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Abstract. We propose a probabilistic segmentation scheme, which is
widely applicable to some extend. Besides the segmentation itself our
model incorporates object specific shading. Dependent upon application,
the latter is interpreted either as a perturbation or as meaningful object
characteristic. We discuss the recognition task for segmentation, learning
tasks for parameter estimation as well as different formulations of shading
estimation tasks.

1 Introduction

Segmenting images in meaningful parts is a common task of image analysis.
“Common” means that segmentation arises as a subtask in the context of diverse
and different applications of image analysis and computer vision. Corresponding
research efforts of the previous decades – often motivated by these different
contexts – have led to a plenty of segmentation algorithms and their variants.
Unfortunately, this does not hold for the number of corresponding models –
the algorithms were often constructed in a rather phenomenological manner.
This discrepancy is even greater if either supervised or unsupervised learning is
required for the parameters of the algorithm/model.

On the other hand, by now there is no hope for a universal model/algorithm
pair for segmentation. Since segmentation is often a subtask of a recognition
task, it provides rather intermediate results, which are determined not by the
image(s) only, but also e.g. by feedback from “higher” model parts (like object
models). Hence, we believe that segmentation schemes, which are to some extend
widely applicable, should have the following properties. Firstly, there should be
a clear ab initio model (preferable a modular one). Secondly, it is necessary to
have well-posed recognition and learning task formulations. Finally, the scheme
should have interfaces (like model parameters) for feedback from higher model
levels. These requirements suggest probabilistic models. The main reason for this
choice is learning – statistical pattern recognition has the farthermost advanced
theory of learning. Besides, it is often preferable to have a (posterior) probability
distribution of segmentations instead of a unique segmentation.

Unfortunately, the choice of a probabilistic model presently disallows con-
tinuous variational approaches like e.g. Level Sets [3,2]. These models are not
extensible to stochastic ones, mainly because it is not yet clear, how to define
probability measures on function spaces correctly.

The actually most popular approach in the scope of discrete models for seg-
mentation is Energy Minimisation [6,1,5,7]. In most cases it corresponds to the
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Maximum A-Posteriori Decision with respect to a certain probabilistic model.
We believe however, that an overhastily preference for the MAP-criterion may
hide other possible formulations of recognition tasks and – what is more impor-
tant – reasonable approaches for learning.

In the following we present a scheme for segmentation. Its main part is a
probabilistic model. In particular we use Gibbs probability distributions of sec-
ond order to represent the distribution of hidden variables. The second part of
the method is the formulation of recognition tasks. We would like to point out,
that the latter can be formulated and derived in many different ways within the
same model. Last but not least we consider the learning of unknown parame-
ters of the probability distribution. We give an unsupervised learning scheme,
which is based on the Maximum Likelihood principle. In particular we use the
Expectation Maximisation algorithm to solve learning tasks approximatively.

2 The Model

The sample space of the model is built by triples of the following groups of
variables: the image(s), the segmentation field and segment related shading fields.
We decided to include the shading into the model due to the following reasons.
Firstly, shading is often a segment specific concomitant phenomenon. Secondly,
in some applications (e.g. Shape from Shading) it is rather a quantity we are
interested in, as opposed to just a perturbation variable. Finally, for one and
the same model, the task of shading estimation might differ, depending on the
application.

Throughout the paper we use the following notation. The field of vision R ⊂
Z

2 is equipped with the structure of an undirected graph G = (R, E), where
E denotes the set of edges. S is a finite set of segment labels, where s ∈ S
denotes the label of a particular segment. The segmentation field f : R → S,
where f(r) ∈ S denotes the segment chosen for the element r ∈ R of the field of
vision. An observation (i.e. image) is denoted by x : R → V , where V is a set of
colour values. And finally, hs : R → V denotes the shading field associated with
segment s. The set of all shadings is h = (h1, h2 . . . h|S|). The probability of an
elementary event – a triple (f, h, x) is modelled by

p(f, h, x) = p(f) · p(x | f, h) ·
∏

s

p(hs). (1)

The prior probability distribution for segmentations is assumed to be a Gibbs
probability distribution of second order

p(f) ∼
∏

rr′∈E

gsegm

(
f(r), f(r′)

)
(2)

with gsegm : S × S → R
+. A particular and appropriate choice for segmentation

problems is e.g. the Potts model

gsegm(s, s′) =
{

a > 1 if s = s′

1 otherwise. (3)
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Similarly, the prior probability of a shading field is

p(hs) ∼
∏

rr′∈E

gshad

(
hs(r), hs(r′)

)
, (4)

where gshad : V × V → R
+ expresses the prior assumptions about shadings,

e.g. smoothness or hard restrictions:

gshad(v, v′) = exp
[
−(v − v′)2/2σ2] , (5)

gshad(v, v′) = 1{|v − v′| < δ}. (6)

The probability distribution of an observation, given the other two variables, is
assumed to be conditionally independent

p(x | f, h) =
∏

r

q
(
x(r) − hf(r)(r), f(r)

)
. (7)

The expression x(r)− hf(r)(r) can be understood as “shading adjusted observa-
tion value” at position r and is obtained by subtracting the shading value asso-
ciated with the segment f(r) chosen in this node. The function q : V × S → R

+

is a conditional probability p(v|s) for the colour value v given the segment s.

3 Recognition and Learning Tasks

In this section we discuss different tasks, which can be formulated in the scope of
the model. We begin with a typical recognition task – segmentation estimation.
Afterwards, we give a scheme for unsupervised learning of the unknown condi-
tional probability distribution q, given an example image. Finally, we consider
the shading estimation. It turns out, that both “recognition” and “learning”
formulations are reasonable for shading estimation. The choice depends on the
particular application. We discuss both variants and compare them.

3.1 Recognition

Let us assume that the parameters of the model (e.g. functions g and q) are
known. The shadings hs are considered as a perturbation and assumed to be
known as well. The task is to estimate the segmentation f∗ given an observation
x. We formulate the segmentation problem as a task of Bayesian decision, i.e. we
minimise the risk

R(f) =
∑

f ′

p(f ′ | h, x) · C(f, f ′) → min
f

, (8)

where C(f, f ′) is the loss function. When applying decision theory for pattern
classification, it is common to use a (possibly class dependent) constant for the
loss associated to a classification error. The situation is quite different in the
scope of segmentation: it is reasonable to use e.g. the number of mis-segmented



186 D. Schlesinger and B. Flach

pixels for the loss function. (Note that this loss is usually used when comparing
different segmentation algorithms.) Hence, we advocate an additive loss function
of the type

C(f, f ′) =
∑

r

c
(
f(r), f ′(r)

)
, (9)

where c : S ×S → R is a function, which penalises deviations from the estimated
segment label in a node r to the unknown true one. Substituting a loss function
of that type in (8) gives

R(f) =
∑

f ′

p(f ′ | h, x) ·
∑

r

c
(
f(r), f ′(r)

)
=

∑

r

∑

f ′

p(f ′ | h, x) · c
(
f(r), f ′(r)

)
.

Because the second factor depends only on the segment label of the node r, it
is possible to split the sum over all segmentation fields f ′ into the sum over all
f ′(R \ r) and the sum over all segmentation labels of the node r. This gives

R(f) =
∑

r

∑

s∈S

c
(
f(r), s

)
· p

(
f(r) = s | h, x

)
→ min

f
, (10)

where
p
(
f(r) = s | h, x

)
=

∑

f ′:f ′(r)=s

p(f ′ | h, x) (11)

are the a-posteriori marginal probability distributions of states. The optimisation
(10) can be performed for each node r independently and gives

f∗(r) = arg min
s

∑

s′

c(s, s′) · p
(
f(r) = s′ | h, x

)
for each r. (12)

In particular the additive delta cost function – i.e. c(s, s′) = 1{s �= s′} in (9) –
can be used for segmentation. This leads to the decision

f∗(r) = argmax
s

p
(
f(r) = s | h, x

)
for each r. (13)

It is easy to see, how this decision should be changed if the shading fields are
unknown:

f∗(r) = arg max
s

p
(
f(r) = s | x

)
= arg max

s

∑

h

∑

f ′:f ′(r)=s

p(f ′, h | x). (14)

3.2 Learning

Let us consider the task of unsupervised learning of unknown parameters of the
probability distribution – e.g. learning the conditional probability distributions
q given an image. For simplicity, we still assume that the shadings hs are known.
We follow the Maximum Likelihood principle and maximise1

ln p(x | h; q) = ln
∑

f

p(f, x | h; q) → max
q

. (15)

1 The notation p(. . . ; q) means “parameterised by q”.
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We use the EM-algorithm for approximation. The standard approach leads to
the following iterative scheme:

1. Expectation step: compute the a-posteriori probability distribution of seg-
mentations for the current set of parameters, i.e. p(f |h, x; q(n));

2. Maximisation step: maximise

q(n+1) = argmax
q

∑

f

p(f | h, x; q(n)) · ln p(f, h, x; q). (16)

Substitution of the last term in (16) by means of (1)-(7) and omission all terms,
which do not depend on q, lead to

∑

f

p(f | h, x; q(n)) ·
∑

r

ln q
(
x(r) − hf(r)(r), f(r)

)
=

∑

s

∑

r

∑

f :f(r)=s

p(f | h, x; q(n)) · ln q
(
x(r) − hs(r), s

)
=

∑

s

∑

r

p
(
f(r) = s | h, x; q(n)) · ln q

(
x(r) − hs(r), s

)
→ max

q
. (17)

Obviously, this optimisation can be performed for each segment independently.
For a particular segment we have

∑

r

p
(
f(r) = s | h, x; q(n)) · ln q

(
x(r) − hs(r), s

)
=

∑

v

[
ln q(v, s) ·

∑

r:x(r)−hs(r)=v

p
(
f(r) = s | h, x; q(n))] → max

q
. (18)

Due to the Shannon’s theorem, the solution of this task is

q(n+1)(v, s) ∼
∑

r:x(r)−hs(r)=v

p
(
f(r) = s | h, x; q(n)). (19)

Summarising in a nutshell, an iteration of the learning algorithm is:

1. Expectation step: calculate the marginal a-posteriori probabilities of states
in each node – p

(
f(r) = s|h, x; q(n)

)
;

2. Maximisation step:
(a) Sum up these marginals over all pixels with colour x(r) = v + hs(r) for

each segment s and each colour value v, i.e. compute the “histogram”

hist(v, s) =
∑

r:x(r)−hs(r)=v

p
(
f(r) = s | h, x; q(n)). (20)

(b) Finally, normalise it:

q(n+1)(v, s) =
hist(v, s)∑
v′ hist(v′, s)

. (21)
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Let us consider now the learning task for the case that the shadings are not
known. In that case we have to optimise

ln p(x; q) = ln
∑

f

∑

h

p(f, h, x; q) → max
q

. (22)

Although this task seems to be much more difficult than the previous one (15),
it is not hard to see, that all derivations can be performed in a similar way. The
difference is only, that it is necessary to sum over all possible shadings instead of
considering them fixed. Finally, in the maximisation step of the EM-algorithm
(19) the sum over certain pixels should be replaced by the sum over all pixels,
weighted by corresponding marginal probabilities:

q(n+1)(v, s) ∼
∑

r

p
(
f(r) = s, x(r) − hs(r) = v | x; q(n)). (23)

3.3 Shading Estimation

In contrast to the segmentation and learning tasks discussed so far, the situa-
tion with the shading is not so straightforward. In many applications the shading
is considered as an unknown parameter of the model (caused e.g. by inhomoge-
neous and anisotropic lighting). This perturbation of object’s appearance should
be simply removed from the processed image. In such cases, it is reasonable to
estimate the shading according e.g. to the Maximum Likelihood principle. Un-
fortunately, such a concept disallows incorporation of a-priori assumptions about
shading in a “weighted” manner (like e.g. in (5)). The only possibility is to re-
strict the set of all possible shadings, using for example hard constraints like
(6). Another way to deal with shading (which is in fact very similar to the first
one), is to consider it as a statistical variable and to use the MAP criterion for
its estimation.

In some applications it is however not reasonable to consider the shading as
a perturbation because it may characterise certain properties of the segmented
objects. Therefore, shading is not an “auxiliary” variable anymore. In such cases,
it is appropriate to pose the problem of shading estimation again as a task of
Bayesian decision. Hence, a suitable loss function should be chosen for that.

In the following we discuss both variants – MAP decision with respect to
shading and shading estimation as a task of Bayesian decision. We begin with
the first one. The task is to find

ln p(h | x) = ln
∑

f

p(f, h | x) → max
h

. (24)

Again, we use the Expectation Maximisation algorithm to avoid summation over
all segmentations. The standard approach leads to the following optimisation
problem, which should be solved in each maximisation step:

∑

f

p(f | h(n), x) · ln p(f, h, x) → max
h

. (25)
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We substitute our model for p(f, h, x) and obtain

∑

f

p(f | h(n), x) ·
[∑

s

ln p(hs) +
∑

r

ln q
(
x(r)−hf(r)(r), f(r)

)]
=

∑

s

[
ln p(hs) +

∑

f

p(f | h(n), x)
∑

r:f(r)=s

ln q
(
x(r)−hs(r), s

)]
→ max

h
. (26)

Obviously, the optimisation can be performed for each segment s separately:

ln p(hs) +
∑

r

∑

f :f(r)=s

p(f | h(n), x) · ln q
(
x(r) − hs(r), s

)
=

ln p(hs) +
∑

r

p
(
f(r) = s | h(n), x

)
· ln q

(
x(r) − hs(r), s

)
→ max

hs

. (27)

Let us denote:

g̃(v, v′) = − ln gshad(v, v′) and
q̃r(v) = −p

(
f(r) = s | h(n), x

)
· ln q

(
x(r) − v, s

)
. (28)

The optimisation problem (27) can be written then in the form
∑

rr′∈E

g̃
(
hs(r), hs(r′)

)
+

∑

r

q̃r

(
hs(r)

)
→ min

hs

, (29)

which is an Energy Minimisation task. If the function g̃(., .) is submodular –
which is the case for (5) and (6) – then its solution can be found in polynomial
time (see e.g. [8] for details).

Now let us discuss the variant that the shading is considered as a stochastic
variable and should be estimated by defining an appropriate task of Bayesian
decision

R(h) =
∑

h′

p(h′ | x) · C(h, h′) =
∑

h′

∑

f

p(f, h′ | x) · C(h, h′) → min
h

. (30)

Again, we advocate an additive loss function of the type

C(h, h′) =
∑

s

∑

r

c
(
hs(r), h′

s(r)
)
. (31)

Moreover, in the case of shading estimation the summands c
(
v, v′) can be de-

fined e.g. by c
(
v, v′) = (v − v′)2, i.e. penalising deviations between the true and

the estimated shading values. We omit here the derivation details for the deci-
sion strategy because of their similarity to the segmentation case. The Bayesian
decision for the shading is its posterior mean value

h∗
s(r) =

∑

v

v · p
(
hs(r) = v | x

)
, (32)
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with the the marginal a-posteriori probabilities for shading values in each node

p
(
hs(r) = v | x

)
=

∑

h:hs(r)=v

∑

f

p(f, h | x). (33)

Remark 1. It is well known, that the calculation of marginal probabilities for
Gibbs/Markov distributions is an NP-complete task. We need these probabili-
ties for segmentation (12), learning (19) and shading estimation (28),(32). This
illustrates once more, that the search for polynomial solvable subclasses of this
problem is an important open question of structural pattern recognition. Until
then, we are constrained to use approximative algorithms like the belief propa-
gation method and others [9,10] or the Gibbs sampler [4].

4 Results

To begin with, we present an artificial example. The original image shown in
Fig. 1a was produced by filling two segments with gradients, which have the
same characteristics and finally adding Gaussian noise. The hard restrictions (6)
were used for shading and the task of shading estimation was posed as Bayes
decision task (30) with the loss function (31). The probability distributions q
for segments were supposed to be zero mean Gaussians. Their variances were
estimated unsupervised. The obtained segmentation is shown in Fig. 1c. The
image in Fig. 1b was produced by replacing the original grayvalue in each pixel
by the value of the estimated shading.

The next example (Fig. 2) is an image of a real scene. It is divided into three
segments. The conditional probabilities q for the segments were supposed to be
arbitrary, but channelwise conditionally independent. They were learned unsu-
pervised by (23). The shading was handled in the same way as in the previous
example. The image in Fig. 2c shows the result obtained for the same model but
without shading fields.

The last example is related to satellite-based glacier monitoring and in partic-
ular to the recognition of debris covered glaciers of the everest-type. We applied
our scheme to a visual and thermal infrared channel of the ASTER satellite

(a) Original image (b) Denoised image (c) Segmentation

Fig. 1. An artificial example
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(a) Original image (b) Segmentation (c) Without shadings

Fig. 2. An example of a real scene

(a) Satellite image (b) Expert’s segmentation (c) Segmentation

Fig. 3. Segmenting debris covered glaciers

combined with 3D elevation data. The conditional probabilities q were modeled
by multivariate normal distributions for six segments and were learned partially
unsupervised – during learning we used the expert’s segmentation to permit
three labels in the background, another two in the foreground (glaciers) and a
last one in lake regions. Because of the homogeneous lighting, only one common
vector-valued shading (modeled by (5)) was used for all segments and estimated
by the MAP-criterion. Fig. 3 shows the visual satellite channel, the expert’s seg-
mentation (glaciers and lakes) and the obtained segmentation, which is correct
for 96 percents of pixels.

5 Conclusion

We have presented a probabilistic scheme for segmentation which includes seg-
ment specific shading and admits well posed recognition and learning tasks.

In order to use the scheme for a particular application, it is necessary to
decide, whether certain “parts” of the model should be considered as an (un-
known) parameter or as a statistical variable. It is e.g. natural to consider the
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segmentation field as a statistical variable – because a particular segmentation
is rather an event of a (possibly unknown) probability distribution and not a
parameter which characterises a class of images.

The situation is different for the shading – both variants are suitable depend-
ing on the application. On the other hand, the probability distribution q was
considered as a parameter throughout the paper. Though in principle possible,
it is rather unnatural to consider it as a (unknown) statistical variable. The
reason is twofold: often it is not possible to introduce a-priori assumptions for q
and secondly, the choice for this function often corresponds to a class of images.
Summarising, we suggest to consider a “part” of the model as a parameter either
if it is hardly possible to formalise a-priori assumptions for it or if a particular
instance of this part describes a class of images, and not a particular image.

For learning we have used the Maximum-Likelihood Principle. However, ac-
cording to the learning theory other choices are possible. It is therefore highly
desirable to analyse whether e.g. Minimisation of Empirical Risk can be gen-
eralised for structural pettern recognition and in particular for Gibbs/Markov
probability distributions.
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