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Abstract 

We hypothesized that in a normal healthy population 
changes in several ECG parameters together might 
reliably characterize the functional age of the heart. 

Data from 377 healthy subjects (209 men, 168 women, 
aged 4 to 75 years) were included in the study. In all 
subjects, ECG recordings (resting 5-minute 12-lead high 
fidelity ECG) were evaluated via custom software 
programs to calculate up to 120 different conventional 
and advanced ECG parameters. Using factor analysis, 
those 5 parameters that exhibited the highest linear 
correlations with age and that were mutually the least 
correlated were evaluated by multiple linear regression 
analysis to predict the functional electrical age of the 
heart. Ignoring small differences between males and 
females, functional electrical age was best predicted (R2 
of 0.76, P < 0.001) by multiple linear regression analysis 
incorporating the RR-interval normalized high frequency 
variability of RRV; the RR-interval normalized value of a 
QT variability parameter called QTcor; the mean high 
frequency QRS (150-250 Hz) amplitude; the mean ST 
segment level at the J point; and the body mass index.  

In apparently healthy subjects, functional cardiac age 
can be estimated by multiple linear regression analysis of 
mostly advanced ECG parameters. 

 
 

1. Introduction 

It is known that changes in parameters such as the 
amplitude, duration and electrical axis of different ECG 
waves or variability of ECG intervals such as HRV and 
QTV reflect the effects of age and gender on the resting 
ECG [1-5]. We hypothesized that in a normal healthy 
population changes in several ECG parameters together 
might reliably characterize the functional age of the heart. 

 
 
 

2. Methods  

2.1. Participants  

    Our study population was recruited at four sites: in 
Slovenia from both rural areas (312) and urban Ljubljana 
(222); from Johnson Space Center (Houston, TX) (245); 
and from healthy pediatric controls at Lund University 
Hospital (138). The initial population of 917 subjects was 
ultimately reduced to 377 subjects (209 men, 168 women, 
ranging from 4 to 75 years of age) after exclusion criteria 
that included hypertension, diabetes, smoking, positive 
cardiac history, overt ECG abnormality, regular rigorous 
endurance exercise training and/or extreme BMI. All 
participants gave original informed consent, and the 
Institutional Review Boards of one or more of the 
institutions approved the studies. 
 
2.2. Data collection  

In all subjects, high-fidelity (1000 samples/sec/ 
channel) ECG systems from Cardiax/CardioSoft 
(Budapest, Hungary/Houston, TX) [6] were utilized to 
acquire resting 5-minute ECG recordings in the supine 
position to get a minimum of 256 waveforms acceptable 
for both signal averaging and variability analyses which 
were evaluated via custom software programs to calculate 
up to 180 different conventional and advanced ECG 
parameters.  Besides, body height and body weight were 
measured to calculate body mass index (BMI). 

 
2.3. Analysis of ECG signals  

A. Conventional ECG parameters. Signals from the 
conventional ECG were analyzed automatically in 
software with respect to the RR, PR, P-wave, QRS and 
uncorrected and corrected QT and JT intervals; P, QRS 
and T-wave amplitudes; frontal plane QRS and T-wave 
axes; and ST segment levels.  
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B. Advanced ECG parameters derived from signal 
averaging and from variability analyses. Signal averaging 
was performed using software developed by the authors 
[6-9] to generate results for parameters of:  

1) 12-lead high frequency (HF, 150-250 Hz) QRS 
ECG from which principal vectors were determined by 
singular value decomposition (SVD) and the first three 
vectors  used to calculate a root mean square (RMS) HF 
QRS amplitude defined as a square-root of the sum of the 
squared first three principal signals. Both the peak 
(HFQRS A) and mean (HFQRS M) HFQRS RMS signals 
were characterized; 

2) derived 3-dimensional ECG, using the Frank-lead 
reconstruction technique of Kors et al [10] to derive 
several vectocardiographic (VCG) parameters including 
e.g. the spatial mean QRS-T angle, the magnitude, 
azimuth /elevation [11] and the spatial ventricular 
gradient and its components;  

3) QRS and T-waveform complexity via SVD, e.g. to 
derive parameters such as the principal component 
analysis (PCA) ratio, intradipolar ratio (IRD) [7,12,13] 
the “relative residuum” [7,14] and the dipolar and non-
dipolar voltages [6,15] of the QRS and T waveforms, and 

4) Several parameters of beat-to-beat RR and QT 
interval variability (RRV and QTV) were evaluated via 
custom software programs developed by the authors as 
described in previous publications [5,6,16-18]. These 
included different components of the frequency power 
spectra (VLFP, LFP, HP and TP: very low, low, high and 
total, respectively), obtained using the autoregressive 
model or Lomb periodogram [19]; the “QT variability 
index” (QTVI), but using the means and variances of the 
RR interval[5,20] rather than those of the heart rate [21] 
in the denominator of the QTVI equation, and the 
“unexplained” part of the QT variability [5,16]  For the 
latter, the QTV signal was decomposed into two parts as 
previously described: one part that can be accounted for 
by the concomitant HRV and/or by the concomitant 
variability of the QRS-T angle and ECG voltages, and the 
other part representing the “unexplained” part of QTV 
[5,16].  The QT signals were fit by a linear combination 
of the RR interval, QRS-T angle and voltage signals, with 
the fitted part representing the “explained” QTV and the 
remaining “error” part representing the “unexplained” 
QTV. A modified “index of unexplained QTV” (UTVI) 
similar to QTVI was then calculated by replacing the 
variance of the total QTV by the variance of the 
unexplained QTV. In addition, the cross-correlation 
(QTcor) between the QT signal and its explained QT 
signal was determined for all ECG leads. 

 
2.4. Statistical methods 

The parameters thus obtained for each subject 
represented variables for further statistically analysis. 
First, correlations among each variable and age were 

determined using a median fit regression by minimizing 
absolute deviation (dev). From the latter, the t statistic 
parameter b1/dev, defined as slope of the regression line 
(b1) divided by absolute or standard deviation was 
determined. Parameters that satisfied the criteria 
abs(b1/dev) > 2 and the correlation coefficient R2 > 0.2 
were used in the multiple linear regression [22]. 

Variables were standardized by converting raw data to 
unitless standardized deviates by subtracting the mean of 
each variable and dividing by the standard deviation of 
the variable. For elimination of multicolinearities, the 
correlation matrix of the standardized variables was 
calculated and the matrix rotated to identify collinear 
variables [23]. Factor analysis was used to identify 
representative ECG parameters from the subset of 21 
variables, with utilization of principal component analysis 
(PCA) for final extraction of the reduced factor model. 

  
3. Results  

An acceptable correlation with logarithm of age was 
found for 31 parameters that could be arranged into 
several groups based on the particular waveform 
characteristic (e.g., amplitude, duration, axis) or its beat-
to-beat variability. 

Best regression was obtained for the group of the 
variability parameters of either the RR or the QT interval, 
with the largest R2 being obtained for the HF component 
of RRV from the Lomb periodogram as normalized by 
the RR interval (LoHF/RR). R2 was only slightly lower 
for the QTcor/RR and certain other QT variability 
parameters (Table 1).  We introduced the ratio of LoHF 
(and QTcor) to the RR interval (i.e., the parameters 
LoHF/RR and QTcor/RR) after noting that they become 
smaller with age but “saturate” below age 20, whereas the 
RR interval itself increases roughly up to age 20 and 
stabilizes thereafter. The use of the ratios reduced non-
linearity over the whole range of log(Age) and improved 
correlations by roughly 50%. 

For the QRS complex the largest R2 was obtained for 
the HFQRS M, followed by that of the conventional QRS 
upslope (dVdt1QRS). The conventional QRS amplitude 
and frontal plane QRS electrical axis were not particularly 
contributory, nor were conventional characteristics of the 
T and P wave except for modest contributions of the P 
wave duration (Pd) and T wave amplitude. 

A considerably good correlation with log(Age) was 
observed for the ST segment level evaluated at the J point 
(ST-J) as represented by the mean value for ECG leads I, 
II, V5 and V6. This value was also correlated with the 
derived-VCG transverse plane azimuth angle of the ST. 

In the final model those 5 parameters that exhibited the 
highest linear correlations with age and that were 
mutually the least correlated by the factor analysis, were 
evaluated by multiple linear regression analysis. 
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Table 1. Linear median fit regression of log(Age) for 
different ECG parameters (377 healthy subjects). 

 
Parameter bi/devi r2 
RR_mean 1.96 0.14 
LoHF -3.69 0.39 
LoHF/RR -6.01 0.62 
ARHF -3.24 0.30 
QTcorr -3.44 0.39 
QTcor/RR -5.42 0.55 
BMI 3.93 0.40 
HFQRS_M -2.96 0.29 
dVdt QRS -2.73 0.26 
ST-J -2.43 0.23 
ST azi 1.91 0.20 
dP 2.02 0.13 
QRSdev -0.89 0.04 
Amp_QRS -1.96 0.16 
NDPVQRS -1.96 0.16 
UTVI II 2.55 0.23 
QTVI II 1.21 0.12 

 
bi/devi:the slope of the regression line divided by the 

absolute deviation; R2:squared value of the correlation 
coefficient; p: p value; RR mean: mean RR interval [ms]; 
LoHF, ARHF: logarithm of the HF component of the RR 
interval power spectrum for the Lomb periodogram and 
the autoregressive model, respectively [Ln ms2/Hz]; 
QTcorr: the cross-correlation coefficient of the measured 
and fitted QT signal [unitless]; HFRR/RR, QTcor/RR: Lo 
HF and QTcorr divided by RR interval; BMI: body mass 
index [kg/m2]; HFQRS M: mean value of the RMS HF 
QRS signal [μV]; ST-J: mean value of the J point level 
[μV];ST azi: azimuth angle of the ST segment in the 
transverse plane;  Pd: P wave duration [ms]; QRSdev: 
deviation of the QRS axis in the frontal plane [deg]; 
Amp_QRS: RMS amplitude of the QRS complex as 
obtained from PCA; NDPVQRS: non dipolar value of the 
QRS complex; UTVI: index of QT variability similar to 
QTVI but with the variance of the unexplained part of 
QTV instead of the total QTV; QTVI II: QTVI index in 
the standard lead II;  for all p<0.0001. 

 
 
Ignoring small differences between males and females, 

functional cardiac age was predicted  (R2 of 0.76, P < 
0.001) from a linear combination of the following best 5 
univariate predictors (Figure 1, Table 2) that were the best 
surrogate variables for the five dimensional factor space: 
the variabililty parameter LoHF/RR of RRV, the 
repolarization parameter QTcor/RR, mean high frequency 
QRS amplitude (HFQRS M), the J point level (ST-J), and 
the anthropological parameter BMI (for all p<0.001). 

 
Figure 1. Functional cardiac age, as estimated by 

multiple linear regression analysis of the chronological 
age  

 
When the group of subjects was increased to all 

outwardly healthy subjects (including smokers, athletes 
and those with extreme BMI and asymptomatic 
hypertensives and diabetics) the explained variance was 
decreased to R2 of 0.73, i.e. only slightly, but with the 
regression line at slightly higher age.  

 
Table 2. Multiple linear regression analysis for the 

selected ECG parameters (377 subjects). 
 

 
Coeff.: coefficients of the linear regression equation; 

IncVar: explained variance increased by adding 
successive parameters from LoHF/RR to ST-J, for all 
p<0.0001. For explanation see Table 1. 

 
4. Discussion and conclusions 

We found that in apparently healthy subjects, 
functional cardiac age can be estimated by multiple linear 
regression analysis of mostly advanced ECG parameters. 
More than 80% (=0.624/0.76) of the estimate was 
contributed by LoHF/RR, i.e. the HF parameter of RRV, 
as normalized to the mean RR interval. Although some of 

Parameter Coeff. IncVar 
LoHF/RR -0.0628 0.62 
QTcor/RR -0.2536 0.66 
BMI 0.0132 0.71 
HFQRS_M -0.0166 0.73 
Jpt level -0.0019 0.76 
Const 1.85 0.76 
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our advanced ECG parameters of repolarization 
manifested good linear correlations with age, our study 
failed to reproduce those notable correlations to age 
previously reported for conventional electrocardiographic 
parameters such as the frontal plane QRS electrical axis 
[1], although modest correlations between age and this 
parameter were present our Slovenian rural population 
subgroup. A surprisingly good correlation was also found 
between age and the J-point ST segment level in the 
leftwardly-directed primary ECG channels I, II, V5 and 
V6, with reduction in this J-point level of approximately 
50 μV over the span of a typical lifetime.  
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