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Because of its non-conformity to Monin–Obukhov Similarity Theory (MOST), the effects
of thermal stratification on scaling laws describing the streamwise turbulent intensity σu

normalized by the turbulent friction velocity (u∗) continue to draw research attention. A
spectral budget method has been developed to assess the variability of σu/u∗ under unstable
atmospheric stratification. At least three different length-scales – the distance from the
ground (z), the height of the atmospheric boundary layer (δ) and the Obukhov length
(L)–are all found to be controlling parameters in the variation of σu/u∗. Analytical models
have been developed and supported by experiments for two limiting conditions: z/δ < 0.02,
−z/L < 0.5 and 0.02 � z/δ < 0.1, −z/L > 0.5. Under the first constraint, the turbulent
kinetic energy spectrum is predicted to follow three regimes: k0, k−1 and k−5/3, divided
in the last two regimes by a break-point at kz = 1, where k denotes the wave number.
The quantity σu/u∗ is shown to follow the much discussed logarithmic scaling, reconciled
to Townsend’s attached eddy hypothesis σ 2

u /u2∗ = B1 − A1 log(z/δ), where the coefficients
B1 and A1 are modified by MOST for mildly unstable stratification. Under the second
constraint, the turbulent energy spectrum tends to become quasi-inertial, displaying k0 and
k−5/3 with a break-point predicted to occur at 0.3 < kz < 1. The work here brings together
well-established but seemingly unrelated theories of turbulence such as Kolmogorov’s
hypothesis, Townsend’s attached eddy hypothesis, MOST and Heisenberg’s eddy viscosity
under a common framework.
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1. Introduction

Scaling laws of the root-mean-squared longitudinal turbulent
velocity component (σu) with distance from a solid boundary (z)
in high-Reynolds-number turbulent flows are receiving renewed
interest (Alfredsson et al., 2011; Smits and Marusic, 2013),
given their relevance to a myriad of meteorological problems
regarding wind-power generation, dispersion of pollutants and
footprint estimation among others (Poggi et al., 2006; Cai et
al., 2008; Hsieh and Katul, 2009; Hansen et al., 2012; McKeon,
2013; Yang et al., 2014). A logarithmic scaling of the form
σ 2

u /u2∗ = B1 − A1 log(z/δ) has been proposed by Townsend
(1976), where u∗ is the friction velocity, A1, B1 are constants and
δ is the boundary-layer height. Recent laboratory experiments
confirmed the universal character of a log-law scaling in σu/u∗
within a region where the normalized mean velocity profile also
exhibits a log-law scaling (Marusic et al., 2013; McKeon, 2013;
Smits and Marusic, 2013), expressed as U/u∗ = κ−1 log(z) + Cw,

where κ is the von Kármán constant and Cw is a surface roughness
coefficient.

In the atmospheric surface layer (ASL), distortions to the
U/u∗ log law due to the presence of thermal stratification
can be accommodated using Monin–Obukhov similarity theory
(MOST) via a stability correction function that varies with the
atmospheric stability parameter ζ = z/L, where L is the Obukhov
length (Obukhov, 1946; Monin and Obukhov, 1954). Recent
theoretical and phenomenological arguments suggest that the
stability correction function to U/u∗ appears to inherit its quasi-
universal character from the shape of the turbulent spectrum
(Katul et al., 2011, 2013a) and the variations of the integral
length-scale of the flow with atmospheric stability (Salesky et al.,
2013).

However, the effects of thermal stratification on σu/u∗ remain
a thorny issue within the MOST framework. The earliest attempts
identified acceptable scaling with ζ for vertical turbulent intensity
σw/u∗, but mixed success with σu/u∗ was already noted (Lumley
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and Panofsky, 1964). Panofsky et al. (1977) even precluded
the possibility of a ζ scaling and proposed a (δ/L)1/3 power-
law scaling for σu/u∗ for unstable stratification. The lack of a
universal similarity behaviour of σu/u∗ was also discussed by
Townsend (1961) and supported by Bradshaw (1967), Bradshaw
(1978), Kaimal (1978) and Yaglom (1994). While the Panofsky
et al. (1977) scaling has been used (Liu et al., 2011) and included
in standard micro-meteorology literature (Sorbjan, 1989; Kaimal
and Finnigan, 1994), other experiments did report a 1/3 scaling
with ζ for σu/u∗, especially for tower measurements close to
the ground (Hicks, 1981; Hsieh and Katul, 1997). Further, a
modification was suggested by Wilson (2008), who appended a
multiplicative z/δ dependence to Panofsky’s scaling (Panofsky
et al., 1977), similar to Rodean (1996), which is constrained by
the condition z � δ.

The goal of this work is to explain the onset of these divergent
results for σu/u∗ under a common framework, using a turbulent
kinetic energy spectral budget. It has been shown elsewhere
(Banerjee and Katul, 2013) that a spectral budget method (Hinze,
1959; Panchev, 1971) can recover the logarithmic scaling in σ 2

u /u2∗
in the absence of thermal stratification and provide a theoretical
basis for linking A1 and B1 to the Kolmogorov constant describing
the turbulent kinetic energy spectrum within the inertial subrange.
This spectral budget is expanded here to include the effects of
thermal stratification explicitly using a new source term attributed
to the presence of a finite sensible heat flux. The main theoretical
contribution is an analytical expression linking σ 2

u /u2∗ to both ζ
and z/δ, at least when |ζ | is small (<0.5) and varies primarily
due to variations in land-surface fluxes (i.e. L).

The newly derived expression can be further simplified to show
under what conditions A1 and B1 actually vary with ζ , thereby
generalizing Townsend’s attached eddy hypothesis for neutral
flows to mildly unstable ASL via MOST. For large z variations,
other considerations must be accommodated in the spectral
budget that preclude a complete solution. However, under some
restrictive assumptions, the scaling proposed by Panofsky and its
variant (Wilson, 2008) may be recovered.

Before considering the behaviour of σu/u∗ for such unstably
stratified flow, the model prediction in the near-neutral stability
limit (ζ → 0) is briefly reviewed and compared with results
from recent laboratory experiments. The large scatter in the
near-neutral σu/u∗ value reported in several ASL studies, often
varying between 2 and 3 (McBean, 1971; Panofsky et al., 1977;
Panofsky and Dutton, 1984; Kader and Yaglom, 1990; Hsieh and
Katul, 1997; Pahlow et al., 2001; Liu et al., 2011), is shown to be
explicitly related to differences in δ across experiments and can
be explained by Townsend’s hypothesis. A recent dataset is also
employed to explore assumptions and provide support for the
proposed analysis. As will be seen, the present analysis provides a
basis for bridging different concepts such as Townsend’s attached
eddy hypothesis, the k−1 and k−5/3 spectral laws at low wave
numbers and the similarity arguments for an unstably stratified
ASL.

2. Theory

2.1. Background and definitions

In the ASL, the time-averaged longitudinal momentum balance
and heat budget equations are given by

∂U

∂t
+ Uj

∂U

∂xj
= ν

∂2U

∂xj∂xj
− ∂u′u′

j

∂xj
− 1

ρ

∂P

∂x
, (1)

∂T

∂t
+ Uj

∂T

∂xj
= Dm

∂2T

∂xj∂xj
− ∂u′

jT
′

∂xj
, (2)

where t is time, Uj are the time-averaged velocity components
along direction xj and xj = (x, y, z) are the longitudinal (= x),

lateral (= y) and vertical (= z) directions, with the longitudinal
direction aligned so that U2 = 0. Here, U (or U1), T and P
represent the time-averaged longitudinal velocity, temperature
and pressure, respectively, ρ is the mean air density, ν is the
mean air kinematic viscosity, Dm is the molecular diffusivity
of heat in air, u′

i = (u′, v′, w′) are the component-wise turbulent
velocity excursions in direction xi, T′ is the turbulent temperature
fluctuation and, unless otherwise stated, primed quantities
represent turbulent excursions from the time-averaged state
represented by overbar or capital letter symbols. Hence, the
instantaneous velocity and temperature can be expressed as
Ui + u′

i and T + T′, respectively. For an idealized ASL, the flow
can be simplified so that it can satisfy the following conditions:

1. high Reynolds and Peclet numbers (i.e. neglect molecular
viscosity and diffusivity relative to their turbulent
counterparts in the mean momentum and heat budget
equations);

2. stationary (i.e. ∂(·)/∂t = 0) and planar-homogeneous (i.e.
∂(·)/∂x = ∂(·)/∂y = 0); and

3. lack of any subsidence (i.e. U3 = W = 0) or significant
mean horizontal pressure gradients (i.e. ∂P/∂x = 0).

For these idealized conditions, the mean longitudinal
momentum balance and the mean heat budget equations in
the ASL reduce to ∂w′u′/∂z = 0 and ∂w′T′/∂z = 0, suggesting
that the turbulent stress (i.e. w′u′) and heat flux (i.e. w′T′) are
constant with z. It is for this reason that the ASL subjected to
such idealized assumptions is labelled as the constant-stress or
constant-flux layer (Brutsaert, 1982).

The time-averaged turbulent kinetic energy (TKE) budget in
this idealized ASL is

∂e

∂t
= 0 = −u′w′ dŪ

dz
+ g

T
w′T′

− ∂

∂z

(
1

2
w′ (u′2 + v′2 + w′2) + 1

ρ
w′p′

)
− ε̄, (3)

where e = (1/2)
(
σ 2

u + σ 2
v + σ 2

w

)
is the TKE, σ 2

u = u′2, σ 2
v = v′2

and σ 2
w = w′2. The first, second, third and fourth terms on the

right-hand side (RHS) of Eq. (3) are, respectively, the mechanical
and buoyant production (or dissipation) of TKE, the TKE
transport by turbulence and pressure–velocity interactions and
the viscous dissipation of TKE. In the ASL, the transport terms
have opposite signs, often producing small net TKE transport
and a near-balance between production and dissipation of TKE,
even though some studies report a significant imbalance. The
sign and magnitude of this imbalance remains uncertain and
will be neglected here. However, it is to be noted that unstable
cases often report superior balance between TKE production
and dissipation compared with stable cases (Townsend, 1976;
Pope, 2000; Charuchittipan and Wilson, 2009). As evident from
Eq. (3), when w′T′ > 0 (e.g. during daytime conditions over
land), the second term is a source of TKE and the ASL flow
is labelled as unstable. Near-neutral conditions prevail when
w′T′ = 0 and stable conditions occur when w′T′ < 0 (e.g.
nocturnal conditions over land). For the mean states, MOST
(Monin and Obukhov, 1954) yields dŪ/dz = φm(ζ ) u∗/(κz) and
ε̄ = (φm(ζ ) − (ζ )) u3∗/(κz), where L = −u∗3/(κ (g/T) w′T′), g
is gravitational acceleration and φm(ζ ) is the stability correction
function for momentum. The function φm(ζ ) can be described by
the widely used empirical Businger–Dyer (Businger and Yaglom,
1971; Dyer, 1974) form φm(ζ ) = (1 − 16ζ )−1/4 for ζ < 0 (i.e.
unstable conditions), which constitutes the stability conditions
explored here.

2.2. A spectral budget

If ε̄ is a conservative quantity across the turbulent energy cascade
(i.e. total TKE production is balanced by TKE transfer across
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all wave numbers within the inertial subrange and is further
balanced by TKE removal through viscous dissipation at large
wave numbers), then a simplified spectral budget can be derived
for any wave number k, given as (Hinze, 1959; Panchev, 1971)

ε̄ = −dŪ

dz

∞∫
k

Fwu(s) ds + g

T

∞∫
k

FwT(s) ds

+ F(k) + 2ν

k∫
0

s2Etke(s) ds, (4)

where the first, second, third and fourth terms on the RHS
represent, as before, the mechanical and buoyant production of
TKE in the range [k, ∞], the transfer of TKE in the range [k, ∞]
and the viscous dissipation in the range [0, k]. Two conditions
are imposed on F(k) so as to ensure that this spectral budget
recovers its time-averaged TKE counterpart in Eq. (3) when
spectrally integrated across all k. The first condition is that at
k = 0, F(0) = 0 and

ε̄ = − dU

dz

∞∫
0

Fwu(s) ds + g

T

∞∫
0

FwT(s) ds

= − dŪ

dz

(
u′w′) + g

T
w′T′, (5)

so that
∫ ∞

0 Fwu(s) ds = u′w′ and
∫ ∞

0 FwT(s) ds = w′T′ maintain
the balance between production (mechanical and buoyant)
and ε̄.

The second condition is that as k → ∞, F(∞) → 0 and

ε̄ ≈ 2ν

∞∫
0

s2Etke(s) ds, (6)

or ε̄ is primarily explained by viscous contributions
at very large k. The transfer of turbulent kinetic
energy F(k) across wave number k is related to the
action of the triple moments and the pressure–velocity

interaction (i.e
∞∫
0

F(k) dk = (1/2)∂(w′ (u′2 + v′2 + w′2))/∂z +
ρ−1∂(w′p′)/∂z, the two transport terms in the TKE budget) and
requires closure. The Heisenberg model (Heisenberg, 1948) can
be employed to achieve such a closure and is given by

F(k) = νt(k)|curl ũ|2 ≈ 2νt(k)

k∫
0

s2Etke(s) ds, (7)

where ũ is a ‘macro-scale’ component of the velocity and νt(k) is
the so-called Heisenberg eddy viscosity (Heisenberg, 1948). It is
produced by the motion of eddies with wave numbers exceeding
k and is given by

νt(k) = CH

∞∫
k

√
Etke(s)

s3
ds, (8)

where CH is the Heisenberg constant to be discussed later.
With these approximations and closure assumptions, the spectral
budget for the TKE in the ASL reduces to

ε̄ = −dŪ

dz

∞∫
k

Fwu(s) ds + 2 (νt(k) + ν)

k∫
0

s2Etke(s) ds

+ g

T

∞∫
k

FwT(s) ds. (9)

2.3. The spectral budget at ka=1/z

While valid for all k, Eq. (9) is now evaluated at a specific
ka = 1/z within the ASL. It is assumed that, for kz > 1
(i.e. small scales), Etke(k) and Fwu(k) are described by their
conventional (Kolmogorov, 1941) and (Lumley, 1967) scaling
forms, respectively, given as

Etke(k) = Coε
2/3k−5/3, (10)

and

Fwu(k) = −dŪ

dz
Cuwε1/3k−7/3, (11)

where Co is the Kolmogorov constant and Cuw is a
similarity constant (Saddoughi and Veeravalli, 1994; Pope, 2000;
Ishihara et al., 2002; Katul et al., 2013b). Using these spectral and
co-spectral scaling expressions for k > 1/z,

dŪ

dz

∞∫
ka

Fwu(s) ds = −3

4

(
dŪ

dz

)2

Cuwε1/3k−4/3
a , (12)

and

νt(ka) = CH

∞∫
ka

√
Coε

2/3s−5/3

s3
ds = 3CHC

1/2
o ε1/3

4k
4/3
a

. (13)

With the Kolmogorov microscale defined as η = (ν3/ε)1/4, it
is interesting to note that the ratio of turbulent to molecular
viscosity at k = ka = 1/z is given by

νt(ka)

ν
= 3CHC

1/2
o

4(kaη)4/3
. (14)

Because kaη � 1 in the ASL, ν � νt(ka) and ν + νt ≈ νt in
Eq. (9).

To evaluate the buoyancy production for ka ≤ k < ∞, the
co-spectral scaling for FwT(k) is used; this is given by Kader and
Yaglom (1991); Kaimal and Finnigan (1994); Cava and Katul
(2012); Katul et al. (2013a)

FwT = C′
wT

dT

dz
ε̄1/3 k−7/3, (15)

where

C′
wT =

(
1 − 3

2

(4/3) CT

Co

ζ

φm(ζ ) − ζ

)
CwT , (16)

and where CT = 0.8 is known as the Kolmogorov–
Obukhov–Corrsin constant (Corrsin, 1951), CwT is a co-spectral
similarity constant (Kaimal and Finnigan, 1994; Katul et al.,
2013a, 2014) and T∗ = −w′T′/u∗ is the ASL temperature scale.
The derivation of Eq. (15) assumes that production and dissipa-
tion terms in the temperature variance budget are also in balance
(Katul et al., 2013a). It is hereby noted that, using the definition
of L, T∗ can be written as

T∗ = u2∗
κ (g/T) L

. (17)

Also, MOST scaling for the mean temperature profile results in

dT

dz
= T∗

κ z
φT(ζ ), (18)
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Figure 1. The modelled Cs(ζ ) according to Eq. (21) and fitted with a power law of the form Cs = p (ζ )q, where p = 1.6 and q = 0.6. It is found that the power law is
a good fit for Cs(ζ ) after −ζ = 0.5, represented by a dotted line (labelled as Zone II). A constant Cs appears to be reasonable for −ζ < 0.5 (labelled as Zone I).

where φT(ζ ) is the stability correction function for heat, which
can be described by the Businger–Dyer equation as φT(ζ ) =
φm(ζ )2 in unstable conditions (Dyer, 1974). Justification beyond
dimensional considerations for φT(ζ ) = φm(ζ )2 is reviewed
elsewhere (Li et al., 2012) and is not repeated here.

Using the definition of FwT(k), the buoyancy production
contribution can be determined as

g

T

∞∫
ka

FwT(s) ds = 3

4

g

T

T∗
κ z

φT(ζ ) C′
wT ε̄1/3 ka

−4/3. (19)

Again, in the ASL, dŪ/dz = φm(ζ ) u∗/(κz), ε = (φm(ζ ) −
ζ ) u3∗/(κz) and, using Fwu(k) from Eqs (11) and (19) along with
Eqs (17) and (9), simplifies to

ka∫
0

s2Etke(s) ds = u2∗
z2

Cs, (20)

where Cs(ζ ) varies with ζ and is given by

Cs = 2

3CHC
1/2
o

((φm(ζ ) − ζ )2/3κ4/3/κ2

− (3/4) Cuw φm(ζ )2/κ2 − (3/4) ζ C′
wT φT(ζ )/κ2). (21)

Any formulation for Etke(k) requires an analytical expression
for Cs. To estimate Cs, standard values for the constants
κ = 0.4, Co = 0.55, Cuw = 0.15 and CH = (8/9) C

−3/2
o as

derived for isotropic conditions (Schumann, 1994) are used.
The other constant CwT is taken as (Kaimal and Finnigan, 1994)
CwT = 3 Cuw. By this particular choice of constants for Co, CH

and Cuw, the issue of projecting the three-dimensional transport
term to a one-dimensional wave-number form has been bypassed
(Ishihara et al., 2002). The variation of Cs with ζ is shown in
Figure 1 and the discussion on Etke(k) is now based on how Cs

varies with atmospheric stability. It is evident from Figure 1 that,
for |ζ | < 0.1 (labelled as Zone I), Cs is approximately constant.
Also, for |ζ | > 0.5 (labelled as Zone II), Cs is well represented
by an approximate power law of the form Cs = p (ζ )q. When
this power-law form is fitted to the expression for Cs(ζ ) given by
Eq. (21) and for |ζ | > 0.5, an acceptable statistical fit is achieved
when p = 1.6 and q = 0.6, with a coefficient of determination
R2 > 0.99. For these two zones describing Cs variation with ζ , it
is possible to derive explicit analytical expressions for Etke(k) and
track the consequences of these expressions for σu/u∗.

2.4. Formulation for Zone I

To solve for Etke(k) in Eq. (20) for kz ≤ 1, a power-law
solution with undetermined coefficients is first assumed, so that
Etke(k) = a1kb1 . This assumed power-law solution is then inserted
into Eq. (20) to yield

a1z−3−b1

3 + b1
= u2∗

z2
Cs, (22)

where Cs is approximately a constant independent of z in
Zone I. A plausible polynomial matching between the left-
and right-hand sides yields −3 − b1 = −2 or b1 = −1 and
a1 = 2Csu

2∗. This analysis suggests that Etke(k) = C′
TKEu2∗k−1,

thereby recovering the −1 power law in the spectrum of TKE
(Tchen, 1953; Panchev, 1971; Perry and Abell, 1977; Turan et al.,
1987; Katul and Chu, 1998; Nikora, 1999; Katul et al., 2012), where
C′

TKE = 2Cs. Furthermore, as argued elsewhere (Banerjee and
Katul, 2013), σ 2

u ≈ σ 2
v + σ 2

w and thus Etke(k) ≈ Eu(k) for k < ka

in the ASL.
To summarize,

Eu(k) =
{

C′
TKE u∗2 k−1, if kz ≤ 1,

Co ε2/3 k−5/3, otherwise.
(23)

A further discussion about the k−1 power law is necessary
at this point. Specifically, a k−1 scaling at low wave numbers
(k) for the streamwise turbulent velocity spectrum (Eu(k)) has
been prevalent in turbulence literature since the early 1950s and
across many experiments and simulations (Tchen, 1953, 1954;
Klebanoff, 1954; Hinze, 1959; Pond et al., 1966; Bremhorst and
Bullock, 1970; Panchev, 1971; Bremhorst and Walker, 1973; Perry
and Abell, 1975, 1977; Korotkov, 1976; Bullock et al., 1978; Hunt
and Joubert, 1979; Kader and Yaglom, 1984; Perry et al., 1986,
1987; Turan et al., 1987; Erm et al., 1987; Perry and Li, 1990; Erm
and Joubert, 1991; Kader and Yaglom, 1991; Yaglom, 1994; Katul
et al., 1996; Katul and Chu, 1998; Jimenez, 1999; Nikora, 1999;
Katul et al., 2012; Calaf et al., 2013; Yang et al., 2014), for both
wall-bounded flows and ASL turbulence. However, a few studies
have not observed a clear k−1 scaling or have argued against its
existence in the unstably stratified ASL (Kaimal, 1978; Antonia
and Raupach, 1993; Morrison et al., 2002) and others have found
its existence only under certain constraints (Nickels et al., 2005),
including very high Reynolds number and z/δ < 0.02. Here, the
k−1 spectrum is assumed to extend from k ≥ 1/H to kz ≤ 1,
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where H = αδ and αδ is a measure of the largest size of eddies.
Below k = 1/H (i.e. at very large scales), the spectrum can be
assumed to be flat, i.e. a constant value (C′

TKE u∗2 (1/H)−1)
determined from the continuity requirement at k = 1/H. This
assumption leads to a value of α = 1, thereby retaining some
energy in the very-large-scale motion, and eliminates the need
to have a parameter (α) susceptible to fitting exercises. Hence,
unless otherwise stated, α = 1. Experimental datasets for near-
neutral conditions appear to support this assumption, such as
the Eu(k) reported in Perry et al. (1986). It is important to note
that this formulation for Zone I assumes Cs to be constant and
the three regimes −5/3, −1 and flat spectrum hold. It is also to
be noted that, although the spectral solution here might not be
the most accurate representation, given that the spectrum might
have some curvature at the intersection of the different domains
and Eu(k) has been assumed to be approximately equal to Etke(k),
it allows analytical tractability and provides a physical basis to
expand Townsend’s hypothesis to mildly unstably stratified flow
as shown later.

2.5. Formulation for Zone II

While evaluating Eq. (20), it was assumed that Cs is approximately
constant, thereby explaining the −1 power law in Eu(k). However,
beyond moderately unstable (e.g. −ζ > 0.5), the assumptions
that Etke(k) ≈ Eu(k) and the existence of a −1 power law for
kz < 1 might be questionable, given the dependence of Cs on ζ .

As a first step to address these issues, the form of Etke(k) at
kz < 1 is still assumed to be a power law, as used to derive Eq. (22).
Moreover, the simplified power expression for Cs = p (ζ )q is now
used, instead of a constant Cs. The modified form of Eq. (22) now
becomes

a1z−3−b1

3 + b1
= u2∗

z2

p zq

Lq
, (24)

which upon simplification yields b1 = −1 − q = −1.6 ≈ −5/3
and a1 = (2 − q)u2∗ p/Lq. This result is rather interesting, because
it supports the hypothesis that another extended −5/3 scaling
law, instead of the −1 scaling law, might be applicable at
kz < 1, as indicated by the Kansas data (Kaimal and Finnigan,
1994), though this −5/3 scaling is not necessarily associated
with an inertial subrange. In fact, two separate −5/3 regimes
with a break in the vicinity of kz = 1 − 4 have already been
reported for unstable conditions using previous long-term
atmospheric surface-layer measurements (Kader and Yaglom,
1991). For analytical tractability, these two −5/3 regimes are not
distinguished and are assumed to be approximated by a single
power law with an exponent of −5/3. If the details of the transition
from one −5/3 regime to another are known, then they can be
incorporated.

Unfortunately, even with this simplification, the presence of a
−5/3 alone at low k is not entirely prognostic, because (1) no clear
estimate can be made about the low-wave-number break-point
up till which the −5/3 scaling can be extended and assumed to
be valid and (2) the precise shape of the spectrum is lacking
in the vicinity of −ζ = 0.5, where the −1 power law collapses
and the −5/3 power law forms. Also, these two issues become
compounded for large z, as the velocity statistics become quasi-
isotropic, thereby violating the assumption that Etke(k) ≈ Eu(k)
at low k in the spectral budget for Etke(k).

However, this near-isotropic state may actually offer some
guidance, because Ew(k) can still be idealized via two regimes,
a near flat-portion at low k and a −5/3 portion at larger k. It
is argued here that the Eu(k) spectrum may approach the Ew(k)
spectrum as the tendency towards isotropization is approached,
which is likely to hold far from the boundary or at large z (and
for −ζ > 0.5). If it is assumed that the break-point of the now-
constant to −5/3 regime spectrum is at 1/(γ1 z), where γ1 is
assumed to be greater than unity (eddy sizes are larger than z at

this break-point in Ew(k)), the Eu spectrum can be described as

Eu(k) =
{

Co ε2/3 (1/γ1 z)−5/3, if kγ1 z ≤ 1,

Co ε2/3 k−5/3, otherwise,
(25)

while the form of the flat spectrum (kγ1 z ≤ 1) is obtained from
the continuity requirement at k = 1/γ1 z.

To summarize, for instability conditions beyond moderate
(−ζ > 0.5) and at distances sufficiently far from the boundary
so that near-isotropic conditions are approached, the Eu(k) shape
is dramatically altered from near-neutral to moderately unstable
conditions, resulting in a different formulation for σu/u∗. This
domain of formulation and the associated spectral shape are
marked on Figure 1 as Zone II. The dynamics in the intermediate
zone (named zone III) are unknown and beyond the scope of the
present work. In this zone, the Eu(k) spectrum evolves from the
spectral shape of the three-regime −5/3, −1, flat (in zone I) to
the two-regime −5/3, flat spectra (in zone II).

2.6. The longitudinal velocity variance

For Zone I, integrating Eu(k) from Eq. (23) from zero to infinity,
the variance is

σ 2
u =

∫ 1/H

0
C′

TKE u∗2 (1/H)−1 dk

+
∫ ka

1/H
C′

TKE u∗2 k−1 dk +
∫ ∞

ka

Co ε2/3 k−5/3 dk. (26)

Substituting ε̄ = (φm(ζ ) − ζ ) u∗3/ (κ z) and performing the
integration,

σ 2
u = C′

TKE u∗2 + C′
TKE u∗2 ln

(
H

z

)

+ 3

2

Co u∗2

κ2/3
(φm(ζ ) − ζ )2/3. (27)

Normalizing σ 2
u by u∗2, Eq. (27) recovers Townsend’s attached

eddy hypothesis form (Marusic et al., 2013):

σ 2
u

u∗2
= B1(ζ ) − A1(ζ ) ln

( z

δ

)
, (28)

where

B1 = 3

2

Co

κ2/3
(φm(ζ ) − ζ )2/3 + C′

TKE ln(α) + C′
TKE, (29)

and

A1 ≈ C′
TKE, (30)

are the intercept and slope, respectively. Recall that C′
TKE = 2Cs

is dependent on ζ via Eq. (21), but only weakly in Zone I.
In summary, the derivation here unfolds some (but not all)

necessary conditions for which MOST might explain distortions
in σ 2

u /u2∗ around its near-neutral state as specified by Townsend’s
hypothesis, due to thermal stratification. If the base-line neutral
state of σ 2

u /u2∗ involves a dimensionless variable z/δ (instead
of being a constant as in σw/u∗), then under the restrictive
conditions highlighted here, MOST may correct for deviations
from this neutral baseline state via A1(ζ ) and B1(ζ ) due to finite ζ .
This derivation is associated with a k−1 power-law scaling in Eu(k)
for kz < 1, which is not likely to hold for moderately unstable
(i.e. −ζ > 0.5) conditions and most definitely will not hold for
approximate convective conditions (i.e. −ζ > 5). Nonetheless,
maintaining the C′

TKE = 2Cs dependence on ζ (instead of a
constant) as in Eq. (21) allows the initial discussion of σu/u∗
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scaling to be anchored to established norms to boundary layers
in near-neutral conditions. Stated differently, the derivation here
shows that if the shape of the spectrum of u is unaltered by ζ
(specified in Zone 1) and if variations in ζ are primarily attributed
to L instead of z, then a straightforward extension of Townsend’s
attached eddy hypothesis can explain variations in σ 2

u /u2∗ via
A1(ζ ) and B1(ζ ) due to finite ζ . The adequacy and robustness of
this extension to Townsend’s hypothesis will be discussed further.
This derivation also makes it clear that, with increasing instability,
if the shape of the u spectrum changes from its Zone I state and if
the −ζ increases are due to either z or L, then a straightforward
extension of Townsend’s attached eddy hypothesis via A1(ζ ) and
B1(ζ ) is likely to be insufficient, as is the case for Zone II.

For Zone II and with the large z assumption (but still in
the ASL) and upon integrating the spectrum in Eq. (25), the
longitudinal velocity variance is given by

σ 2
u

u2∗
=

(
1 + 3

2

)
Co

κ2/3
(φm(ζ ) − ζ )2/3γ1

2/3. (31)

Hence, if γ1 is known, how σu/u∗ varies with ζ for unstable
to convective conditions can be predicted. There are a number
of assumptions that complicate the determination of γ1. The first
pertains to the presence of two −5/3 power laws for small and
large k instead of a single power law. The degree of separation
in wave number space and the shape of the connecting spectrum
between these two −5/3 exponents can certainly impact the
numerical value of γ1. Moreover, there are large uncertainties in
the shape of the spectrum for scales much larger than γ1z and a
constant extension to k = 0 is oversimplistic at best.

3. Results

3.1. Comparison with laboratory experiments and the
near-neutral limit (Zone I)

Before the effects of atmospheric (in)stability are discussed, the
σ 2

u /u2∗ scaling is first presented for the near-neutral case where
φm(0) = φT(0) = 1. For Zone I, the shape of the spectrum
predicted from the spectral budget can be found in Figure 1.
Also, for these near-neutral stability conditions, the general log
law (Marusic et al., 2013) σ 2

u /u2∗ = B1 − A1 ln (z/δ) recovered
from Eq. (28) is observed across several laboratory experiments,
as discussed elsewhere (Banerjee and Katul, 2013). The estimates
for A1 = 1.2–1.4 and B1 = 1.6–2.3 reported in Marusic et al.
(2013) are reasonably recovered when α = 1. Using a flat
spectrum at kH < 1, the constant B1 can be estimated as
B1a = Co/κ

2/3 (1 + 3/2 + ln(α)) = 2.5, which appears to be
commensurate with the upper limit set by Marusic et al. (2013).
The parameter A1 is estimated as A1 ≈ Co/κ

2/3, which with
Co = 0.55 and κ = 0.4 results in A1 ≈ 1. This estimate is again
commensurate with the lower limit provided by Marusic et al.
(2013).

To begin unfolding the effects of atmospheric stability on
σ 2

u /u2∗, consider the case in which Cs predicted from Eq. (21) is
inserted into Eq. (22) without any modification (i.e. variations
in ζ are assumed to originate from variations in L, not z) and
the spectrum for the formulation for Zone I holds. The outcome
of this exercise shows how the two parameters associated with
Townsend’s hypothesis for σ 2

u /u2∗, namely the intercept B1 and
slope A1, might be nonlinearly modified by ζ within the ASL
(though, as earlier noted, Eq. (22) does not capture the spectral
dynamics for Zones II and III correctly). Both parameters appear
approximately constant up to −ζ < 0.5 (i.e. Zone I) and then are
predicted to increase dramatically as more unstable conditions
are approached. In the neutral limit, they approach the values
B1 = 2.5 and A1 = 1, respectively, as discussed earlier.

The derivation here also brings into focus why ζ is not a
unique parameter explaining the variability in σu/u∗ as predicted
by MOST for σw/u∗. As mentioned earlier, it has been known for

some time now that δ/L is a more dominant parameter affecting
σu/u∗ for ASL flows (Lumley and Panofsky, 1964; Panofsky et al.,
1977). The spectral budget here predicts how the dimensionless
groups ζ = z/L and z/(αδ) describe σu/u∗, at least for the
conditions when ζ = z/L variations are dominated by L instead
of z and the onset of the −1 power law in Eu(k) for kz < 1 is not
nullified by thermal stratification.

For illustration purposes only, Figure 2 shows computed
σu/u∗ varying with both z/δ and ζ = z/L for α = 1.0 using
a straightforward extension of Townsend’s hypothesis with B1

and A1 modified by ζ . The individual scaling behaviour of σu/u∗
with ζ and δ/L is also shown in the figure and the model is again
found to produce a 1/3 scaling behaviour in the limits of large
|δ/L| and |z/L|. It is to be noted that that z is fixed at 5 m, −ζ is
varied from 10−3 to 10 and δ is varied from 102 to 103 m. In terms
of asymptotic behaviour in the neutral limit, the model converges
to σu/u∗ = 2.3 and the functional form by Panofsky et al. (1977)
converges to σu/u∗ = 2.0, which corroborates to the range 2–3
reported in the literature (Lumley and Panofsky, 1964; Hsieh and
Katul, 1997; Kader and Yaglom, 1990). Note the increase in σu/u∗
with increasing δ for fixed z, which is also observed in figure 3 of
Banerjee and Katul (2013). Furthermore, for fixed δ, the increase
in σu/u∗ is also observed in the surface plot with increasing |ζ |.

Functional forms of the variation of σu/u∗ empirically
fitted to several experiments have been provided by Panof-

sky et al. (1977) as σu/u∗ = [4 + 0.6(δ/(−L))2/3]
1/2

. Using
another expansive data set, Wilson (2008) provided a mod-
ification to Panofsky’s form by incorporating the z and δ

variation as σu/u∗ = ([4 + 0.73(δ/(−L))2/3][1 − (z/δ)0.25])
1/2

.
These empirical functions represent a large corpus of data on
variations in σu/u∗ and serve as a logical basis for evaluating the
proposed formulation.

Because of the constraint z � δ, which is not too different
from the limit in Nickels et al. (2005) to ensure the onset
of a −1 power law in the longitudinal velocity spectrum, the
comparisons are shown for a reasonably small z = 5 m (i.e.
z/δ < 0.02) in Figure 3(a); these comparisons appear surprisingly
reasonable even for moderately unstable conditions −ζ > 1,
given the lack of any tunable parameter here. However, for a
high (separated by an order of magnitude) value of z = 50 m
(i.e. z/δ > 0.02), the comparisons between the models remain
strongly correlated but biased by a multiplier, as shown in Figure
3(b). Recall that, when deducing Eq. (22), variations in ζ were
momentarily assumed to originate from variations in L, not
z. This simplification allowed polynomial matching to recover
the −1 power law in the spectra at the expense of ignoring
large variations in z when determining Cs(ζ ). This deficiency is
discussed later, after comparisons with a recent field experiment,
the Advection Horizontal Array Turbulence Study (AHATS), is
presented.

3.2. Comparisons with the AHATS field experiment

Assumptions made in deriving the spectral budget are now
explored using ASL data collected as part of AHATS, conducted
near Kettleman City, CA, USA from 25 June 2008–17 July 2008
(Salesky et al., 2013). Here, data from the AHATS profile tower
is considered, where velocity and temperature measurements
were collected using Campbell Scientific CSAT-3 triaxial sonic
anemometers at heights of z = 1.51, 3.30, 4.24, 5.53, 7.08 and
8.05 m. Raw data were sampled at 60 Hz, then down-sampled to
20 Hz during preprocessing. The data were divided into blocks
of 27.3 min or 32 768 = 215 data points per block to permit the
use of fast Fourier transforms in spectral density estimation. The
coordinate system was aligned with the mean wind direction,
so that U2 = 0 for each block, as noted earlier. Only blocks
of data with wind angles of |αw| ≤ 45◦ were included in the
analysis. Several quality-control criteria were employed during
the pre-processing. Blocks of data that exhibited more than
a 30% deviation of φw = σw/u∗ from the value predicted by
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Figure 2. (a) The computed variation of σu/u∗ with z/δ and −ζ = z/L at α = 1 and z = 5 m, shown as a surface plot. This formulation is based on the extrapolation
of the formulation for Zone I (i.e. a straightforward extrapolation of Townsend’s hypothesis with B1 and A1 modified by ζ ). (b) Variation of σu/u∗ with −ζ = −z/L.
Similar scaling behaviour obtained from the functional forms described in Panofsky et al. (1977) and Wilson (2008) is also shown. (c) Variation of σu/u∗ with −δ/L.
Similar scaling behaviour obtained from the functional forms described in Panofsky et al. (1977) and Wilson (2008) is also shown. The (−ζ )1/3 and (−δ/L)1/3 scaling
in the semi-log representation are depicted in both (b) and (c) for reference.
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Figure 3. Comparisons between model estimates and the functional forms provided by Wilson (2008) and Panofsky et al. (1977) for two different heights: (a) z = 5 m
and (b) z = 50 m.

MOST were discarded (Lee et al., 2004). To minimize the effects
of non-stationarity on the calculated statistics, non-stationary
ratios (Vickers and Mahrt, 1997) for the streamwise (RNu),
cross-wind (RNv), and vector (RNS) velocity components were
examined for each period. Blocks of data were excluded from
the analysis if RNu, RNv or RNS ≥ 0.5. Blocks of data were
also excluded if the measured u∗ ≤ 0.1 m s−1 or measured
ρcpw′T′ ≤ 10 W m−2 (Högström, 1988). Finally, because MOST
requires the assumption that the turbulent fluxes do not vary with
z within the ASL, periods where either momentum or heat flux
varied more than 20% with z, as quantified by the coefficient of
variation across z, were discarded.

The mean velocity and temperature gradients were calculated
by fitting a second-order polynomial in ln z to the calculated mean
profiles, e.g. U(z) = Afm ln z + Bfm(ln z)2 + Uf0, where Afm, Bfm

and Uf0 are constants determined through linear regression
fitting. The polynomial fit can then be differentiated to determine
the mean gradient by

∂U

∂z
= Afm

z
+ 2Bfm ln z

z
. (32)

The mean turbulent kinetic energy dissipation and temperature
variance dissipation rates were simultaneously estimated by linear
regression of the compensated second-order structure functions,
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Figure 4. Local imbalance of (a) the turbulence kinetic energy budget and (b) the temperature variance budget, plotted as a function of the MOST stability variable
−ζ . Note that in (b), runs with counter-gradient heat fluxes (φT < 0) are plotted separately.

e.g.

r
−2/3
1 D11(r1) = c2ε

2/3 = ar1 + b (33)

for spatial lags r1 in the range 0.2 ≤ r1 ≤ 2.0 m (Salesky et al.,
2013).

Here, r1 is determined from Taylor’s frozen turbulence
hypothesis (Taylor, 1938). In an analysis of deviations from
MOST, Salesky and Chamecki (2012) found that best-fitting
curves to φm(ζ ) and φT(ζ ) from the AHATS data set were
similar to the Businger–Dyer empirical form. The local balance
assumptions for the TKE and temperature variance budgets are
also examined here using the AHATS data. In Figure 4, the local
imbalance (i.e. dissipation − production) of the TKE (βE) and
temperature variance (βT) budgets are presented in panels (a) and
(b), respectively. For unstable conditions, the imbalance of the
TKE budget in Figure 4(a) scatters around βE = 0. In Figure 4(b),
the imbalance in the temperature variance budget βT also scatters
around zero for the majority of the data runs. However, data
points with large values of βT occurred for runs with φT < 0, i.e.
a countergradient heat flux. Discussions of the local imbalance
of the TKE budget can also be found for other recent studies
(Wilson, 2008; Salesky et al., 2013).

Notwithstanding these issues, it can be surmised here that, for
unstable and near-neutral conditions, the TKE budget is close to a
local balance on average, i.e. on average βE(ζ ) ≈ 0 (Salesky et al.,
2013). Spectra from AHATS, shown in Figure 5, were calculated
using the 60 Hz data (the inertial range is not really present in the
20 Hz data) using periods of approximately 54.8 min. The use of
such long periods allowed an extension of the measured spectra
to a small wave number range, which is needed to assess the
slope in the kz < 1 range. Each spectrum was first normalized by
C0ε

2/3 so as to collapse the inertial range and then spectra were
averaged in bins of ζ , as indicated in the figure. Figure 6(a) and
(b) do suggest a transition from k−1 to k−5/3 scaling for kz < 1
with increasing instability for ETKE and Eu, respectively, consistent
with the predictions here for Zones I and II. To investigate the
spectral scaling further, compensated spectra using k5/3 are also
shown in Figure 6(c) and (d) and spectra using k1 are shown in
Figure 6(e) and (f).

The measured spectra in most runs from AHATS support the
existence of a decade of −1 power-law scaling in Eu(k) and Ev(k)
but not Ew(k) at kz < 1 for small −ζ < 0.5 (consistent with
theoretical predictions for Zone I). Also, the AHATS measured
spectra suggest the collapse of a −1 power law in Eu(k) and Ev(k)
and the initiation of an extended −5/3 power law beyond kz < 1
around an atmospheric stability limit−ζ > 0.5, as predicted from
Cs(ζ ) in Zone II) and shown in Figure 6. The finding that the
Ev(k) spectrum is similar to the Eu(k) spectrum (Eu(k) = Ev(k))
supports further the assumption that Eu(k) + Ev(k) � Ew(k) and
hence Etke = (1/2)(Eu(k) + Ev(k) + Ew(k)) ≈ Eu(k) at low k. In
fact, the assumption of σ 2

u ≈ σ 2
v + σ 2

w and thus Etke(k) ≈ Eu(k)
for k < ka in the ASL can be also tested using the AHATS data.
Figure 6 shows a one-to-one comparison betweenσ 2

u andσ 2
v + σ 2

w

computed from AHATS data and the assumption can be deemed
to be fair.

As atmospheric instability increases beyond −ζ > 0.5, two
k−5/3 regions can be identified in ETKE in Figure 6(c) (i.e. in
pre-multiplied form), consistent with measurements reported
elsewhere (Kader and Yaglom, 1991) for unstable ASL conditions.
As noted earlier, these two separated −5/3 regimes are ‘lumped’
together into a single regime here for analytical tractability in
Zone II and the uncertainties associated with such simplifications
are absorbed in γ1.

To illustrate the role of δ on σu/u∗ from the AHATS, σu/u∗
was calculated for morning periods from 0800–1000 PDT
(1500–1700 UTC) (assumed to have smaller δ) and afternoon
periods from 1400–1600 PDT (2100–2300 UTC) (assumed to
have larger δ) using the straightforward extension of Townsend’s
hypothesis with stability-dependent A1 and B1. Because a direct
measurement of δ was not available, the average boundary-layer
depth for morning and afternoon periods was estimated using a
slab model described in Juang et al. (2007) and discussed in the
Appendix. From the slab model, values of δ = 289 ± 31 m for
the morning (0800–1000 PDT) period and δ = 836 ± 37 m for
the afternoon (1400–1600 PDT) were obtained. The afternoon
estimate of δ from the slab model was found to be consistent
with the value of δ = 780 ± 130 m estimated visually from plots
of the afternoon sounding (typically taken around 1400 PDT
(2100 UTC)) available from the National Center for Atmospheric
Research (NCAR) project website.

For each of these distinct δ and at a given z, the σu/u∗
approximately collapse on to a single curve as ζ varies.
Consistent with earlier model calculations shown in Figure 2(a),
the afternoon σu/u∗ is found to be higher than its morning
counterpart for the same ζ , signifying the effects of δ at a fixed
z. Noting that α was pre-set to unity in all calculations, the
variations at both z and δ are reasonably predicted by the model,
as shown in Figure 7. This agreement is also not a consequence
of any artificial self-correlation arising from u∗ impacting the
dependent and independent variables jointly, as measured and
modelled dimensional σu also agree (not shown). However, the
model is found to be biased by about 15% with a coefficient of
determination exceeding 0.7. It is evident that the modelled σu/u∗
overpredict the measurements for the smaller δ (or morning)
values, at least when compared with the larger δ case. This
bias may already be hinting that the modelled Eu(k), with its
predicted −1 power-law form (as derived for Zone I), is not
correctly reproducing the measured Eu(k) in Zone II as expected
when a straightforward extension of Townsend’s hypothesis with
stability-dependent A1 and B1 is employed in this zone. Recall
that the AHATS spectra also show a shift from a −1 to a −5/3
exponent in Eu(k) with increasing instability.

3.3. Comparisons with literature data

Two different types of field data, compiled in Panofsky et al.
(1977), are now discussed against model predictions in Figure 8,
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Figure 5. (a)–(b) Eu(k) and Etke(k) spectra from AHATS experiment averaged over bins of −ζ illustrating the existence of a −1 power-law in the large scales for
near neutral conditions transitioning to a −5/3 power-law for strongly unstable conditions. Panels (c)–(f) show compensated versions of the spectra to emphasize the
existence of the −1 and −5/3 scalings for kz < 1.

Figure 6. The fit shows that Assesment of assumption σv2 + σw2 ≈ σu2 using
AHATS data. Black dashed line represents assumption σv2 + σw2 ≈ σu2 while
gray dot-dashed line represents best fit given by σv2 + σw2 ≈ 1.37 σu2 .

when using Eq. (30) with Cs given by Eq. (21). For clarity, Figure
8 shows the comparisons between model and measurements for
the tower and aircraft data reported in Panofsky et al. (1977). The
tower data, measured at different heights (ranging from 4–32 m,
but precise heights not reported) are represented here by an
average z = 18 m and the model calculations assume α = 1 (i.e.
no tunable parameter). The tower data are reasonably predicted
by the model for all stability (unstable) conditions. The aircraft
data, however, are found to be overpredicted (again consistent
with the bias noted for the AHATS experiment for smaller δ). To

be clear, a number of cautionary notes about the aircraft data must
be highlighted in this comparison. The aircraft data were analyzed
in Panofsky et al. (1977) by assuming σu = σv; the measurement
heights were sufficiently large (>100 m) that neglecting Coriolis
effects or the flux transport terms in the TKE or, equally
importantly, the temperature variance budgets, as done here,
may be questionable. Furthermore, the assumption that Etke(k) is
dominated by Eu(k) clearly breaks down at these heights, where
the degree of anisotropy is far weaker when compared with the
tower measurements collected near the surface. Notwithstanding
these issues, it is to be noted that, when α = 1 is replaced with
α = 0.25, the proposed model can reproduce the reported aircraft
σu/u∗ to high fidelity. However, such a small α (or any other
empirical reduction to it with increasing z) indicates significant
reductions in low-frequency energy that cannot be explained
theoretically by the current solution to the spectral budget. That
is, significant differences exist between the σu/u∗ formulations
for Zones I and II (or Eqs (28) and (31)), reflecting fundamental
differences in the scaling laws describing the shapes of the energy
spectra for these two zones. This will be discussed further in
subsequent sections.

Interestingly, a one-third scaling of σu/u∗ with ζ for a
fixed boundary-layer height has been prevalent in some studies
reporting σu/u∗ = 2.7(1 − 3ζ )1/3 (Panofsky and Dutton, 1984;
Hsieh and Katul, 1997). The spectral budget model is found to
retrieve that 1/3 scaling for large −ζ reasonably, as shown in
Figure 9, though such a 1/3 scaling is known to be contaminated
by self-correlation, given that u∗ variations impact dependent and
independent variables here. A comparison between measured and
modelledσu was repeated (not shown) and the agreement between
them was commensurate with the AHATS agreements.

The proposed scaling law and the model are also found to
represent the data over grass and bare soil reasonably, although
the grassland data are found to be more scattered, due to the fact
that they were collected in non-ideal ASL conditions (within a
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large forest clearing). To summarize, no unique dimensionless
group describes variations in σu/u∗ for the unstable ASL, but
there are a few length-scales (at minimum z, αδ and L) that must
be accommodated. Even in the near-neutral ASL, σu/u∗ varies
with z/δ as earlier shown by Townsend, perhaps explaining why
the scatter in field data is large for such near-neutral conditions.
Also, in contrast to the scaling proposed by Panofsky et al. (1977),
ζ remains an essential variable, needed here to explain some of
the variations in σu/u∗, at least for very small z/δ, lending further
support to the proposed amendment by Wilson (2008).

3.4. Results pertaining to Zone II

It was assumed before that variation in ζ originated primarily
from L while evaluating Eq. (20). This assumption unexpectedly
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Figure 9. Variation of σu/u∗ with −ζ = −z/L for α = 1.0 and three different
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(1997) (HK97) are superimposed on the figure, also showing the 1/3 power-law
scaling relation proposed in Hsieh and Katul (1997) as σu/u∗ = 2.7(1 − 3ζ )1/3.

reproduced σu/u∗ well even when −ζ > 0.5, provided z was
small (as expected from tower measurements). However, when
comparing with aircraft measurements, this assumption results
in the model being biased for large z, as shown in Figures 8
and 3(b). The fate of the model for somewhat larger z and −ζ
but still for z/δ < 0.1 (i.e. flow within the ASL) requires further
examination, as has already been discussed in section 2.5. The
final form of σu/u∗ from this discussion (Zone II) can be found
in Eq. (31). This formulation is valid for −ζ > 0.5 (Zone II),
where z is sufficiently large. The need for a large z separate
from the requirement of −ζ > 0.5 is to ensure near-isotropic
conditions become prevalent (i.e. Ew(k) and Eu(k), as well as
their wave number integrations, are commensurate) away from
the boundary, but otherwise maintaining all the assumptions
in the idealized ASL. This formulation is tested against the
functional forms proposed by Panofsky et al. (1977) and Wilson
(2008) and the aircraft data provided in Panofsky et al. (1977)
and shown in Figure 10. It is found that a value of γ1 = 2
is a reasonable estimate, i.e. the inertial behaviour is found to
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Figure 10. (a) Comparisons between predictions from Eq. (31) and the functional forms provided by Panofsky et al. (1977) and Wilson (2008) using γ1 = 2. (b)
One-to-one comparison with aircraft data provided by Panofsky et al. (1977).

continue up to a height commensurate with twice the observation
height when z is large and ζ > 0.5 (Zone II). Interestingly,
this estimate appears to be consistent with variations in the
spectral peaks of kEw(k) reported for the Kansas experiments.
For example, Kaimal and Finnigan (1994) report that the spectral
peaks inferred from measured kEw(k) when normalized by their
near-neutral limit (=fpw(ζ )) are given as fpw(ζ ) = (1 − 0.7|ζ |)−1

when −ζ < 1 and = fpw(ζ ) = 3.23 when 1 < −ζ < 0.1δ/L.
That is, as isotropic conditions are approached away from the
boundary (i.e. Ew(k) ≈ Eu(k)), which is expected in the large z
limit, the Kansas data do suggest that 1 < γ1 < 3.23 (as inferred
from Ew(k)), consistent with the intermediate γ1 = 2 found
here. Recall that the Eu(k) spectrum assumed here (i.e. flat for
k < (γ1z)−1 and exhibiting a −5/3 scaling for k > (γ1z)−1) has
its well-defined spectral peak at k = (γ1z)−1 where kEu(k) is
maximum, consistent with its kEw(k) counterpart when z is large
and −ζ > 0.5. Also, it is to be noted that γ1 is impacted by the
assumption of a single −5/3 exponent as given by Eq. (24), an
assumption not supported by the AHATS spectra in Figure 6.

4. Conclusion

A spectral budget method has been discussed to explain the
characteristics of the normalized streamwise turbulent intensity
(σ 2

u /u2∗) under an unstably stratified atmosphere. This budget
showed why a straightforward extension of Monin–Obukhov
similarity theory (MOST) to σ 2

u /u2∗ is inadequate. Analytical
solutions to this spectral budget were possible for two limiting
conditions: (1) z/δ < 0.02 and |z/L = ζ | < 0.5 (labelled as Zone
I) and (2) 0.02 � z/δ < 0.1 and |ζ | > 0.5 (labelled as Zone II).
The z/δ = 0.02 limit was derived independently from laboratory
studies (near-neutral conditions) and was found to be reasonable
here and the −ζ = 0.5 limit was inferred from Figure 1, while
spectral analysis of the AHATS data also indicated a similar trend.
The first condition ensured the onset and maintenance of a −1
power law in Eu(k) at low k for mildly unstable conditions. The
second condition is associated with a deterioration of the −1
power law in Eu(k) and its eventual replacement with a −5/3
scaling beyond kz < 1. The σu comparisons have been checked
for self-correlation and it has been found that any self or spurious
correlation is not the cause of the fair agreements.

The work here showed that σ 2
u /u2∗ is found to conform to

the logarithmic scaling anchored to Townsend’s attached eddy
hypothesis for near-neutral conditions (or Zone I), while the
coefficients of this log law are found to be modified by MOST for
mildly unstable conditions. The required low z/δ � 1 condition
for observing a −1 power law is compatible with laboratory
measurements by Nickels et al. (2005) for neutral boundary-layer
flows. That is, Townsend’s attached eddy hypothesis, the height

conditions promoting the −1 power law (z/δ < 0.02) and the
MOST expansion for non-neutral flows to mildly unstable in
the ASL are all interconnected. Interestingly, the σ 2

u /u2∗ derived
for z/δ < 0.02 and |ζ | < 0.5 (Zone I) appears to be robust to
variations in |ζ | < 0.5 and agreement with measurements and
other empirical models was surprisingly found to hold up to
−ζ = 10 for tower measurements, where z was small. In the case
of higher z, but still z/δ < 0.1 and a finite −ζ > 0.5 (Zone II),
the longitudinal spectrum loses its −1 scaling, consistent with
the laboratory findings in Nickels et al. (2005), and follows an
approximate −5/3 scaling at low wave numbers, consistent with
Kader and Yaglom (1991), though this exponent is not connected
to the inertial subrange. Using this asymptotic argument for
z/δ < 0.1 and a finite −ζ > 0.5, a different model for σu/u∗
was derived and shown to agree with earlier models and aircraft
data for those conditions. Naturally, ‘stitching’ these two limiting
conditions via some ad hoc function is possible (e.g. Zone III),
though such stitching does not guarantee correct predictions
of Eu(k) at kz < 1. Progress on how to transition from one
formulation to another for σu/u∗ can greatly benefit from large
eddy simulation runs, where z, L and δ are allowed to vary.
Perhaps more broadly, the fact that Eu(k) does not exhibit a single
‘canonical’ shape across all z, L and δ may explain the lack of
‘non-universal’ form in σu/u∗ when all these length-scales are
varied simultaneously.
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Appendix

Discussion on the details of the slab model used to estimate
boundary-layer depth in AHATS

The average boundary-layer depth for morning and afternoon
periods was estimated using a slab model described in Juang et al.
(2007). Briefly,

dδ

dt
= (w′ T′

Ps − w′ T′
Pδ)

γ δ
, (A1)
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Figure A1. Predicted time evolution of boundary-layer height δ from the slab
model for each day, together with the ensemble mean.

where w′ T′
Ps and w′ T′

Pδ represent the turbulent sensible heat
fluxes at the surface and at the top of δ and γ is the local lapse
rate of the mean slab potential temperature TP just above δ.

Invoking the standard assumption that w′ T′
Pδ = −βw′ T′

Ps
(Tennekes, 1973), setting β = 0.3 (Kim and Entekhabi, 1998)
and γ = 11.6 × 10−3 K m−1 (Juang et al., 2007), the temporal
variations of δ can be predicted from the time series of measured
sensible heat flux collected near the surface, after imposing an
initial condition on δ at some time t0. This initial condition
δ(t0) for the slab model is given by the nocturnal equilibrium
formulation in Zilitinkevich (1972), i.e.

δ(t0) = 0.4

( 〈u∗〉
f

〈|L|〉
)1/2

, (A2)

where the angled brackets represent the night-time average of a
quantity and f ≈ 10−4 s−1 is the Coriolis parameter. Time series

of the average values of u∗, TP and w′T′
P for each 27.3 min block

of data from AHATS were used as input for this slab model. Data
from 12 separate days of the AHATS experiment that were free
from bad or missing daytime blocks in the variables of interest
were used. The predicted time evolution of δ from the slab model
for each day, together with the ensemble mean, can be found in
Figure A1. The morning and afternoon periods are denoted with
dashed vertical lines.
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