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Abstract

This paper studies the pricing and hedging of variance swaps and other volatility derivatives,

including volatility swaps and variance options, in the Heston stochastic volatility model. Pricing

and hedging results are derived using partial differential equation techniques. We formulate an

optimization problem to determine the number of options required to best hedge a variance

swap. We propose a method to dynamically hedge volatility derivatives using variance swaps

and a finite number of European call and put options.
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1 Introduction

Volatility derivatives are securities whose payoff depends on the realized variance of an underly-

ing asset or an index return. Realized variance is the variance of the underlying asset’s return

over the life of the volatility derivative. A variance swap has a payoff which is a linear function

of the realized variance, a volatility swap has a payoff which is a concave function of the realized

variance and a variance call option’s payoff is a convex function of the realized variance. We

provide definitions of various volatility derivatives in Section 2.

In this paper we propose a methodology for hedging volatility swaps and variance options using

variance swaps. Since the price of both variance swaps and volatility swaps depend on the real-

ized variance of the underlying asset, there must be a relationship between their prices to avoid

arbitrage. Since variance swaps can be priced and hedged using actively traded European call

and put options, by exploiting the no-arbitrage relationship between volatility derivatives and

variance swaps we can price and hedge volatility derivatives.

The volatility of asset prices is an indispensable input in both pricing options and in risk man-

agement. Through the introduction of volatility derivatives, volatility is now, in effect, a tradable

market instrument. Previously traders would use a delta-hedged option position as a means to

trade volatility. However, this does not provide a pure volatility exposure since the return also

depends on the underlying stock price. Variance and volatility swaps provide pure exposure to

volatility and have become quite popular in the market. Three different groups of traders have

emerged: directional traders, spread traders and volatility hedgers. Directional traders specu-

late on the future level of volatility, while spread traders bet on the difference between realized

and implied volatility. In contrast, a volatility hedger typically covers short volatility positions.

For example, life insurance companies now offer many products with guaranteed benefits (e.g.,

variable annuities or with-profits funds) and these expose them to short volatility positions that

may be offset by using variance swaps. Variance and volatility swaps capture the volatility of the

underlying asset over a specified time period and are effective hedging instruments for volatility

exposure. Based on the demand from volatility traders, the market in volatility and variance

swaps has developed rapidly over the last few years and is expected to grow more in the future.

Estimating total trading volume is problematic, as with any OTC market, but recent estimates

for daily trading volume on indices are in the region of $30–35 million notional. Hence the pricing

and hedging of these derivatives have become an important research problem in academia and

industry.
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Building on the work of Neuberger (1994), Demeterfi, Derman, Kamal and Zou (1999) examined

properties of variance and volatility swaps. They showed that variance swaps can be replicated

by a static position in European call and put options of all strikes and a dynamic trading strategy

in the underlying asset. Brockhaus and Long (2000) provided an analytical approximation for

the pricing of volatility swaps. Javaheri, Wilmott and Haug (2002) discussed the valuation of

volatility swaps in the GARCH(1,1) stochastic volatility model. They used a partial differential

equation approach to determine the first two moments of the realized variance and then used

a convexity approximation approximation to price the volatility swaps. Lipton (2000) priced

volatility swaps using a PDE approach. Little and Pant (2001) developed a finite difference

method for the valuation of variance swaps in the case of discrete sampling in an extended

Black-Scholes framework. Detemple and Osakwe (2000) priced European and American options

on the terminal value of volatility when volatility follows a diffusion process. Carr, Geman,

Madan and Yor (2005) priced options on realized variance by directly modeling the quadratic

variation of underlying process using a Lévy process. Carr and Lee (2005) priced arbitrary pay-

offs of realized variance provided a zero correlation assumption between stock price process and

variance process. Broadie and Jain (2007) show that the convexity correction approximation

doesn’t provide a good estimate of fair volatility strikes in the Heston stochastic volatility and

the Merton jump-diffusion models.

In this paper we price variance and volatility swaps when the variance process is a continuous

diffusion given by the Heston stochastic volatility model. We compute fair volatility strikes and

price variance options by deriving a partial differential equation that must be satisfied by volatil-

ity derivatives. We compute the risk management parameters (greeks) of volatility derivatives

by solving a series of partial differential equations. Independently, Sepp (2006) priced options

on realized variance in the Heston stochastic volatility model by solving a partial differential

equation. We present a numerical method to determine the number of options required to hedge

a variance swap. We propose a method to dynamically hedge volatility derivatives using variance

swaps and a finite number of European call and put options.

The rest of the paper is organized as follows. We begin by briefly introducing volatility derivatives

in Section 2. In Section 3 we present the pricing of volatility swaps and the variance options using

a partial differential equation approach in the Heston stochastic volatility model. In Section 4

we present the computation of greeks of volatility derivatives in the Heston stochastic volatility

model. In Section 5 we present an optimization approach to hedge variance swaps using a finite
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number of options. We also present a dynamic approach to hedge volatility swaps using variance

swaps. Concluding remarks are given in Section 6.

2 Volatility Derivatives

Volatility and variance swaps are forward contracts in which one counterparty agrees to pay the

other a notional amount, N , times the difference between a fixed level and a realized level of

volatility and variance, respectively. The fixed level is called the variance strike for variance

swaps and the volatility strike for volatility swaps. Realized variance is determined by the vari-

ance of the asset’s return over the life of the swap.

The variance swap payoff is defined as

(Vd(0, n, T ) − K) × N

where Vd(0, n, T ) is the realized variance of stock return (defined below) over the life of the

contract, [0, T ], where n is the number of sampling dates, the subscript d is used to empha-

size that the variance is computed discretely (i.e., with a finite number of sampling dates, n),

K is the variance strike, and N is the notional amount of the swap in dollars. The holder of

a variance swap at expiration receives N dollars for every unit by which the stock’s realized

variance Vd(0, n, T ) exceeds the variance strike K. The variance strike is quoted in units of

volatility squared, e.g., (20%)2. For example, suppose an investor takes a long position in a

variance swap with strike (20%)2 = 0.04 and a notional of one million dollars. If, over the life

of the contract, the realized variance is (25%)2 = 0.0625, the investor would make a profit of

(0.0625 − 0.04) ∗ 1,000,000 = $22,500.

The volatility swap payoff is defined as

(
√

Vd(0, n, T ) − K) × N

where
√

Vd(0, n, T ) is the realized stock volatility (quoted in annual terms as defined below) over

the life of the contract, where n is the number of sampling dates, K is the volatility strike, and

N is the notional amount of the swap in dollars. The volatility strike, K, is typically quoted

in units of percent, e.g., 20%. An investor who is long a volatility swap with strike 20% and a

notional of one millon dollars would make a profit of (0.25 − 0.2) ∗ 1,000,000 = $50,000 in the
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previous example.

The procedure for calculating realized volatility and variance is specified in the derivative contract

and includes details about the source and observation frequency of the price of the underlying

asset, the annualization factor to be used in moving to an annualized volatility and the method

of calculating the variance. Let 0 = t0 < t1 < ... < tn = T be a partition of the time interval

[0, T ] into n equal segments of length �t, i.e., ti = iT/n for each i = 0, 1, ..., n. Most traded

contracts define realized variance to be

Vd(0, n, T ) =
AF

n − 1

n−1∑
i=0

(
ln

(
Si+1

Si

))2

(1)

for a swap covering n return observations. Here Si is the price of the asset at the ith observation

time ti and AF is the annualization factor, e.g., 252 (= n/T ) if the maturity of the swap, T , is

one year with daily sampling. This definition of realized variance differs from the usual sample

variance because the sample average is not subtracted from each observation. Since the sample

average is approximately zero, the realized variance is close to the sample variance.

We call Vd(0, n, T ) the discretely sampled realized variance and Vc(0, T ) the continuously sampled

realized variance. The floating leg of variance swap, or discrete realized variance, in the limit

approaches the continuously sampled realized variance, that is,

Vc(0, T ) ≡ lim
n→∞

Vd(0, n, T ) (2)

In this paper we price volatility derivatives assuming sampling is done continuously. Broadie

and Jain (2007) compute fair variance strikes and fair volatility strikes when realized variance is

computed discretely.

A European variance call option gives the holder the right to receive a payoff Vc(0, T ) in exchange

for paying the strike K at the maturity of variance call option, i.e., its payoff is

CT = max(Vc(0, T ) − K, 0) × N (3)

Similarly the payoff of the variance put option is:

PT = max(K − Vc(0, T ), 0) × N (4)

where N is the notional amount in dollars. Unlike European equity options, the payoff of vari-

ance options depends on realized variance Vc(0, T ) which is not a traded instrument in the market.
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We assume the risk-neutral dynamics of the underlying asset St follows the Heston (1993) stochas-

tic volatility (hereafter SV) model:

dSt = rStdt +
√

vtSt(ρdW 1
t +

√
1 − ρ2dW 2

t ) (5)

dvt = κ(θ − vt)dt + σv

√
vtdW 1

t (6)

Equation (5) gives the dynamics of the stock price: St denotes the stock price at time t,
√

vt is

the volatility at time t and r is the riskless interest rate. Equation (6) specifies the evolution

of the variance as a mean-reverting process: θ is the long-run mean variance, κ represents the

speed of mean reversion, and σv is a parameter which determines the volatility of the variance

process. The processes W 1
t and W 2

t are two independent standard Brownian motions under the

risk-neutral measure Q, and ρ represents the instantaneous correlation between the return and

volatility processes. The initial value of the stock price is denoted by S0 and the variance process

by v0. The variance process vt, unlike St, is unobservable, so it needs to be estimated from data

(e.g., option prices or a time series of St).

In the SV model, continuous realized variance is given by

Vc(0, T ) =
1

T

∫ T

0

vsds (7)

The fair variance strike, K∗
var, is defined as the value which makes the contract’s net present

value equal to zero, i.e., it is the solution of

EQ
0

[
e−rT (Vc(0, T ) − K∗

var)

]
= 0 (8)

where the superscript Q indicates the risk-neutral measure and the subscript 0 denotes expecta-

tion at time t = 0. In the SV model, the fair variance strike is given by

K∗
var = E[Vc(0, T )] = E

(
1

T

∫ T

0

vsds

)
= θ +

v0 − θ

κT
(1 − e−κT ) (9)

where the last equality follows, e.g., from Broadie and Jain (2007). The fair volatility strike is

defined as the value which makes the contract net present value equal to zero, i.e., it solves the

equation

E0

[
e−rT (

√
Vc(0, T ) − K∗

vol)

]
= 0 (10)

Hence, the fair volatility strike can be expressed as

K∗
vol = E

[√
1

T

∫ T

0

vtdt

]
= E[

√
Vc(0, T )] (11)
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Using Jensen’s inequality1 we can obtain an upper bound on the fair volatility strike:

K∗
vol = E0[

√
Vc(0, T )] ≤

√
E0[Vc(0, T )] =

√
K∗

var (12)

Hence, the fair volatility strike is bounded above by the square root of the fair variance strike.

The difference in the square root of the fair variance strike and the fair volatility strike is called

the convexity correction. Some authors have obtained an approximation of this convexity cor-

rection using Taylor’s expansion, but Broadie and Jain (2007) show that it is not necessarily

accurate in the SV model. We compute fair volatility strikes by deriving a partial differen-

tial equation which exploits a no-arbitrage relationship between variance and volatility swaps.

Gatheral (2006) provides a numerical integration approach for computing fair volatility strikes

in the SV model.

3 Pricing Volatility Derivatives

Over the past two decades, the volatility of an underlying stock or an index has developed as

an asset class in its own right. Variance swaps are very liquid instruments which can be used to

trade volatility and they can be regarded as underlying assets in order to price other volatility

sensitive instruments, including volatility swaps, variance options, VIX futures, etc. Using a

no-arbitrage argument, we derive a partial differential equation to price volatility derivatives,

compute the fair volatility strike and price variance call and put options.

3.1 Pricing Volatility Swaps

Define XT
t to be the price process of the floating leg of a variance swap:

XT
t = EQ

t

[
1

T

∫ T

0

vsds

]

This security price XT
t depends on the variance, vs, of the underlying asset from time t = 0 until

maturity T . It has a payoff at maturity, T , which is same as the floating leg of a continuous

variance swap. At time 0 it represents the fair variance strike:

K∗
var = XT

0 (13)

From equation (9) we know the value of this security at time 0 and we can derive the stochastic

differential equation satisfied by the security XT
t :

dXT
t =

1 − e−k(T−t)

kT
σvvtdW 1

t (14)
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This price process has zero drift since it is a forward price process. The process XT
t is driven by

the same Brownian motion W 1
t as the variance process in the SV model. The volatility of the

price process, XT
t , goes to 0 as t approaches T .

Next we define the price process of a security Y T
t which represents the floating leg of a volatility

swap:

Y T
t = EQ

t

[√
1

T

∫ T

0

vsds

]
This security has a payoff at time T which depends on the variance process from time t = 0 until

maturity. At time T it represents the payoff of the floating leg of the volatility swap. At time 0

it gives the fair volatility strike:

K∗
vol = Y T

0

These securities are similar to interest rate derivatives. The price of a zero coupon bond trading

in the market depends on the interest rate process from time 0 until the maturity of bond. An

interest rate is not a tradable market instrument, so for hedging any interest rate product we

use some other interest rate derivatives which are traded in the market. Similarly, the security

Y T
t depends on the variance process, vs, which is not a traded instrument in the market. Since

the security XT
t also depends on the variance process, there must be a relationship between the

price processes of Y T
t and XT

t to avoid arbitrage in the market. Using that relationship we can

hedge volatility derivatives using variance swaps.

Next we define a state variable It to measure the accumulated variance so far:

It =

∫ t

0

vsds

This state variable is a known quantity at time t and satisfies the differential equation:

dIt = vtdt

The forward price process, Y T
t , can be expressed as

Y T
t = Et

[√
1

T

(
It +

∫ T

t

vsds

)]
= F (t, vt, It)

and is a function of time, the stochastic variance vt and a deterministic quantity It. Applying

Itô’s lemma to F (·) we get

dF =
∂F

∂t
dt +

∂F

∂v
dv +

∂F

∂I
dI +

1

2

∂2F

∂v2
dv2
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which can be simplified using equation (6) to

dF =

[
∂F

∂t
+

∂F

∂v
κ(θ − vt) +

∂F

∂I
vt +

1

2

∂2F

∂v2
vtσ

2
v

]
dt +

∂F

∂v
σv

√
vtdW 1

t (15)

Since F is a forward price process, its drift under the risk-neutral measure must be zero. Hence,

∂F

∂t
+

∂F

∂v
κ(θ − vt) +

∂F

∂I
vt +

1

2

∂2F

∂v2
vtσ

2
v = 0 (16)

Thus, the forward price process satisfies the partial differential equation (16) in the SV model.

We solve the partial differential equation (16) in the region: 0 ≤ t ≤ T, Imin ≤ I ≤ Imax, vmin ≤
v ≤ vmax with the boundary condition

Y T
T = F (T, vT , IT ) =

√
IT

T
(17)

At other boundaries (I and V ) we set the second order variation of the price process to zero. In

particular, we use the boundary conditions:

∂2F

∂I2

∣∣∣∣
(I=Imax,Imin)

= 0
∂2F

∂v2

∣∣∣∣
(v=vmax,vmin)

= 0 (18)

Thus by solving the equation (16) with boundary conditions (17) and (18) we can compute

the fair volatility strike. By solving this partial differential equation we get the price at all

times until maturity. The variance swap forward price process XT
t satisfies the same differential

equation (16). The boundary condition in the case of a variance swap will be different at maturity

and is given by

XT
T = G(T, vT , IT ) =

IT

T
(19)

The analytical formula for the variance strike given by equation (9) solves the partial differential

equation (16) with boundary conditions (18) and (19).

Exhibit 1 about here

Next we present numerical results to illustrate the computation of fair variance and fair volatility

strikes. We use model parameters similar to those estimated in Duffie, Pan and Singleton (2000),

which were found by minimizing mean-squared differences between model and market S&P 500
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option prices on November 2, 1993. We adjust the parameters slightly so that the fair continuous

variance strike is same in the two models. We assume a risk free rate of 3.19%. Exhibit 1 gives

these parameters. Exhibit 2 shows the fair variance strike and fair volatility strike of a one-

year maturity swap computed by solving the partial differential equation (16) with appropriate

boundary conditions. We solve the PDE (16) on a three-dimensional grid with 400 points each in

the V - and I-directions and 2000 intervals in the t-direction. We also compute the fair variance

and fair volatility strikes using Monte Carlo simulation and a numerical integration approach

given in Broadie and Jain (2007). The theoretical value of the fair variance strike is computed

using equation (9). All results are computed under the dynamics of the SV model. We report

the square-root of fair variance strike,
√

K∗
var, in the results. The fair variance strike for the

parameters in Exhibit 1 is (13.261%)2 = 0.017585. The results from the PDE approach in this

section match the values obtained by other methods.

Exhibit 2 about here

Exhibit 3 illustrates the dependence of fair variance and fair volatility strikes on initial variance.

One advantage of the PDE method over simulation is that we get fair variance and fair volatil-

ity strikes for all values of initial variance and accumulated variance. Also, this approach gives

prices at all times until maturity. The left graph in Exhibit 3 presents the fair variance strike

(plotted as the square root of fair variance strike,
√

K∗
var) and the fair volatility strike versus

initial volatility
√

v0. Equation (9) shows that the fair variance strike is a linear function of the

initial variance. The fair volatility strike is a not a linear function of the initial variance since its

payoff is not a linear function of realized variance. Also, as given by the inequality (12), the fair

volatility strike is less than the fair variance strike.

Exhibit 3 about here

The convexity value is the difference between the square root of fair variance strike and the fair

volatility strike. The right graph in Exhibit 3 plots the convexity value with initial volatility.

This illustrates that the convexity value is a decreasing function of initial volatility,
√

v0.
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3.2 Pricing Variance Options

The price of a variance call option is given by:

Ct = EQ
t [e−r(T−t) max(Vc(0, T ) − K, 0)] × N (20)

We derive a partial differential equation to price a variance call option using a no-arbitrage ar-

gument similar to that in the previous section. The payoff of a variance call can be replicated by

continuous trading in a variance swap, and the replicating portfolio gives the price of variance

call option.

We form a portfolio of one variance call option and α units of variance swaps. At time 0 the

portfolio value is

Π0 = α(XT
0 − K∗

var) + C0 (21)

This portfolio value is the same as the variance call option value since there is no cost to buy

one unit of a variance swap at the inception of the contract. The variance call price process, CT
t ,

can be represented as

CT
t = G(t, vt, It)

Applying Itô’s lemma to G(·) we get

dG =
∂G

∂t
dt +

∂G

∂v
dv +

∂G

∂I
dI +

1

2

∂2G

∂v2
dv2 (22)

which can be simplified using equation (6) to

dG =

[
∂G

∂t
+

∂G

∂v
κ(θ − vt) +

∂G

∂I
vt +

1

2

∂2G

∂v2
vtσ

2
v

]
dt +

∂G

∂v
σv

√
vtdW 1

t (23)

From equation (21), the change in portfolio value in a small time dt is

dΠt = αdF + dG (24)

Substituting equations (16), (15) and (23) in (24) and simplifying we obtain

dΠt = α

(
∂F

∂v
σv

√
vtdW 1

t

)
+

[
∂G

∂t
+

∂G

∂v
κ(θ − vt) +

∂G

∂I
vt +

1

2

∂2G

∂v2
vtσ

2
v

]
dt +

∂G

∂v
σv

√
vtdW 1

t (25)

If we choose α = −∂G
∂v

/∂F
∂v

then the stochastic component in the portfolio vanishes and equa-

tion (25) simplifies to

dΠt =

[
∂G

∂t
+

∂G

∂v
κ(θ − vt) +

∂G

∂I
vt +

1

2

∂2G

∂v2
vtσ

2
v

]
dt (26)
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Since the portfolio Πt is riskless, it should earn the risk free rate of return, and so[
∂G

∂t
+

∂G

∂v
κ(θ − vt) +

∂G

∂I
vt +

1

2

∂2G

∂v2
vtσ

2
v

]
dt = rGdt (27)

which can be rewritten as

∂G

∂t
+

∂G

∂v
κ(θ − vt) +

∂G

∂I
vt +

1

2

∂2G

∂v2
vtσ

2
v − rG = 0 (28)

We solve the partial differential equation (28) in the region: 0 ≤ t ≤ T, Imin ≤ I ≤ Imax, vmin ≤
v ≤ vmax with the boundary conditions (18).

We compute the price of variance call and variance put options of maturity one year for different

strikes. The at-the-money strike is K = (13.261%)2 = 0.017585 from Exhibit 2. The other strikes

are given in Exhibit 4. We use the SV parameters in Exhibit 1. We solve the partial differential

equation on a three-dimensional grid with 400 points each in the V - and I-directions and 2000

intervals in the t-direction. We assume a notional N = $1000 in our calculations. Option prices

are given in Exhibit 4. When the call and put options are both at-the-money, their prices are

the same due to the put-call parity relationship:

Ct − Pt = XT
t − Ke−r(T−t) (29)

Exhibit 4 about here

4 Risk Management Parameters of Volatility Derivatives

In this section we compute greeks of variance and volatility swaps using partial differential

equations and discuss properties of the greeks. These greeks are required for hedging volatility

derivatives. Delta units of volatility derivatives are used to dynamically hedge volatility swaps

with variance swaps as explained in Section 5.2. Other greeks are useful to understand the

sensitivity of the price of volatility derivatives to various parameters of the SV model.
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4.1 Delta of Volatility Derivatives

We define the delta of variance and volatility swaps as the first-order variation in the fair strike

with respect to the variance, vt. Thus, the delta of a variance swap is

v̇t ≡ ∂XT
t

∂vt
(30)

and the delta of a volatility swap is defined similarly. We compute the delta of a variance swap

analytically using equation (9) to get

v̇t =
∂XT

t

∂vt
=

1 − e−κ(T−t)

κ
(31)

Exhibit 5 about here

The delta of variance swap is constant and positive since the payoff of the variance swap is a

linearly increasing function of realized variance. The delta of the variance swap approaches zero

as time to maturity decreases, since at maturity the payoff of the variance swap is independent

of the initial variance. We compute the delta of the volatility swap numerically using first-order

finite differences. The left plot in Exhibit 5 shows the delta of variance and volatility swaps

versus initial volatility.

To make variance and volatility swap deltas comparable, note that:

∂
√

XT
0

∂v0
=

1

2
√

XT
0

∂XT
0

∂v0
=

1

2
√

K∗
var

∂XT
0

∂v0
(32)

and in Exhibit 5 we plot ∂
√

XT
0 /∂v0 as the variance swap delta and ∂Y T

t /∂vt as the volatility

swap delta. We computed volatility swap deltas numerically using first-order finite difference

and we used (31) and (32) to compute ∂
√

XT
0 /∂v0. This procedure is used for all greeks in the

following subsections to make the sensitivities comparable.

Using the parameters from Exhibit 1, the delta of fair variance strike, ∂
√

XT
0 /∂v0, is 60.6%. We

approximate the change in the fair variance strike as follows. A change in initial volatility from

10.1% to 11% implies a change in initial variance from 0.010201 to 0.0121 or Δv0 = 0.001899.

The change in the fair variance strike is ΔXT
0 ≈ 2 ∗ √

K∗
var ∗ Δv0 ∗ 0.606 ≈ 0.000303. This
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implies the fair variance strike changes from (13.261%)2 = 0.017586 to 0.017889 = (13.375%)2.

The actual value of fair variance strike at an initial volatility of 11% is (13.375%)2. As shown in

Exhibit 5, the delta of the fair volatility strike is a positive and decreasing function of variance

and volatility. Since the volatility swap payoff is a concave function of realized variance, its delta

decreases with initial variance and volatility. The right plot in Exhibit 5 shows the difference in

the deltas of variance and volatility swaps versus initial volatility.

Next we define the sensitivities of strikes with respect to the parameters of the model.

4.2 Volatility Derivatives: κ̇

We define κ̇ as first-order variation in fair strikes with respect to the mean reversion speed, κ.

For variance swaps it is defined as:

κ̇ ≡ ∂XT
t

∂κ
(33)

Using equation (9) we get

κ̇ =
∂XT

t

∂κ
= (vt − θ)

(
(T − t)e−κ(T−t)

kT
− 1 − e−κ(T−t)

κ2T

)
(34)

Observe that κ̇ approaches zero as time to maturity decreases, since at maturity the realized

variance is fixed so all the sensitivities must approach zero. We compute the κ̇ of the volatility

swap by differentiating the partial differential equation (16) with respect to the parameter κ:

∂κ̇

∂t
+

∂κ̇

∂v
(θ − v)κ +

∂F

∂v
(θ − v) +

1

2

∂2κ̇

∂v2
vσ2

v = 0 (35)

We solve this partial differential equation in the same domain 0 ≤ t ≤ T, Imin ≤ I ≤ Imax, Vmin ≤
V ≤ Vmax with the boundary conditions:

κ̇|(t=T ) = 0 (36)

∂2κ̇

∂I2

∣∣∣∣
(I=Imax,Imin)

= 0
∂2κ̇

∂v2

∣∣∣∣
(v=vmax ,vmin)

= 0 (37)

Exhibit 6 about here
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The left plot in Exhibit 6 shows the sensitivity of fair strikes to the mean reversion speed κ as a

function of initial volatility. The variance strike sensitivity plotted in Exhibit 6 is:

∂
√

XT
0

∂κ
=

1

2
√

XT
0

∂XT
0

∂κ
=

1

2
√

K∗
var

∂XT
0

∂κ
(38)

We plot κ̇ = ∂Y T
0 /∂κ for the volatility swap, which we compute by solving the PDE (35).

The fair variance strike sensitivity, ∂
√

XT
0 /∂κ, to mean reversion speed, κ, is approximately

0.081% = 0.00081 at an initial volatility of
√

v0 = 10.10%. We compute the approximate

change in the fair variance strike if the mean reversion speed, κ, changes from its initial level

6.21 to 7.21 at an initial volatility, 10.1%, as follows. The change in the fair variance strike is

ΔXT
0 ≈ 2 ∗ √

K∗
var ∗ Δκ ∗ 0.00081 ≈ 0.000215. This implies the fair variance strike changes

from (13.261%)2 = 0.017586 to 0.017801 = (13.342%)2. The actual value of fair variance strike

at κ = 7.21 is 0.017781 = (13.334%)2. The graphs show that the sensitivity changes sign from

positive to negative as initial variance increases and the sign change occurs at the long-run mean

variance θ. When initial variance is lower than the long-run mean variance, θ, increasing the

mean reversion speed will result in an increase in the variance level, the realized variance will be

higher and hence a positive κ̇. The right plot in Exhibit 6 shows the difference in the sensitivity

of the fair variance strike and the fair volatility strike to the mean reversion speed κ versus initial

volatility.

4.3 Volatility Derivatives: θ̇

We define θ̇ as the first-order variation in the fair strike with respect to the long-run mean

variance, θ. For variance swaps it is defined as:

θ̇ ≡ ∂XT
t

∂θ
(39)

Using equation (9) we compute the θ̇ of the variance swap and get

θ̇ =
∂XT

t

∂θ
=

T − t

T
− 1 − e−κ(T−t)

κT
(40)

The fair variance strike sensitivity to the long-run mean variance is constant and positive since

the realized variance increases as the long-run mean variance increases. We compute the θ̇ of

the volatility swap by differentiating the partial differential equation (16) with respect to the

parameter θ:

∂θ̇

∂t
+

∂θ̇

∂v
(θ − v)κ +

∂F

∂v
κ +

1

2

∂2θ̇

∂v2
vσ2

v = 0 (41)
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We solve this partial differential equation in the same domain 0 ≤ t ≤ T, Imin ≤ I ≤ Imax, Vmin ≤
V ≤ Vmax with the boundary conditions:

θ̇|(t=T ) = 0 (42)

∂2θ̇

∂I2

∣∣∣∣
(I=Imax,Imin)

= 0
∂2θ̇

∂v2

∣∣∣∣
(v=vmax,vmin)

= 0 (43)

Exhibit 7 about here

The left plot in Exhibit 7 shows the sensitivity of the fair variance and volatility strikes to the

long-run mean variance as a function of initial volatility. As before, we plot the following quantity

for variance strike sensitivity:

∂
√

XT
0

∂θ
=

1

2
√

XT
0

∂XT
0

∂θ
=

1

2
√

K∗
var

∂XT
0

∂θ
(44)

For the fair volatility strike sensitivity we plot θ̇ = ∂Y T
0 /∂θ which we compute by solving the

PDE (41). Exhibit 7 shows that the fair variance strike sensitivity, ∂
√

XT
0 /∂θ, is approximately

316% = 3.16 at an initial volatility of 10.1%. We compute the approximate change in the fair vari-

ance strike if long-run mean variance, θ, changes from 0.019 to 0.021 at an initial volatility 10.1%

as follows. The change in the fair variance strike is ΔXT
0 ≈ 2∗√

K∗
var∗Δθ∗3.16 ≈ 0.001676. This

implies the fair variance strike changes from (13.261%)2 = 0.017585 to 0.019265 = (13.879%)2.

The actual value of fair variance strike at θ = 0.021 is 0.019262 = (13.879%)2. The variance

swap strike sensitivity to theta is constant at all variance levels. For volatility swaps θ̇ is positive,

which implies that the higher the long-run variance, the higher the fair volatility strike. The θ̇ of

the volatility swap is a decreasing function of initial variance. The right plot in Exhibit 7 shows

the difference in the sensitivity of the fair variance and volatility strikes to the long-run mean

variance as a function of the initial volatility.
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4.4 Volatility Derivatives: σ̇

We define σ̇ as the first-order variation in fair strikes with respect to the volatility of variance

parameter, σv. For variance swaps it is defined as:

σ̇v ≡ ∂XT
t

∂σv
(45)

Using equation (9) we find that the fair variance strike is independent of the volatility of variance.

We compute the σ̇v of the volatility swap by differentiating the partial differential equation (16)

with respect to the parameter σv:

∂σ̇v

∂t
+

∂σ̇v

∂v
(θ − v)κ +

1

2

∂2σ̇v

∂v2
vσ2

v +
∂2F

∂v2
vσv = 0 (46)

We solve this partial differential equation in the domain 0 ≤ t ≤ T, Imin ≤ I ≤ Imax, Vmin ≤ V ≤
Vmax with the boundary conditions:

σ̇v|(t=T ) = 0 (47)

∂2σ̇v

∂I2

∣∣∣∣
(I=Imax,Imin)

= 0
∂2σ̇v

∂v2

∣∣∣∣
(v=vmax,vmin)

= 0 (48)

Exhibit 8 about here

Exhibit 8 shows the sensitivity of fair strikes to the volatility of variance parameter as a function

of initial volatility. Consistent with equation (9), the fair variance strike is independent of the

volatility of variance. The fair volatility strike has a negative dependence on the volatility of

variance, i.e., an increase in the volatility of variance parameter will lead to a decrease in the

fair volatility strike. Since the fair volatility strike is a concave function of realized variance, the

fair volatility strike decreases with the increase in the volatility of variance parameter, σv. For

convex payoff functions, e.g, variance call and put options, the sensitivity with respect to the

volatility of variance is positive.

Thus all the greeks can be computed by either solving the pricing partial differential equation (16)

and using finite difference approximations (for delta) or by solving the other related partial

differential equations with appropriate boundary conditions.
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5 Hedging Volatility Derivatives

In this section we present an approach to hedge volatility derivatives using variance swaps. Other

authors (Demeterfi et al. 1999) have shown that variance swaps can be replicated using an infinite

number of European call and put options. We formulate an optimization problem to find the best

portfolio of European call and put options to closely replicate a variance swap for a given finite

number of options. We also analyze how replication error decreases as we increase the number

of European call and put options in the replicating portfolio. Then we present an approach to

dynamically hedge volatility swaps using variance swaps and a finite number of European call

and put options.

5.1 Replicating Variance Swaps

In this section we formulate an optimization problem for replicating a variance swap using a

static portfolio consisting of a finite number of European call and put options. Applying Itô’s

lemma to the stock price diffusion (5, 6) we can express realized variance as

Vc(0, T ) =
1

T

∫ T

0

vtdt =
2

T

( ∫ T

0

dSt

St

− ln
ST

S0

)
(49)

This result holds in both the Heston stochastic volatility model and the Black-Scholes model.

From (49) the realized variance can be replicated by shorting a log contract and dynamically

holding 1/St shares of stock until the maturity of the contract. Next we review how to replicate

a European style payoff, in particular a log contract payoff (Neuberger 1994), statically using

call and put options. Let f be a twice continuously differentiable function which represents the

payoff of a European style path-independent derivative security. It can be expressed as (Breeden

and Litzenberger 1978)

f(ST ) = f(x) + f
′
(x)(ST − x) +

∫ ∞

x

f
′′
(K)(ST − K)+dK +

∫ x

0

f
′′
(K)(K − ST )+dK (50)

Thus, the payoff function f can be replicated (Carr, Ellis and Gupta 1998) by holding positions

in a zero coupon bond with face value f(x), a forward contract with strike x, and call and put

options of all strikes using equation (50). The time zero value of the claim can be expressed in

terms of the European call C0(K) and put P0(K) prices of maturity T :

V0 = EQ
0 [e−rT f(ST )]

= e−rT f(x) + f
′
(x)[C0(x) − P0(x)] +

∫ ∞

x

f
′′
(K)C0(K)dK +

∫ x

0

f
′′
(K)P0(K)dK

(51)
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Now, let f(ST ) = ln(ST /S0) and x = S0, and substitute in equation (50) to get:

ln

(
ST

S0

)
=

ST − S0

S0
−

∫ ∞

S0

1

K2
(ST − K)+dK −

∫ S0

0

1

K2
(K − ST )+dK (52)

Substituting this in equation (49) gives

Vc(0, T ) =
2

T

[ ∫ T

0

dSt

St

− ST − S0

S0

+

∫ ∞

S0

1

K2
CT (K)dK +

∫ S0

0

1

K2
PT (K)dK

]
(53)

Thus, the floating leg of the variance swap can be replicated (Demeterfi et al. 1999) by a portfolio

having a short position in a forward contract struck at S0, a long position in 1/K2 put options

of strike K, for all strikes from 0 to S0, a long position in 1/K2 call options for all strikes from

S0 to ∞ and payoffs from a dynamic trading strategy which instantaneously holds 1/St shares

of stock worth $1 in the portfolio. In particular, equation (53) shows that continuously realized

variance can be replicated in both the Black-Scholes and the SV model.

Thus, to replicate the variance swap we need a short position in a log contract, and this can be

replicated using call and put options of all strikes (52). In practice we can only form a portfolio

using a finite number of options with a limited set of strikes. We analyze how well we can repli-

cate the log contract (and variance swaps) with a finite number of options.

Suppose we want to replicate the log contract with np put options and nc call options of various

strikes and common maturity T . We define the portfolio of a log contract and a forward contract

as portfolio B. It’s payoff at maturity T when the stock price is ST is given by

VB(ST ) =
ST − S0

S0
− ln

(
ST

S0

)
(54)

Let wc
i represent the number of call options having strike Kc

i and wp
i the number of put options

having strike Kp
i in portfolio A. The payoff of portfolio A at maturity T when the stock price is

ST is given by

VA(ST ) =

np∑
i=1

wp
i (K

p
i − ST )+ +

nc∑
i=1

wc
i (ST − Kc

i )
+ (55)

where (Kp
i −ST )+ is the payoff of the put option and (ST −Kc

i )
+ is the payoff of the call option.

If we include options of all strikes in portfolio A, then portfolio A exactly replicates portfolio B

from equation (52). The quantities of options in portfolio A are unknown and we compute these

values using optimization so that the payoff of portfolios A and B match as closely as possible
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for fixed number (nc and np) of call and put options2.

To compute the number of options in portfolio A to most closely replicate the payoff of portfolio B

we solve the optimization problem:

(P1) minwp,wc

n∑
j=1

(
VA(Sj

T ) − VB(Sj
T )

)2

s.t.

np∑
i=1

wp
i P0(S0, K

p
i ) +

nc∑
i=1

wc
iC0(S0, K

c
i ) = PB(S0) (56)

In the problem (P1), the decision variables are vectors wp, wc of sizes np and nc, respectively,

which represent the quantities of call and put options in the portfolio. The value VB(Sj
T ) is the

payoff of the portfolio of log contract and forward contract when the terminal stock price is Sj
T .

The value VA(Sj
T ) is the payoff of the portfolio of call and put options when the terminal stock

price is Sj
T . The value PB(S0) represents the initial value of the portfolio of the log contract and

forward contract. The value P0(S0, K
p
i ) represents the initial value of the put option with strike

Kp
i and C0(S0, K

c
i ) represents the initial value of the call option with strike Kc

i . The objective

function in (P1) minimizes the sum of squared differences in two portfolio payoffs at the maturity

T over n scenarios. The constraint enforces the initial values of both portfolios to be equal. Thus

the portfolio optimization problem (P1) attempts to make the payoffs of the two portfolios as

close as possible given the constraint that initial value of the two portfolios must be equal.

To illustrate, we use the Black-Scholes and SV parameters in Exhibit 1, and set the matu-

rity to be one year. We choose the strikes of the call and put options to be equally dis-

tributed in a three standard deviation range defines as follows. For S0 = $100 we choose

the put strikes to be equally distributed between S0e
(rT− 1

2
σ2T−3σ

√
T ) = $68 and $100. Here,

we have chosen σ =
√

K∗
var = 13.26%. Thus, for np put options in the (P1), the put strikes

are Kp
i = 68 + (i − 1)(100 − 68)/(np − 1), i = 1, . . . , np. Similarly we choose call strikes

to be equally distributed between $100 and S0e
(rT− 1

2
σ2T+3σ

√
T ) = $152. The call strikes are

Kc
i = 100 + (i − 1)(152 − 100)/(nc − 1), i = 1, . . . , nc. We choose the n scenarios within

a four standard deviation range. In particular, we take n = 200 scenarios of stock prices,

Sj
T = 60 + (j − 1)(173 − 60)/(n − 1), j = 1, . . . , n. The strike range is narrower than the range

used in the optimization scenarios to reflect the practical reality that not all strikes are actively

traded in the market.
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To compare the performance of the replicating portfolio of call and put options we compute three

types of error:

e1 :

E

∣∣∣∣VA(ST ) − VB(ST )

∣∣∣∣
PB(S0)

(57)

e2 :

√
E

(
VA(ST ) − VB(ST )

)2

PB(S0)
(58)

e∞ :

max

∣∣∣∣VA(ST ) − VB(ST )

∣∣∣∣
PB(S0)

(59)

where PB(S0) represents the value of portfolio B, given in (54), at t = 0 when the stock price is

S0. The expectation is under the real-world probability measure.

The objective function in (P1) uses equally weighted scenarios, while the error measures e1 and

e2 weight the scenarios by their real-world probabilities, so that extreme outcomes have less effect

on the results. The error measure e∞ will be determined by the single scenario with the most

extreme outcome. We use equal weighting for scenarios in the objective function so that the

portfolio will perform reasonably well under all three error measures. By solving one optimiza-

tion problem instead of three, we reduce the number of results presented. If the user is interested

in one particular error measure, that measure should be substituted in (P1).

We solve (P1) by forming the Lagrangian and solving the resulting system of linear equations.

The solution of optimization problem (P1) gives quantities of call and put options to replicate a

log contract for a given number of puts and calls in the replicating portfolio. Using this portfolio

of call and put options we analyze the dynamic replication of a variance swap using a finite num-

ber of options. We compute these error measures by simulating scenarios in the Black-Scholes

and SV real-world probability measures. The value of the drift in the real-world probability

measures from Exhibit 1 is μ = 7%.

Exhibit 9 about here
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Exhibit 10 about here

Equation (53) gives the formula to replicate continuous realized variance using a portfolio of call

and put options and continuous rebalancing of 1/St shares of stock. There are two types of errors

in replicating a variance swap with a finite number of options. The first type of error comes from

replicating a log contract by a finite number of options. The second type of error comes from

the discrete rebalancing of 1/St shares of stock worth $1 in the portfolio. In practice, realized

variance is computed for a discrete sampling frequency, e.g, daily or weekly. In order to isolate

the effects of the sampling frequency, we present results for the replication of a discrete variance

swap for two sampling frequencies: a high sampling frequency of 16 times per day and a daily

sampling frequency. In the first case, there are n = 4096 sampling observations during the life

of a T = 1 year variance swap, i.e., 16 samples per day assuming 256 trading days in a year.

The same time interval (Δt = 1/4096 years) is used to computed the payoffs from the dynamic

trading strategy. In this case the majority of the replication error is due to a finite number of

options. These results are given in Exhibits 9 and 10.

In Exhibits 9 and 10 a static portfolio of options determined from the solution of (P1) is used to

replicate the log contract. When computing the variance swap replication errors, the portfolio A

payoff is the discrete realized variance payoff at maturity and the portfolio B payoff is composed

of the payoffs from the options portfolio, a short forward contract and dynamic rebalancing with

the stock (53). To normalize the results, we set PB(S0) to K∗
var (equation (9)) in the three

error measures. To compute the error measures we simulated 10,000 stock price paths under

the real-world measures in the Black-Scholes and SV models. The results show all three error

measures decrease as we increase the number of options in the replicating portfolio.3 With 16

options (8 puts and 8 calls in the option portfolio) the mean absolute replication error for the

Black-Scholes model is about 1.9% of the initial value of the portfolio and 2.0% for the SV model.

Exhibit 10 shows replication errors and number of options on log scale with different number

of options in the Black-Scholes and SV models. These results show error measures e1 and e2

converge quadratically to zero as the number of options increases.

Exhibit 11 about here

Next we analyze the effect of a daily sampling interval. We assume that the sampling interval in

computing the realized variance is the same as the rebalancing interval in the dynamic trading
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strategy. Exhibit 11 shows the daily sampling results using a finite number of options. The

error measures in Exhibits 9 and 11 are very similar, indicating that daily rebalancing is as effec-

tive as more frequent rebalancing, since the error is dominated by using a finite number of options.

5.2 Hedging Volatility Derivatives in the SV Model

In this section we present an approach to dynamically hedge volatility swaps using variance

swaps in an SV model. Suppose we take a long position in one unit of volatility swap at t = 0

of maturity T with fair volatility strike, K∗
vol. The volatility swap is initially costless. At time t,

the value of volatility swap contract is

Pt = Et(e
−r(T−t)(

√
Vc(0, T ) − K∗

vol)) = e−r(T−t)(Y T
t − K∗

vol) (60)

We assume the notional amount of swap to be $1. To hedge a long position in volatility swap at

time t, we construct a portfolio having one unit of volatility swap and βt units of variance swaps.

Thus the portfolio value at time t equals

Πt = Et

[
e−r(T−t)

(
βt(Vc(0, T ) − K∗

var)

)
+ (

√
Vc(0, T ) − K∗

vol)

]

= e−r(T−t)

(
βt(X

T
t − K∗

var) + (Y T
t − K∗

vol)

)
(61)

The change in this portfolio in a small amount of time dt is given by

dΠt = rΠtdt + e−r(T−t)

(
βtdXT

t + dY T
t

)

which can be written using equation (15) as

dΠt = rΠtdt + e−r(T−t)

[
βt

([
∂XT

t

∂t
+

∂XT
t

∂v
κ(θ − vt) +

∂XT
t

∂I
vt +

1

2

∂2XT
t

∂v2
v2

t σ
2
v

]
dt +

∂XT
t

∂v
σv

√
vtdW 1

t

)

+

[
∂Y T

t

∂t
+

∂Y T
t

∂v
κ(θ − vt) +

∂Y T
t

∂I
vt +

1

2

∂2Y T
t

∂v2
v2

t σ
2
v

]
dt +

∂Y T
t

∂v
σv

√
vtdW 1

t

]

Since the processes XT
t and Y T

t satisfy the pricing partial differential equation (16), the dt terms

in the previous equation vanish. Hence the change in the portfolio value can be rewritten as:

dΠt = rΠtdt + e−r(T−t)

[
βt

∂XT
t

∂v
σv

√
vtdW 1

t +
∂Y T

t

∂v
σv

√
vtdW 1

t

]
(62)

We define βt as the volatility swap hedge ratio:

βt = −
∂Y T

t

∂v

∂XT
t

∂v

(63)
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If we choose βt as in equation (63), the stochastic component of portfolio vanishes and the port-

folio value is hedged. Thus for hedging a volatility swap we can take a short position in βt units

of the variance swap and the portfolio value is hedged dynamically.

Next, we present numerical results for the volatility swap hedging performance. We compute the

profit and loss of two different hedging strategies and compare with no hedging. The two hedge

portfolios are: a portfolio containing one unit of volatility swap and βt (from equation (63))

units of a variance swap and a portfolio containing one unit of volatility swap and a portfolio

of European call and put options which replicates βt units of variance swap. We compute the

portfolio of call and put options which replicates a variance swap as described in Section 5.1.

No hedging: We price the variance and volatility swap of maturity one year using the partial

differential equation described in Section 3.1. We also compute the deltas at time zero of the

variance and volatility swaps using (30). Together these give the hedge ratio at time zero. We

generate 4,800 scenarios of the stock price and variance level at t = 1/252 years. The variance

and volatility swaps are initially costless. The profit and loss of a long position in an unhedged

volatility swap at t = 1/252 years is equal to the price of volatility swap contract:

Pt = Et(e
−r(T−t)(

√
Vc(0, T ) − K∗

vol)) = e−r(T−t)(Y T
t − K∗

vol) (64)

Hedging with variance swaps: We form a portfolio containing one unit of a volatility swap

and β0 units of variance swaps. The value of this portfolio is zero at t = 0:

Π0 = β0(X
T
0 − K∗

var) + (Y T
0 − K∗

vol)

where β0 = −∂Y T
0

∂v
/

∂XT
0

∂v
is the hedge ratio. The profit and loss of this hedged portfolio at t = 1/252

years is equal to the value of this portfolio:

Πt = Et

[
e−r(T−t)

(
β0(Vc(0, T ) − K∗

var)

)
+ (

√
Vc(0, T ) − K∗

vol)

]

= e−r(T−t)

(
β0(X

T
t − K∗

var) + (Y T
t − K∗

vol)

)
(65)

Exhibit 12 about here

Hedging with options: We form a portfolio containing one unit of volatility swap and βt units

of a portfolio of call and put options which replicates a variance swap. We replicate a variance
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swap using portfolio of call and put options as described in Section 5.1. In these results we are

replicating a continuous variance swap with a portfolio of put and call options and a forward

contract and payoff from a dynamic trading strategy which holds 1/St shares of stock (see equa-

tion (53)). For simplicity, we have assumed that rebalancing is done continuously in computing

payoffs from the dynamic trading strategy. In this hedging exercise we present results using eight

(four calls and four puts) options and 32 (16 calls and 16 puts) options. We compute the profit

and loss of this portfolio at time t = 1/252 years in both cases: hedging with eight options and

hedging with 32 options.

Exhibit 12 shows the performance of hedging volatility swaps with variance swaps and a finite

number of options. We compute the error measures e1 (57), e2 (58) and e∞ (59) of profit and

loss using 4,800 scenarios of stock prices and variance levels at t = 1/252 years. In these results

the error measures are normalized by the variance strike, K∗
var, defined in (9). We use a batching

method with twelve batches to compute the standard error estimates in error measures. The

hedging errors are for hedging over an interval of 1/252 year compared to the Exhibit 9 where the

hedging interval is one year. From Exhibit 12 we can see that the absolute value of the volatility

swap profit and loss is about 5.29% of the variance strike, K∗
var, over a single day. Hedging a

volatility swap with a variance swap reduces this to 0.03%, which is quite significant. Hence,

a volatility swap can be effectively hedged dynamically using variance swaps. The results also

show that hedging with eight options reduces the absolute value of the profit and loss to 0.15%

and with 32 options to 0.059%. The error in hedging volatility swaps with options decreases as

we increase the number of options. Dynamic hedging of volatility swaps with variance swaps and

options is seen to be quite effective.

6 Conclusion

In this paper we presented a partial differential equation approach to price volatility derivatives in

Heston’s SV model. The pricing of volatility derivatives (including volatility swaps and variance

options) is complicated since the underlying variable, realized variance, is not a market traded

instrument. We exploited a no-arbitrage relationship between variance swaps and other volatility

derivatives to derive a partial differential equation to price volatility derivatives. We also derived

PDEs for the greeks in order to hedge volatility derivatives. We presented an optimization model

for the practical hedging of variance swaps using a finite number of options. We also presented

24



an approach to hedge volatility derivatives using variance swaps, and showed the hedge to be

very effective.
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Notes

1For the concave square root function Jensen’s inequality is:

E(
√

x) ≤
√

E(x)

2 We have chosen portfolio A to hold both call and put options. We can also choose this portfolio to consist of

call options or put options only as we can replace the put options by call options and stock using put-call parity.
3The error e∞ does not decrease as fast because it is sensitive to a single simulation scenario which may lie

outside the range of scenarios used in the optimization.
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Exhibit 1

Black-Scholes and SV model parameters used in pricing and hedging

Parameters BS SV

correlation ρ n/a -0.7

long-run mean variance θ n/a 0.019

speed of mean reversion κ n/a 6.21

volatility of variance σv n/a 0.31

initial volatility
√

v0 13.261% 10.10%

risk free rate r 3.19% 3.19%

real-world growth rate μ 7.0% 7.0%
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Exhibit 2

Comparison of fair variance and fair volatility strikes in the SV model using different

numerical methods

K∗
var(%

2) K∗
vol(%)

Simulation price 13.259 13.094

(standard error) (0.057) (0.002)

PDE 13.261 13.096

Analytical 13.261

Numerical integration 13.096

The first column shows the fair variance strike com-

puted using the PDE method, simulation and ana-

lytical value in the SV model. The second column

shows the fair volatility strikes computed with the

same methods.
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Exhibit 3
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The left plot shows the square root of the fair variance strike and fair volatility strike versus initial volatility. The

right plot shows the convexity value (66) versus initial volatility.
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Exhibit 4

Prices of variance call and put options in the SV model

Strike K (%)2 Call ($) Put ($)

10.272 7.127 0.314

11.095 5.575 0.465

12.581 3.101 1.398

13.261 2.220 2.220

14.527 1.068 4.475

15.691 0.481 7.295

These prices are for one-year maturity op-

tions corresponding to the SV model pa-

rameters given in Exhibit 1.
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Exhibit 5
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The left plot shows the sensitivity of fair variance strikes (32) and fair volatility strikes to initial variance as a

function of initial volatility. The right plot shows the difference in the deltas of fair variance and volatility strikes.
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Exhibit 6
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The left plot shows the sensitivity κ̇ of fair variance strikes (38) and fair volatility strikes (35) to the mean reversion

speed κ as a function of initial volatility. The right plot shows the difference between the two sensitivities.
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Exhibit 7
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The left plot shows the sensitivity θ̇ of fair variance strikes (44) and fair volatility strikes (41) to long-run mean

variance θ (39) as a function of initial volatility. The right plot shows the difference between the two sensitivities.
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Exhibit 8
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The left plot shows the sensitivity σ̇v of fair variance strikes and fair volatility strikes to the volatility of variance

σv (45) as a function of initial volatility. The right plot shows the difference between the two sensitivities.
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Exhibit 9

Error in the dynamic replication of a variance swap with a finite number of options

Number of Black-Scholes SV

Options Error e1 Error e2 Error e∞ Error e1 Error e2 Error e∞

4 0.381 0.483 1.574 0.392 0.494 5.024

8 0.091 0.115 0.280 0.093 0.128 4.248

16 0.019 0.024 0.120 0.020 0.050 3.411

32 0.004 0.006 0.077 0.005 0.037 2.986

The first column shows the number of options used in replicating a continuous (almost)

variance swap of maturity one year. The second column shows the error measure defined

in (57) (divided by the variance strike to normalize the error) in the Black-Scholes model

and third column shows the error measure defined in (58). The fourth column shows the

error measure defined in (59). The fifth, sixth and seventh column shows the respective

error measures in the SV model. These error measures are computed for a time interval

of one year for a variance swap in which realized variance is computed using (n = 4096)

sampling observations and rebalancing is done every dt = 1/4096 year in computing payoffs

from dynamic trading strategy.
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Exhibit 10
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Replication error in a variance swap as a function of the number of options. The figures show error measures

defined in (57) and (58) in replicating a variance swap with a finite number of options in the Black-Scholes and

SV models. These error measures are computed for a time interval of one year for a variance swap in which

realized variance is computed using (n = 4096) sampling observations and rebalancing is done every dt = 1/4096

year in computing payoffs from dynamic trading strategy. The figures are plotted on a log-log scale.
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Exhibit 11

Error in the dynamic replication of a discrete variance swap with a finite number of

options

Number of Black-Scholes SV

Options Error e1 Error e2 Error e∞ Error e1 Error e2 Error e∞

4 0.381 0.485 1.573 0.393 0.496 5.032

8 0.090 0.114 0.280 0.096 0.127 4.254

16 0.019 0.024 0.124 0.019 0.050 3.421

32 0.004 0.005 0.046 0.005 0.036 2.986

The first column shows the number of options used in replicating a discrete variance swap of

maturity one year with daily sampling. The rebalancing interval in computing payoffs from

the dynamic trading in underlying stock is daily as well. The second column shows the error

measure defined in (57) (divided by the variance strike to normalize the error measures) in the

Black-Scholes model and third column shows the error measure defined in (58). The fourth

column shows the error measure defined in (59). The fifth, sixth and seventh column shows

the respective error measures in the SV model.
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Exhibit 12

Hedging a volatility swap using variance swaps and a finite number of options

Error e1 Error e2 Error e∞
Avg. (SE) (%) Avg. (SE) (%) Avg. (SE) (%)

Volswap Unhedge 5.293 (0.066) 6.646 (1.044) 21.811 (0.745)

Varswap Hedge 0.029 (0.001) 0.042 (0.001) 0.289 (0.021)

Options Hedge (8) 0.146 (0.002) 0.184 (0.031) 0.617 (0.018)

Options Hedge (32) 0.057 (0.001) 0.076 (0.014) 0.342 (0.018)

The second, third and fourth column show the error measures e1 (57), e2 (58) and

e∞ (59) of profit and loss in different hedging strategies for hedging volatility swap

over an interval of 1/252 years. The first row shows the mean and standard error

of profit and loss of unhedged volatility swap. The second row shows the mean and

standard error of profit and loss of a hedged volatility swap using variance swaps.

The third row shows the mean and standard error of profit and loss of a hedged

volatility swap with eight options. The fourth row shows the mean and standard

error of profit and loss of hedged volatility swap with 32 options.
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