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ABSTRACT 
 
Algorithms of trimming implicit surfaces yielding surface sheets and stripes are presented. These two-
dimensional manifolds with boundaries result from set-theoretic operations on an implicit surface and a 
solid or another implicit surface. The algorithms generate adaptive polygonal approximation of the 
trimmed surfaces by extending our original implicit surface polygonization algorithm. The presented 
applications include modeling several spiral shaped surface sheets and stripes (after M. Escher’s art 
works) and extraction of ridges on implicit surfaces. Another promising application of the presented 
algorithms is modeling heterogeneous objects as implicit complexes. 
 
1. INTRODUCTION 
 
This work was inspired by art works of M.C. Escher namely “Sphere Spirals” (1958), “Bond of Union” 

(1956), and “Rind” (1955), showing spiral shaped surface sheets cut of a sphere and human head 

surfaces. These art works raise two questions: 

1) How does one define a geometric model for a surface sheet of this type? 

2) How does one visualize such a geometric model? 

 

Modeling heterogeneous objects is becoming an important research topic in different application areas of 

shape modeling. Such objects are heterogeneous from the points of view of their internal structure and 

dimensionality. Dimensionally heterogeneous objects include elements of different dimension (points, 

curves, surfaces, solids) combined into a single entity from the geometric point of view  (point set) and 

the topological point of view (cellular complex) [7]. The recently introduced cellular-functional model 

[1] allows for representing a heterogeneous object as a cellular complex with explicit cells (BRep, 

parametric curves, wireframes, point lists) and implicit cells (implicit surface patches, intersections of 

implicit surfaces). An implicit surface patch can be defined in different ways, for example, as an implicit 



surface trimmed by an intersecting solid. Some applications such as physical simulation based on finite-

element meshes require conversion of an implicit complex to the pure cellular representation. Such a 

conversion of a trimmed implicit surface to a polygonal mesh is a subject of this paper. 

 

It was proposed in [12] to use CSG (Constructive Solid Geometry) solids for trimming of boundary faces 

of CSG models to isolate, in a primitive’s face, its contribution to the boundary of the solid. Such a 

formulation was shown to present considerable computational advantages over trimming curves 

commonly used in boundary representations and to have applications in rendering and point-membership 

classification. In our work, we pursue this idea to model implicit surface sheets and stripes. 

 

A surface sheet or stripe can be mathematically defined as a two-dimensional manifold with boundary 

(or simply a 2-manifold). Modeling and visualization of the above-mentioned spiral type 2-manifolds 

using parametric surfaces seems to be a difficult task. The alternative is to use isosurfaces of functions of 

three variables (so-called implicit surfaces). A surface sheet can be represented as a set-theoretic 

difference between some initial implicit surface fA (x,y,z) =  0 and a trimming solid fB (x,y,z) �  0 (see 

Fig. 1, lower left, for modeling Escher’s “Sphere Spirals”). In the case of the intersection with another 

implicit surface fB (x,y,z) =  0, the intersection curves can be presented by thin surface stripes (Fig. 1, 

lower right). In this paper we discuss problems of defining initial surfaces and trimming solids/surfaces, 

and polygonization of the trimmed surface with the mesh adaptation to the surface-surface intersection 

curves composing the manifold boundary.  
 
If we define the initial surface A as fA (x,y,z) = 0 and the trimming solid B as fB (x,y,z) � 0, the trimmed 

surface T = A \ B can be defined as fT (x,y,z) = 0 with 

fT = -fA
2 & (-fB) , 

where symbol & denotes min(f1, f2) or some other R-function corresponding to the set-theoretic 

intersection [13, 11]. The idea proposed by Rvachev [13] is to represent the surface as a solid with -fA
2 � 

0 and further to apply set-theoretic operations to it. A similar approach is used in the modern solid 

modeller Svlis [5]. The serious disadvantage of this approach is that it becomes not possible to 



distinguish two sides of the initial surface represented as  -fA
2 � 0. Therefore, it is not possible to apply 

conventional polygonization algorithms based on inside-outside point classification [4,9,10]. 

 

Bloomenthal and Ferguson [3] proposed a general polygonization algorithm for non-manifold surfaces. 

The algorithm can polygonize both 2-manifolds with boundaries and non-manifold surfaces. Because of 

the algorithm complexity, it is difficult to implement its adaptive version. A more simple algorithm 

processing only 2-manifolds with boundaries can be obtained by extending conventional polygonization 

algorithms.  

 

To polygonize a boundary of a CSG solid, Wyvill and van Overveld [14] applied the uniform 

subdivision algorithm to the resulting surface and then enhanced the mesh with an iterative numerical 

procedure taking into account intersection curves of primitive surfaces. In general, the problem we deal 

with in this paper is related to the intersection of two implicit surfaces. There are two main numerical 

approaches to such implicit surface-surface intersection: 

� Start with some intersection point found analytically or numerically. Trace the intersection curve by 

solving a differential equation (see, for example, [6]). 

� Approximate both surfaces by polygons and intersect two obtained polyhedrons. 

 

Note that the above-mentioned methods treat both surfaces equally. On the other hand, one could 

observe in Fig. 1 that for a simple initial surface the function defining a trimming solid can be quite 

complex. It means that evaluation times for these two functions can differ drastically. Therefore, an 

algorithm aiming to decrease the number of evaluations of the more complex function can substantially 

decrease the overall computation time. 

 
In this work we propose an alternative approach based on the polygonization of the initial surface using 

the extension of existing implicit surface polygonization algorithms. The extension includes mesh 

adaptation to the surface-surface intersection curves composing the 2-manifold boundary and testing 

obtained polygons against the trimming solid or another intersecting surface. The polygon subdivision is 



used here to remove trimmed parts of the initial implicit surface and more precisely approximate the 

trimmed surface boundary as a side effect. 

 

2. BASIC POLYGONIZATION ALGORITHM 
 

The problem solved by a polygonization algorithm is to approximate a given implicit surface by a set 

of polygons. In this section, we briefly describe the basic polygonization algorithm used in this work 

[9,10]. The algorithm is based on the uniform bounding box subdivision, trilinear interpolation inside an 

elementary cell, using hyperbolic arcs for resolving topological ambiguities, and edge connectivity graph 

tracing for generation of polygons (see Fig. 2).   

A parallelepiped is given in three-dimensional Euclidean space and supposed to contain the implicit 

surface. By introducing a regular point grid we represent the parallelepiped as a set of elementary cells. 

The polygonal approximation of the surface can be obtained by visiting each cell and approximation of 

surface patches belonging to a cell. In the general case a cell can contain more than one surface patch 

(Fig. 2a). Using conventional enumeration of cell edges, the edges connectivity graph can be constructed. 

Surface patches correspond to simple cycles of this graph (Fig. 2b). 

The algorithm of a cell processing follows: 

1) evaluation of function values in eight cell vertices; 

    2) search for intersection points with the surface for edges with different function signs in edge  

vertices; 

3) connectivity graph construction; 

4) graph tracing for revealing cycles and patches construction. 

The intersection point of an edge and the surface can be found by the linear interpolation of 

function values in vertices or by a more sophisticated root search algorithm on the edge. The 

procedure of the graph construction involves independent inspection of six cell faces and listing of 

graph branches between corresponding nodes. In the most difficult case all four edges of a face 

intersect the surface (Fig. 2c). The bilinear interpolation of the function on the cell face produces 

hyperbolic arcs on the face plane. Calculation of coordinates of the hyperbola centre provides 

unambigous choice of the intersection points connection by two hyperbolic arcs. To obtain the 

polygonized surface, the hyperbolic arcs are replaced by line segments.  



The procedure of graph tracing involves: 

1) search for a graph node i connected with another node j by the branch Eij; 

2) transition to the node j with the branch Eij removal; 

3) transition to the node k by the branch Ejk with removal of latter. 

Steps 2-3 are repeated until a cycle under consideration is closed and then step 1 is executed again.  

Additional branches can be introduced in the graph to produce quadrilateral or triangular grid. This 

procedure stops when the graph is empty. The algorithm produces a set of polygons approximating the 

initial surface. This algorithm is free of heuristics and ambiguities essential to other algorithms of this 

kind.  
 
3. TRIMMING ALGORITHM 
   
We propose an algorithm for implicit surface trimming based on the extension of existing implicit 

surface polygonization algorithms. The idea is to adaptively polygonize the initial surface near its 

intersection curves with the trimming surface and to test the obtained polygons against the trimming 

solid/surface. The proposed algorithm is based on the implicit surface polygonization method described 

in the previous section. In fact, any conventional polygonization algorithm can be extended in similar 

way.  

 

The algorithm includes the following steps: 

1. Define the initial surface as fA (x,y,z) = 0  and the trimming solid as fB (x,y,z) �  0. In the case of 

intersection with another implicit surface, it is defined as fB (x,y,z) = 0. 

2. Introduce a sparse spatial grid in (x,y,z) space. 

3. Calculate fA (x,y,z)  values at the grid points. 

4. Obtain the initial triangulation for the surface fA  = 0 following a conventional polygonization 

algorithm providing correct topology with the given sparse grid (see Section 2). 

5. For each triangle, calculate fB (x,y,z) values in its vertices and check the following adaptation criteria 

(see Fig. 3): 



 � Different signs of the function fB values in the vertices: the triangle intersects the trimming surface 

(Fig. 3a); 

 � Evaluate fB in the barycenter of the triangle. If the sign is different from the signs in the vertices, the 

trimming surface penetrates the triangle but all vertices are outside or inside the surface (Fig. 3b). Fig. 3c 

shows the worst case when the trimming surface intersects the triangle but the sign in the barycenter is 

the same as signs in the vertices. Possible improvements of the algorithm aimed to avoidance of such 

cases are discussed below. 

 � If the absolute value of fB in a vertex is less than some given �, the triangle is close to the trimming 

surface with the possible surface-surface intersection (Fig. 3d,e). 

6.  If one of the adaptation criteria is satisfied, start recursive subdivision of the triangle in four triangles 

by introducing new vertices in the middle of its edges. Place newly introduced vertices on the initial 

surface using a search in the normal direction. If a triangle adjacent to an edge is not subdivided, an 

additional triangle has to be inserted to prevent cracks (Fig. 4). Repeat the previous step for the four new 

triangles. 

7. If no one of the adaptation criteria is satisfied for the current triangle or the given level of subdivision 

is achieved, classify the triangle against the trimming solid. Check the values of the function fB in the 

vertices. Three cases are possible:  

  1) Three positive values. The triangle is completely inside the trimming solid and is not included in the 

resulting mesh. 

  2) Three negative values. The triangle is completely outside the trimming solid and is included in the 

resulting mesh. 

  3) Different signs. The endpoints of the intersection line segment can be found by the linear 

interpolation along the corresponding edges. However, more sophisticated root search along the edge can 

produce more precise intersection point and therefore decrease the overall number of triangles. The 

triangle is split along this segment and the part lying outside the trimming solid is included in the 

resulting mesh. In the case of the intersection with another implicit surface, the intersection line segment 



is used to generate a patch of a thin stripe by stepping from each endpoint in both directions along the 

corresponding edge of the triangle.      

 

Note that the proposed algorithm starts with the sparse mesh and then invokes its adaptation in the 

neighborhood of the intersection curves. Moreover, the function fB is evaluated only in the vertices of the 

initial surface mesh but not in all 3D grid points. This helps to decrease the number of time-consuming 

function evaluations while providing required accuracy of the 2-manifold boundary extraction. 

 

The polygonization algorithm based on the uniform space subdivision can result in missing features of 

the initial surface such as sharp edges and vertices, spikes and other small elements. As it was mentioned 

before, any polygonization algorithm can be applied here. The recently introduced polygonization 

algorithm with the mesh optimization [8] can be used to improve the quality of the initial surface mesh. 

The algorithm modification for adaptation to the trimming surface features can help avoid the unwanted 

cases such as shown in Fig. 3c. 

 

4.  APPLICATIONS 
 

4.1 Modeling Escher’s spirals 

Initial algebraic surface (Fig. 1), procedural blobby model (Fig. 7), and surface of a constructive solid 

(Fig. 8) were trimmed using the proposed algorithm. The trimming solid for these examples was 

modeled using sweeping, offsetting and union operations [11] (see Fig.6). For the trimmed sphere shown 

in Fig. 1, top and bottom critical points of the trimming solid are placed exactly on the initial sphere with 

the trimming surface tangent to the sphere in the critical points. This is necessary to check the proposed 

adaptive polygonization criteria. Fig. 5 illustrates the difference between non-adaptive and adaptive 

polygonization near the top critical point on the sparse grid with 13�13�9 nodes and four recursion 

levels of adaptation. The proposed polygonization algorithm can be applied to any initial surface and a 

trimming solid defined by continuous real functions. Fig. 7 shows an adaptive polygonal mesh and a 

trimmed surface of a blobby object. Its adaptive polygonization on the 20�20�20 initial grid took 40 

seconds on a SG Indigo2 workstation. Its non-adaptive polygonization on the corresponding 

128�128�128 grid takes about 25 minutes. The “Constructive Rind” example in Fig. 8 was produced 



after “Rind” (1955) by M. Escher. The initial solid was constructed using set operations with R-functions 

on algebraic primitives, soft objects, and convolution solids.  
 
4.2 Extraction of ridges on implicit surfaces 

Surface creases provide important information about the shape and can be intuitively defined as curves 

on a surface along which the surface bends sharply. The mathematical definition of such cureves 

proposed in [2] is based on extrema of the principal curvatures along their curvature lines. Thus, a ridge 

is defined as local positive maxima of the maximal principal curvature along its associated curvature 

line. It was shown in [2] that ridges on an implicit surface F(x,y,z) = 0  are intersection curves of this 

surface and another implicit surface, which is locus of the extrema of the principal curvatures along their 

principal directions T(x,y,z) = 0 with 
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We applied the proposed trimming algorithm to extract the intersection curves of these two surfaces and 

to generate corresponding surface stripes for visualization purposes (see Fig. 9). As numerical 

calculations of finite differences approximating derivatives of F involved in the definiton of the surface 

T are very time-consuming, we polygonized surface F and used surface T as a trimming surface. The 

proposed algorithm starts with the sparse mesh and then invokes its adaptation in the neighborhood of 

the intersection curve. The function T defining the ridges is evaluated only in the vertices of the initial 

surface mesh but not in the 3D grid points. This helps to decrease the number of time-consuming 

function T evaluations while providing required accuracy of the intersection line extraction. Note that for 

the purpose of visualization, for each triangle of the initial surface polygonization we extract not only the 

intersection line segment, but a surface stripe by stepping from each endpoint of the segment in both 

directions along the corresponding triangle edge. 

 

In the test shown in Fig. 9, we used the rounded octahedron 



F(x,y,z) = x4+y4+z4+5x2y2+5y2z2+5z2x2-1 = 0 

shown in Fig. 9a. The trimming surface is shown in Fig. 9b. The initial sparse mesh has 12 � 12 � 12 

nodes with four levels of recursion. The processing time for extracting ridges and generation of 

corresponding surface stripes (Fig. 9c) is 140 seconds. It gives approximately 70 times speed-up if 

compared with 2.5 hours of calculation time for the non-adaptive run with equivalent 190 � 190 � 190 

resolution. Piecewise approximation of the surface stripes allows local coloring of the different type 

ridges (Fig. 9d) according to [2].  

 

 
5. CONCLUSION 
 
A new algorithm of polygonization of two-dimensional manifolds with boundaries is proposed. The 

algorithm extends conventional polygonization algorithms by including a trimming solid or surface and 

adapting the polygonal mesh to the 2-manifold boundary. The proposed adaptive solution significantly 

accelerates polygonization. Depending on the initial surface and the trimming solid/surface complexity, 

we obtained 20 to 70 times speed-up if compared with the non-adaptive algorithm. Applications of the 

algorithm include computer art, computer-aided design, solid and heterogeneous object modeling, 

surface-surface intersection, and ridges detection for surface analysis.  
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       A   Carrier surface                                                                                      B   Trimming solid 
            fA (x,y,z) = 0                                                                                          fB (x,y,z) �  0  

                            
 

    A \ B    Sheet                                                                                                                           A � b(B)    Stripes 

                                  
 
 
            Figure 1. “Sphere Spirals”. Modeling 2-manifolds with boundary:  

1) surface sheet (lower left) as a set-theoretic difference A\B between an initial surface A and a 
trimming solid B; 

2) surface stripes (lower right) as an offset of the intersection curves A � b(B) between the initial 
surface A and the trimming surface b(B). 

         
 



(a)   
 

 
(b) 
 

(c)       

 
Figure 2. Basic polgonization algorithm: 

a) example of surface patches inside a cell with hyperbolic arc boundaries on the cell faces; 
b) cycles in the connectivity graph corresponding to surface patches; 
c) case of four intersection points of cell face edges with the isosurface. 



                                                        
 
                                                  a) One or two vertices inside the trimming solid 
 

           
 
    b) Center inside the trimming solid                                         c) Intersection is not detected 
 
 

                      
 
 d) Triangle inside and near the trimming surface          e) Triangle outside and near the trimming surface 

Figure 3. Adaptation criteria for a polygon of the initial surface mesh. 



 

 
Figure 4. Avoidance of cracks: subdivision (left triangle) and splitting (right triangle). 
 
 
                                           
 
 

                                                        

             
   
                        (a)                                                      (b)                                                     (c) 
 
Figure 5. Adaptive trimming of a sphere (top part) by a complex solid: 
               (a) result of nonadaptive trimming with polygonization on a sparse grid 13�13�9; 
               (b) mesh obtained by the adaptive polygonization (4 levels of subdivision are used for 
illustration); 
               (c) result of adaptive trimming.  



 
           
F(x,y,z) = f(x,y,z,phi1) |         � R-union 
           f(x,y,z,phi2) |             
           f(x,y,z,phi3); 
 
f(x,y,z,phi) 
{ 
     z2 = z*z; 
     R = sqrt(100.-z2); 
     x0 = R*cos(0.5*z+phi); 
     y0 = R*sin(0.5*z+phi); 
     xt = x-x0; 
     yt = y-y0; 
     r = 2.- z2*0.02; 
     ftrim = r*r - xt*xt -yt*yt;   � sweep 
     offset = 10 - z2*0.1;  
     f = ftrim + offset;           � offset  

} 
 

Figure 6. Definition of the trimming solid as F(x,y,z) � 0 for  x, y, z � [-10, 10]. The pseudocode shows 
the procedural definition of the function f(x,y,z,phi) for one of three spiral solid components.  

                                       



 

                              (a)                        

(b)  (c)  
 
Figure 7. ”Blobby Spiral”: a) initial blobby object 
                                            b) adaptive polygonal mesh  
                                            c) surface of the blobby object trimmed by a spiral solid  
 
 



    
 
 
 

                        (a) (b)  
 
 
 
 
Figure 8. “Constructive Rind”: an initial constructive solid (a) and  
its surface trimmed by the spiral solid (b).  
 



 

(a)  (b)  

(c)             (d)  
 
Figure 9. Extraction of ridges on an implicit surface: 

a) initial rounded octahedron;  
b) trimming surface defining the ridges; 
c) surface stripes representing the intersection curves; 
d) local coloring of different type ridges.  


