson’s damage number, Dn, which has been applied to the
dynamic plastic response of beams and plates made of rigid-perfectly plastic materials.
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Zhao (1998) improved this number by including in [21] geometrical effects, and named it
response number, Rn. He applied this number to express in a dimensionless form the
response of simple impacted structures. Li and Jones critically discussed these numbers in
[15], expanding them to include effects as strain hardening, strain rate, temperature and
transverse shear loads. Papers [11] and [17] have shown the importance of the response
number by applying it to the analysis of plates.

If we define a scaling factor as

b ¼ l

L
; ð1Þ

where l and L correspond to the model and the prototype dimensions, respectively, we are able
to relate some given variables of the model and prototype. For instance, the mass of a model
should be b3 times the mass of a prototype. This is achieved by applying simple dimensional
analysis, as detailed in [3], [13]. Table 1 lists the relations between certain variables of interest
in structures.

As previously indicated, structures under impact may not obey the usual scaling laws given
in Table 1, and many factors can contribute to it, e.g. gravity, strain rate, inertia effects and
fracture. This was found in the work [4] which was studying experimentally two different kinds
of welded steel plate structures and showing the non-scalability of the final deformed config-
uration for the various impacted models, Fig. 1.

One reason for the experimental dimensionless data in Fig. 1 to depart from the expected
scalability can be attributed to strain-rate effects and Table 1 helps to clarify the point. Suppose
a material constitutive law is given by

rd ¼ f ð _eÞ ;

where rd and _e are the dynamic flow stress and strain rate, respectively. If a structure made
from this material were to be scaled by b, we would obtain, from the strain-rate scaling factor in
Table 1,

rd ¼ f ð _e=bÞ ;

which would contradict the same Table 1, since the stress scaling factor must be 1 for perfect
similarity.

The fact that strain-rate effects are not prone to scaling is a major obstacle for the use of
scaled structures under impact loads.

It is opportune to observe that, despite all the effort in the field, so far, it seems that no
solution has been presented which could guarantee that model and prototype dynamically
loaded and made from strain-rate sensitive materials can be scaled. This is a strong impedi-
ment for impact tests of scaled models. Accordingly, this paper presents a robust correction
procedure which allows strain-rate sensitive model and prototype to behave strictly in a way
that their final configuration are scaled. This is done by properly changing the initial impact
velocity in a scaled impact test. The technique, explained in Sec. 2, is applied to three analytical
models in Sec. 3, and discussed in Sec. 4.

2
Correction procedure
As indicated, strain-rate sensitive structures cannot be scaled by the usual technique. To
overcome this shortcoming we develop in the sequence a non-direct similitude technique, also
used in [8]. Differently from these authors, we apply our analysis only to the scaled structure

Table 1. Relationships between the model and the prototype

variable scaling
factor

variable scaling
factor

variable scaling
factor

length (L) b time (t) b strain (e) 1
mass (G) b3 velocity (V) 1 acceleration (A) 1=b
stress (r) 1 displacement (d) b strain rate ( _e) 1=b
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and from its response we are able to estimate the prototype behavior. The basic idea we pursue
here is to change in a rational way the ratio between the impact velocity of the model and
prototype and by so proceeding, both the model and the prototype reach the same final scaled
configuration.

An important aspect is the use of a new set of dimensionless numbers based on the impact
mass, G, the initial impact velocity, V0, and on the dynamic yielding stress, rd. This new basis is
an alternative to the traditional approach which uses the MLT (mass, length, time) basis. We
then arrive at the reduced dimensional matrix in Table 2, formed by expressing the relevant
variables of an impact phenomenon, i.e. acceleration, A, time, T, displacement, d, strain rate, _e,
and stress, r as functions of the new basis V0, rd and G.

Standard procedures in dimensional analysis allows to generate the following dimensionless
P-terms:

Fig. 1. Experimental dimensionless displacement of the prototype and various scaled models subjected to
impact loads [4]
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for later use.
The fundamental problem we have set to solve is the non-scalability of impacted structures

due to strain-rate effects which, in turn, affect the flow stress. A scaling factor for the dynamic
stress is defined as

brd
¼ rdm

rdp

¼ f ð _emÞ
f ð _epÞ

; ð3Þ

where the indices m and p stand for model and prototype and f is a generic function given by
the material constitutive law.

We seek to find the correct strain rate for the model, _ec
m, such that

brd
¼ f ð _ec

mÞ
f ð _epÞ

: ð4Þ

Assuming that _e / V0=L, we can write

_ec
m

_enc
m

¼
bV0

V0=L

V0=L
¼ bV0

; ð5Þ

where nc stands for non-correct and

bV0
¼ V0m

V0p

ð6Þ

is the scaling factor for the impact velocity.
Obviously that bV0

should be 1 for a non-distorted model; however, for a strain-rate
sensitive material we need to find an initial impact velocity for the model such that model
and prototype are scaled. This can be achieved by using the dimensionless number P3 from
Eq. (2), leading to

P3m

P3p

¼
b3

dbrd

bGb2
V0

¼
b3brd

b3b2
V0

¼ 1 ; ð7Þ

and so

brd
¼ b2

V0
: ð8Þ

Now,

b _e ¼
_em

_ep
; ð9Þ

Table 2. Reduced dimensional matrix

variables

A T d _e r

V0 4/3 )1/3 2/3 1/3 0
basis rd 1/3 )1/3 )1/3 1/3 1

G )1/3 1/3 1/3 )1/3 0
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but we rewrite it as

b _e ¼
_ec
m

_ep
; ð10Þ

since we are seeking for the correct strain rate. Furthermore,

b _e ¼
bV0

b
ð11Þ

can be obtained from P4m
=P4p

¼ 1. Therefore, from Eqs. (5) and (10), it follows that

b _e ¼
bV0

_enc
m

_ep
: ð12Þ

Finally, using Eq. (11) and (12) it can be shown that

_ep ¼ b _enc
m ; ð13Þ

which allows the calculation of the new (corrected) bV0

bV0
¼

ffiffiffiffiffiffiffi
brd

q
¼

ffiffiffiffiffiffiffi
rdm

rdp

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
f ð _ec

mÞ
f ð _epÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðbV0

_enc
m Þ

f ðb _enc
m Þ

s
; ð14Þ

when bearing in mind Eqs. (5), (8) and (13).
Equation (14) is the key for correcting the distortion of a model subject to an impact

load. It requires to know the strain rate in the non-corrected model, _enc
m , and the dimen-

sional scaling factor, b, to be applied in the constitutive model, so that the stress levels can
be calculated. A straightforward recursive procedure is then used to extract bV0

, and so the
corrected impact velocity which, when applied to the model, will make it to behave as with
no distortion. Observe that the approach here only sets a way to correct the initial impact
velocity, so that the strain rate and the dynamic flow stress are properly altered. The
particular form of the constitutive model, as described by the function f , is not relevant in
the approach here developed.

It is opportune to observe that other variables are of interest in an impact event. We see from
Table 1 that time is scaled by a factor b. However, due to the inherited distortion of the model,
time needs to be corrected. To do so, we can use, for instance, the dimensionless numbers P2,
such that

P2m

P2p

¼
b3

Tbrd
bV0

bG

¼ 1 ; ð15Þ

which results in

bT ¼
b

bV0

: ð16Þ

Observe that in both Eqs. (7) and (16), bG ¼ b3 because we deliberately enforced the
standard scaling law for mass. By manipulating the various dimensionless numbers formed
using the new basis, Eq. (2), it is straightforward to show that the acceleration scales
according to

bA ¼
b2

V0

b
: ð17Þ

The correction procedure here suggested can be summarized in the following basic steps:

(1) simulate the model scaled by b
(2) obtain the non-corrected strain rate, _enc
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(3) calculate bV0
from Eq. (14)

(4) calculate the new impact velocity from bV0
and the original impact velocity

(5) perform step 1 but with the new corrected velocity

By applying this procedure, the final geometry of the model the and the prototype will be scaled
by the desired factor b. Observe that variables like acceleration, time, strain rate and stress do
not scale according to Table 2. Nevertheless, they can equally be predicted with the help of Eq.
(8), for stress, Eqs. (11) for strain rate, Eq. (16) for time and Eq. (17) for acceleration. Note that
if bV0

¼ 1, all the equations presented here reduce to what we could call linear scaling laws.

3
Correcting some distorted models
In this section, we apply the correction procedure described before to two basic structures
subject to dynamic impact loads sufficiently intense to cause material plastic flow but not
failure. The structures under analysis were chosen in order to highlight some peculiar features.
Accordingly, a double plate structure under axial impact load was elected because it exhibits
two phases of motion, with compression and bending in the presence of buckling. We also
chose a clamped beam subject to an impulsive velocity which undergoes finite displacements.
These models have all theoretical solutions, whose responses do not scale when they are based
on a strain-rate sensitive material. It is shown that the technique here suggested allows the
response of these structures to be properly scaled.

3.1
Plate under axial impact
Consider two plates clamped together at the base and at the top as shown in Fig. 2. The plates
were pre-bent by a small initial rotation and axially impacted by a mass, G, travelling with an
initial velocity V0. This configuration was studied experimentally in [5] and [18]. The structure
typically responds with an initial peak load followed by a stiff decreasing load and it has been
classified as type II structure. To the present context, it is relevant to observe that structures of
type II are very sensitive to strain-rate effects and broadly it comprises of plates loaded in-
plane.

3.1.1
Basic equations
The model in Fig. 2 has two phases of motion which were described in [18] and [20]. The initial
stage is dominated by axial compression, q, of the plates and it is ruled by

V0 �
Srd

G
t ¼ 2

12rdS

ml

� �1=2w2
0

l
sinh 2

12rdS

ml

� �1=2

t

" #
þ _q : ð18Þ

Fig. 2. A two-plate structure under axial impact
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This stage ends at t ¼ s1, obtained by solving

V0 �
Srd

G
s1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
12Srd

ml

r
w2

0

l
sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffi
12Srd

ml

r
s1

 !
; ð19Þ

where S is the cross section of the bar, l ¼ 2L, m is the mass of the bars and w0 is the horizontal
displacement at the center of the bars corresponding to the initial rotation, h0, rd is the
dynamic flow stress obtained using the Cowper–Symmonds equation, [1]

rd ¼ r0 1þ _e
D

� �1=p
( )

; ð20Þ

where D and p are material constants and r0 is the quasi-static flow stress.
The final rotation and angular velocity at this first phase of motion are given by

h1 ¼
2

l
w0 cosh

ffiffiffiffiffiffiffiffiffiffiffiffi
12Srd

ml

r
s1

( )
ð21Þ

and

_h1 ¼
2

l
w0

ffiffiffiffiffiffiffiffiffiffiffiffi
12Srd

ml

r
sinh

ffiffiffiffiffiffiffiffiffiffiffiffi
12Srd

ml

r
s1

( )
; ð22Þ

which are used as initial conditions for the second (bending) phase of motion ruled by

€hþ L2ðmþ GÞ sin h cos h _h2 þM1 þM2

L2 m
3 þ ðmþ GÞ sin2 h
� � ¼ 0 ; ð23Þ

possible to be solved numerically when adopting

M1 ¼
_h

8D

 !1=p
2p

2pþ 1
þ 1

2
4

3
5M0 ð24Þ

and

M2 ¼
_h

4D

 !1=p
2p

2pþ 1
þ 1

2
4

3
5M0 ; ð25Þ

where M0 ¼ r0bh2=4, b and h are the plate width and thickness respectively. A hinge length of
4h was adopted, [18].

A simple analysis of the above governing equations shows that the non-scalability of the
model is solely due to the constitutive equation via the strain-rate effects, since when scaling
the moments by a factor b it results in

M1 ¼
bV0

_h

8bD

 !1=p
2p

2pþ 1
þ 1

2
4

3
5M0 ð26Þ

and

M2 ¼
bV0

_h

4bD

 !1=p
2p

2pþ 1
þ 1

2
4

3
5M0 : ð27Þ
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Obviously, that the model can become strongly distorted according to the material parameters
D and p, as shown next.

3.1.2
Correction procedure
The equations of motion developed in the previous section for the in-plane plate impact were
solved numerically for two different materials, mild steel and aluminum alloy. Since the mild
steel is quite strain-rate sensitive, the distortion in a scaled model should be more evident than
in the less strain-rate sensitive aluminium alloy.

To obtain the correction factor, the equation of motions (18) and (23) are solved initially
with no correction whatsoever, i.e. bV0

¼ 1. The value of _hnc at the end of the motion is then
used in Eq. (14), which becomes

bV0
¼

bV0
_hnc
m

4D

� �1=p
2p

2pþ1þ 1

b _hnc
m

4D

	 
1=p
2p

2pþ1þ 1

2
6664

3
7775

1=2

; ð28Þ

Fig. 3. Evolution of the plate rotation for different scaling factors when no correction for distortion is
applied
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for the present case. This allows the calculation of bV0
, to be used in all the scaled equations of

motion and in the dynamic flow stress presented in the (scaled) initial conditions for the
second phase of motion, Eqs. (21) and (22).

3.1.3
Results
The evolution of the rotation angle, h, is shown in Fig. 3 for different scaling factors, both for
aluminium and steel plates described in Table 3. It is evident that the angular motion is quite
sensitive to the scaling factor, even for the aluminium alloy.

Figure 3 shows clearly the non-scalability and this effect is attributed to the influence of the
strain rate on the flow stress. Note that the decrease of the scaling factor means larger strain
rates with the consequent increase of the material flow stress and the decrease of the rotation.
Relative to the prototype, the observed deviations of the non-corrected scaled models are listed
in Table 4 (aluminium) and Table 5 (steel) for various scaling factors and variables of the
phenomenon at the end of the motion.

Our initial claim that it is possible to correct a distorted model is now demonstrated when
comparing the errors in these tables, where it is evident that the correction procedure signif-
icantly decreases the errors.

Visually, the decrease of the errors can be better appreciated in Fig. 4, which shows the
evolution of the rotation angle of the plate with time for various scaling factors. Note that, even
for steel plates, the error is quite small and acceptable.

Table 4. Results at the end of the motion for corrected, c, and non-corrected, nc, models made of alu-
minium. Errors are absolute and relative to the prototype (b ¼ 1)

Variable b ¼ 1 b ¼ 1=2 b ¼ 1=4 b ¼ 1=10
bV0

1.00 1.02 1.04 1.08

hcð�Þ 39.18 39.19 39.21 39.25
hncð�Þ 39.15 38.33 37.41 36.04
errorcð%Þ 0.00 0.03 0.08 0.18
errorncð%Þ 0.08 2.17 4.52 8.01

sc
1(ms) 1.97 1.97 1.97 1.97

snc
1 (ms) 1.97 1.98 1.89 1.77

errorcð%Þ 0.00 0.00 0.00 0.00
errorncð%Þ 0.00 0.51 4.06 10.15

Ac(m/s2) 3138.00 3137.00 3136.00 3131.00
Anc(m/s2) 3137.65 3261.80 3410.80 3654.46
errorcð%Þ 0.00 0.03 0.06 0.22
errorncð%Þ 0.01 3.95 8.69 16.46

_ec(1/s) 181.43 181.37 181.23 180.90
_enc(1/s) 181.43 184.11 187.50 192.94
errorcð%Þ 0.00 0.03 0.11 0.29
errorncð%Þ 0.00 1.48 3.35 6.34

rc(MPa) 125.69 125.67 125.62 125.44
rnc(MPa) 125.69 130.66 136.63 146.39
errorcð%Þ 0.00 0.02 0.06 0.20
errorncð%Þ 0.00 3.95 8.70 16.47

Table 3. Geometry and material properties of the plates

geometry mild steel aluminium

L ¼ 25mm q ¼ 7800kg/m3 q ¼ 2700kg/m3

h ¼ 1:6mm r0 ¼ 235Mpa r0 ¼ 100Mpa
b ¼ 5:0mm p ¼ 5 p ¼ 4
h0 ¼ 1:07� D ¼ 40/s D ¼ 6500/s
G (kg) 6.41 6.41
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3.2
Clamped beam subject to a uniformly distributed velocity pulse
We analyse now another category of structures, namely beams under transverse impact
loading, aiming to show that the approach here developed is quite robust, regardless of the type
of structure or loading.

The problem is of a beam loaded with an initial impact velocity throughout all its span,
Fig. 5. Different phases of motion exist in this problem, as detailed in [13]. Here of interest is
the final maximum displacement achieved by the prototype and the model.

3.2.1
Basic equations
The final displacement for this class of beams, Wf , can be obtained by applying the following
equation:

Wf

H
¼ 1

2
1þ 3k

4

� �1=2

�1

( )
; ð29Þ

where H is the beam depth and

k ¼ 4qV2
0 L2

r0H2
ð30Þ

is a dimensionless impact energy. It can be shown [2], that Eq. (29) becomes

Wf

H
¼ 1

2
1þ 3

qV0L2

nr0h2

� �1=2

�1

" #
ð31Þ

when strain-rate effects are cared for using the Cowper–Symmonds equations, with

n ¼ rd

r0
¼ 1þ

V0Wf

3
ffiffiffi
2
p

DL2

� �1=p

ð32Þ

and the average strain rate

Table 5. Results at the end of the motion for corrected, c, and non-corrected, nc, models made of steel.
Errors are absolute and relative to the prototype (b ¼ 1)

variable b ¼ 1 b ¼ 1=2 b ¼ 1=4 b ¼ 1=10
bV0

1.00 1.04 1.08 1.15

hcð�Þ 17.45 17.46 17.47 17.50
hncð�Þ 17.42 16.66 15.87 14.81
errorcð%Þ 0.00 0.06 0.11 0.29
errorncð%Þ 0.17 4.53 9.05 15.13

sc
1 (ms) 0.51 0.51 0.51 0.51

snc
1 (ms) 0.51 0.49 0.45 0.40

errorcð%Þ 0.00 0.20 0.20 0.39
errorncð%Þ 0.00 3.73 11.57 21.37

Ac (m/s2) 12086.00 12082.00 12071.00 12044.00
Anc (m/s2) 12086.20 13059.53 14195.19 15985.22
errorcð%Þ 0.00 0.03 0.12 0.35
errorncð%Þ 0.00 8.06 17.45 32.26

_ec (1/s) 345.25 345.06 344.78 344.17
_enc (1/s) 345.25 357.12 371.62 393.46
errorcð%Þ 0.00 0.06 0.14 0.31
errorncð%Þ 0.00 3.44 7.64 13.96

rc (MPa) 484.77 484.01 483.57 482.47
rnc (MPa) 484.16 523.15 568.64 640.35
errorcð%Þ 0.00 0.16 0.25 0.47
errorncð%Þ 0.13 7.92 17.30 32.09
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_e ¼
V0Wf

3
ffiffiffi
2
p

L2
: ð33Þ

Observe that Eq. (31) takes finite displacements into account as well as strain-rate effects in the
material response. Also, scaled structures would have the same scaled final displacement
according to Eq. (31) if it were not for the strain-rate sensitivity factor, n, which, when scaled,
gives

Fig. 4. Evolution of the plate rotation for different scaling factors with correction for distortion applied

Fig. 5. A clamped beam under
transverse blast load
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n ¼ 1þ
V0Wf

3
ffiffiffi
2
p

DbL2

� �1=p

; ð34Þ

where it can be seen that the scale factor, b, cannot be eliminated.

3.2.2
Correction procedure and results
The correction procedure to be applied is rather simple and it consists in obtaining the new
scaling factor bV0

from Eq. (14), which yields

bV0
¼

1þ bV0
_enc
m

D

	 
1=p

1þ b _enc
m

D

	 
1=p

2
64

3
75

1=2

: ð35Þ

Now, the non-correct strain rate for the model is

_enc
m ¼

V0Wnc
fm

3
ffiffiffi
2
p

L2
m

; ð36Þ

finally giving

bV0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bV0

V0Wnc
fm

3
ffiffi
2
p

DL2
m

	 
1=p

1þ bV0Wnc
fm

3
ffiffi
2
p

DL2
m

	 
1=p

vuuuut ; ð37Þ

which can be solved numerically with regard to bV0
.

We applied the model to a mild steel beam with r0 ¼ 210:3 MPa, q ¼ 7829 kg/m3,
H ¼ 2:3mm and L ¼ 63:7mm, with the Cowper-Symmonds parameters of p ¼ 5 and
D ¼ 40:5 /s. The impulsive velocity is V0 ¼ 50m/s and Table 6 lists the final displacement and
errors for both the corrected and non-corrected models and different scaling factors. We
deliberately used a mild steel for its known strain-rate sensitivity, which is the only aspect in
this problem causing distortion of the scaling laws, as already detailed.

4
Discussion
The possibility of working with strain-rate sensitive scaled structures has been severely limited
when they are loaded dynamically in a way to exhibit plastic deformation. The fact that the
material increases its resistance as the impact load is applied makes the scaling laws to be
distorted. This can easily be seen by examining the Cowper-Symmonds constitutive law, Eq.
(20). The model to prototype dynamic flow stress ratio is given by, [13]

rdm

rdp

¼
1þ 1

b

	 
1=p

2
; ð38Þ

Table 6. Results for the final corrected, c, and non-corrected, nc, displacement of mild steel beams im-
pulsively loaded with V0 ¼ 50m/s. Errors are absolute and relative to the prototype (b ¼ 1)

b Wf =Hnc errorncð%Þ bV0
Wf =Hc errorcð%Þ

1 4.66 0.00 1.00 4.66 0.00
1/2 4.50 3.57 1.04 4.66 0.01
1/4 4.33 7.24 1.08 4.66 0.06
1/10 4.10 12.18 1.14 4.66 0.16
1/20 3.92 15.96 1.19 4.65 0.28
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when the strain rate equals the material parameter D. For q ¼ 5, Fig. 6 shows how relevant is
the departure of the stress in the model from the prototype, suggesting that models with large
scaling factors cannot possibly be tested under impact loads causing strain rates of the order of
the constant D.

It seems that so far there is no technique available to properly correct a scaled model under
impact loads. The present work explores this problem by suggesting a robust, simple and
accurate technique, so that any sought variable can be scaled. This opens the possibility for
impact tests on scaled structures.

The technique was applied to structures of type I and II with the sole purpose to demonstrate
that structures with radically different behaviour and undergoing different phases of motion
can be scaled with a minimum error.

It is important to point out that the chosen strain rate used in the correction procedure was
the one at the final phase of motion for the in-plane impacted plate and a constant value
throughout all the motion for the beam. This is to say that we cannot correct all stages at same
time. Nevertheless, the errors were always quite small, confirming that the technique is quite
accurate.

It is implicit in all the above calculations that the approximation

_e / V0

L
ð39Þ

holds.
However, this relationship might be too simple to describe the strain rate in some structures.

The studied models exhibited a good agreement partially due to the fact that the actual strain
rates are closer to the relation in Eq. (39), as indicated in Fig. 7 for the plates under axial
impact.

The work from [8] uses a non-direct similitude approach but it differs substantially from
what we suggest here. One important point is that the technique presented in [8] needs to
perform a test on the prototype in order to infer the behaviour of a scaled model. This is not
desirable, especially in the context of analysis of large impacted structures.

Paper [6] has suggested a correction procedure for distorted models in which the initial
impact velocity is scaled by b. Although this breaks the natural scaling laws, it implies that the
strain rate in both model and prototype are the same. This leads to equal stresses in the model
and prototype, since rd does not change with b, as it can be seen from

rd ¼ r0 1þ bV0

Dbl

� �1=p

¼ r0 1þ V0

Dl

� �1=p

: ð40Þ

However, in order to scale the input energy, it is necessary to scale the drop mass by b and not
by b3, as usual. If this scheme is adopted for the axial impact of a plate made of mild steel and
with the same geometry and initial conditions as before, the results are quite poor, as it can be
seen in Fig. 8, which can be compared with Fig. 4(b).

Fig. 6. Influence of the scaling factor
on the flow stress at _e ¼ D and q ¼ 5
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One of the reasons for this strong distortion is that the time for completion of the first phase
of motion becomes rather distorted and not linearly proportional to b, as it should be the case
for the linear scaling laws (s. Table 1) when no strain rate effect is considered.

5
Conclusions
A technique has been described which allows for the correction of distorted models in a way
that the final configurations of the model and prototype are properly scaled. The idea is to alter
the impact velocity which in turn alters the strain rate. It is the strain rate the variable
responsible for the non-scalability of the structural models studied here.

The procedure yields information for the calculation of the corrected velocity factor which is
subsequently used to calculate the new velocity. By applying this later velocity to the scaled
model, the scalability of the structure is guaranteed within a very small error.

Fig. 7. Actual strain rate in the plate problem and as given by Eq. (39)
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Moreover, the results give the values of time, acceleration, strain rate and stress for the
scaled structure, such that it is now possible to work with scaling models made from strain-rate
sensitive materials.

In this work, only strain rate effects have been studied. It can be concluded that the
important problem of distortion of scaling models due to these effects has been solved by the
simple, robust and accurate method presented in the paper.
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