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Abstract

This paper explores the use of instance-based
reasoning (IBR) to estimate the probability of
hospital death in patients admitted to the In-
tensive Care Unit (ICU). The predictions are
based on severity-of-illness scores that indicate
the state of the patient. We have implemented an
instance-based reasoning algorithm as an alterna-
tive to logistic regression (LR) models to predict
hospital mortality. The performance was mea-
sured and prospectively validated. Results show
that instance-based reasoning is competitive to
logistic regression.

1 Introduction
Clinical scoring systems are tools for assessing the states
of patients and quantifying the severity of their condition
[Wyatt, 1990]. They are used in many medical disciplines,
including cardiology, oncology, and critical care, and can
be used for a variety of clinical and management tasks such
as comparative audit among practitioners, measuring the
effects of treatment, and risk assessment and prognosis. In
this paper, we focus on the application of scoring systems
in prognosis with binary outcome variables.

In most scoring systems, patient-specific data is used to
arrive at an integer value that represents the severity of a
patient’s illness. Because points are assigned to deviations
from normal values, low values (close to zero) generally
represent mild conditions, whereas higher values are asso-
ciated with more serious conditions. When clinical scores
are used in prognosis, a model has to be developed that con-
verts these scores into patient-specific predictions. With a
binary outcome variable, the model needs to convert scores
into either predicted outcome classes or into probabilities.
The predominant methodology for doing this is logistic
regression (LR) analysis[Hosmer and Lemeshow, 2000],
where the score is used as a linear covariate.

Although LR analysis has proven to be a powerful mod-
eling methodology in the biomedical field, it is based on
assumptions that are questionable for most clinical scor-
ing systems. In particular, logistic regression assumes that
there exists a fixed (usually linear) relationship between
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score and log odds of the outcome probability over the en-
tire score range. In practice, however, most scoring sys-
tems were not designed to have this property, and the rela-
tionship between score and (log odds of the) outcome may
vary over the score range, and may be highly nonlinear.

In this paper, we study the use of instance-based reason-
ing (IBR) as an alternative for LR analysis in scoring-based
prognosis. IBR is a nonparametric prediction method that
is based on the assumption that the prognosis of a new pa-
tient resembles those of past patients with similar charac-
teristics. The IBR method employed is the weightedk-NN
regression algorithm with an adaptive neighborhood size.
The main advantage of instance-based reasoning is that it
makes few assumptions regarding the relationship between
predictors and outcome. Furthermore, being a ‘lazy’ learn-
ing method, it is less sensitive to population drift than eager
(model-based) learning methods such as LR. The main dis-
advantage is that it requires relatively large datasets (com-
pared to parametric methods), and does not work well in
high-dimensional domains. Finally, when it is used to esti-
mate probabilities, as in our application, these may be bi-
ased (structurally too high or too low), a phenomenon that
does not occur in model-based methods.

The method was applied to data from two popular scor-
ing systems for intensive care patients, the APACHE II
[Knauset al., 1985] and SAPS II[Le Gall et al., 1993]
scores. The resulting mortality estimators were validated
and compared with LR models internally (with cross-
validation on the training dataset) and externally (on a
prospectively collected dataset).

The paper is organized as follows. Section 2 reviews the
two scoring systems that were employed; Section 3 pro-
vides details on the datasets, IBR prediction method, and
validation procedure. Section 4 describes the results from
our study and Section 5 finishes the paper with a discussion
and conclusions.

2 APACHE II and SAPS II scoring systems
Various scoring systems have been developed for the field
of intensive care medicine[Gunning and Rowan, 1999].
In this study, we have used the Acute Physiological And
Chronic Health Evaluation (APACHE) II[Knaus et al.,
1985] and the Simplified Acute Physiology Score (SAPS)
II [Le Gall et al., 1993] scores. Both scores are assessed
during the first 24h of a patient’s ICU stay, and can be con-
verted into an estimated probability of death by means of
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an associated LR model. The APACHE II score has a min-
imum of 0 and a maximum of 71 points; it summarizes
mainly physiological information, and the associated LR
model employs information on the patient’s diagnosis at
admission (54 categories) and type of admission (6 cate-
gories) besides the score. The SAPS II score ranges from 0
to 163 points; it summarizes physiological, diagnostic, and
admission-type information; the associated LR model only
employs the score itself.

An important difference between the APACHE II and
SAPS II scoring systems is that the former is based on
knowledge from practitioners, whereas the latter is based
on data analysis. The APACHE II scoring system was de-
signed during a consensus meeting with experienced in-
tensive care clinicians; the associated prognostic model is
based on LR analysis of a multicenter dataset of ICU ad-
missions. The SAPS II scoring system, in contrast, was
obtained by scaling the coefficients that were derived by
multiple LR analysis on a large multicenter dataset.

Both scoring systems consider patients who have un-
dergone cardiac surgery as special cases. These patients
usually stay for observation at the ICU and leave for fur-
ther recovery at the nursing ward once their condition is
stable. We can compute scores for these patients, but
the associated probability estimates from the LR mod-
els are believed to be unreliable[Knaus et al., 1985;
Le Gallet al., 1993].

3 Data and methods
3.1 Data
The Dutch National Intensive Care Evaluation (NICE) reg-
ister[NICE, 2005] provided two datasets containing infor-
mation on ICU admissions. The first dataset describes 1559
ICU admissions from 7 Dutch hospitals between January
2003 and August 2003 and was used as a training set. In
this dataset the hospital mortality is 14.8%.

During our study a second dataset was provided con-
sisting of 1868 ICU admissions from August 2003 to June
2004. It was used to validate the IBR estimators that were
developed on the first set. The hospital mortality in this
dataset is 16.3%. The difference in mortality between the
two datasets is not significant (χ2 = 1.38; p = 0.24).
Both sets contain all variables required to compute the
APACHE II and SAPS II scores, the scores themselves,
and the associated probabilities of death estimated by the
APACHE II and SAPS II LR models.

Using these data in total eight IBR estimators were devel-
oped using different (combinations of) predictive features.
Two univariate IBR estimators were developed, one for the
APACHE II score, and one for SAPS II score. Because
the APACHE II score does not include information on the
patient’s diagnosis and type of ICU admission, also three
multivariate estimators were developed for the APACHE II
score in combination with diagnosis category, admission
type, and both. Finally, a multivariate IBR estimator was
developed on the basis of the two scores together.

As discussed in Section 2, predictions from the
APACHE II and SAPS II LR models are believed to be
unreliable for cardiac surgery patients and therefore should

not be used. In the IBR estimators described above we have
neglected this exclusion criterion and make predictions for
all ICU patients in the same manner. Therefore we refer to
these IBR estimators assingle method estimators.

To take the exclusion criterion for cardiac surgery ICU
admissions into account, we developed two more estima-
tors, called thedual method estimators. Here we use the
clinical scores (APACHE II and SAPS II respectively) to
arrive at predictions for the patients who did not undergo
cardiac surgery, and four alternative features for patients
who arrive at the ICU after cardiac surgery. The four alter-
native features are minimum temperature, minimum sys-
tolic blood pressure, minimum bicarbonate, and maximum
creatinine (all during the first 24h of ICU stay); they have
been shown to be important predictors of mortality in car-
diac surgery patients[Verduijn, 2002].

All IBR estimators were constructed with an extension
of theweightedk-NN regression algorithm.

3.2 Prediction method
In weightedk-NN regression, predictions are obtained by
computing a weighted average of the outcomes of thek
training instances that are most similar to query instance
xq. In the case of a binary outcomeY , we have

p̂(Y = 1|xq) =
∑k

i=1 Kλ(xq,x[i]) · y[i]∑k
i=1 Kλ(xq,x[i])

, (1)

wherex[1], . . . ,x[k] are thek training instances most simi-
lar to xq, andKλ(xq,x[j]) is the weight assigned to train-
ing instancex[j]. This is called the Nadaraya-Watson
kernel-weighted average[Hastieet al., 2001, Ch. 6]. In our
application,p̂(Y = 1|xq) is the patient’s estimated prob-
ability of hospital death, given the feature-value vectorxq

(e.g. APACHE II score and diagnosis category).
Three important choices have to be made when weighted

k-NN regression is applied: 1. How do we find similar
training instances (choice of distance metric)?, 2. How
are distances transformed into weights (kernel function)?,
and 3. How many neighbors are used to make predictions
(neighborhood size)? Each of these questions is addressed
below.

Distance metric In the univariate IBR estimators we
have used thescore differenceto quantify the distance be-
tween instances. In the multivariate estimators, local dis-
tance metrics were constructed for each of the predictive
features. For non-numeric features (diagnosis category and
ICU admission type), these local metrics were defined by
distance matrices based on the hierarchical relations be-
tween feature values; we refer to[Tan, 2005] for details. In
the prediction phase, local distances were normalized and
then combined using theManhattan metric(i.e. taking the
unweighted sum of all normalized local distances).

Kernel function The kernel is a function that assigns a
nonzero weight to all instances within the neighborhood of
k nearest training instances, and zero weight to all other
instances. We have used two kernel functions in our ex-
periments, theuniform kerneland theEpanechnikov kernel



[Silverman, 1986]. The uniform kernel assigns unit weight
to all k nearest neighbors, thus treating them as equally
important. The Epanechnikov kernel, in contrast, is a non-
linear function that approaches 1 at small distances to the
query instance, and 0 at the boundaries of the neighbor-
hood:

Kλ(xq,x[i]) =
{

3
4 (1− t2) if |t| ≤ 1,
0, otherwise, (2)

wheret = d(xq,x[i])/d(xq,x[k]) is the normalized dis-
tance between neighborx[i] and the query instancexq.

Neighborhood size Most algorithms fork-NN classifi-
cation and regression (e.g. those implemented in WEKA
[Witten and Frank, 2001]) choose a fixed number of neigh-
bors to make all predictions. However, usually the values of
predictive features are not uniformly distributed over their
theoretical range. As a result the width of the neighbor-
hood that is necessary to obtain thek nearest neighbors
varies with the sparsity of the data in the neighborhood
of the query instance. However, when the neighbors are
weighed according to their distance to the query instance,
a single close neighbor yields the same amount of weight
as multiple distant neighbors together. A better option is
therefore to let the neighborhood width depend on the total
weight of the neighbors rather than the number of neigh-
bors[Hastieet al., 2001]. This implies that the neighbor-
hood width varies with the position of the query instance in
the instance space and is locally adapted to the sparsity of
the data.

In our application, atarget total weight(ttw ) of the
instances in the neighborhood was established during the
learning phase. The value ofttw is constant over the fea-
ture space, but needs to be optimized for the predictive
feature(s) and the type of kernel function that are used to
predict mortality. To find the optimal value forttw , the
following method was employed. For each IBR estimator,
both kernel types andttw values of 5, 10, 20, 50, 100,
200 and 500 were employed in a jackknife cross-validation
procedure. In each run of the procedure, the estimator’s
accuracy was determined. Based on the results, the kernel
type andttw value were chosen.

Within this procedure, predictive accuracy was measured
by the R2 statistic[Ash and Shwartz, 1999]:

R2 = 1−
∑N

i=1(p̂(Y = 1 | xi)− yi)2∑N
i=1(ȳ − yi)2

, (3)

where N is the size of the training dataset and̄y =
1
N

∑N
i=1 yi is the mean outcome value. TheR2 statistic

is inversely proportional to the mean squared error and the
Brier score.

Figure 1 shows an example for the APACHE II score.
The best performance is obtained with the Epanechnikov
kernel andttw values of 50 and 100. Because larger
ttw values correspond to simpler models, we choose the
Epanechnikov kernel with attw value of 100.

This procedure of selecting the optimal settings has been
applied for all IBR estimators.

target total weight
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Figure 1:R2 performance statistic for the APACHE II IBR
estimator, plotted against thettw , for both kernel types.

3.3 Validation
The IBR estimators were internally and prospectively vali-
dated. In the internal validation the performance of the es-
timator was measured by jackknife cross-validation on the
training data. The estimator was also validated on prospec-
tively collected data, using the second data set provided by
the NICE register. Three different procedures were used in
this prospective validation.

The first prospective validation procedure, thesettings
validation, aims to check whether the settings for ker-
nel type and target total weight that were optimized on
the training data, yield comparable performance on the
prospective test dataset. To this end, we only use these
settings, but not the training data for prediction; instead
jackknife cross-validation is applied on the test set. Be-
cause the test set is larger than the training set, we expect
the measured performance to be equally good or better if
the chosen settings are valid.

The second prospective validation procedure is called the
plain prospective validation. This procedure aims to in-
vestigate how well the algorithm generalizes to prospective
data. To this end, predictions are made for all instances
in the test set, while the training set serves as the instance
base. We use the settings for kernel type andttw value
that were found on the training set.

One interesting property of IBR is the fact that it is a
lazy learningmethod: generalization over examples in the
instance base takes place no sooner than at the time of mak-
ing predictions. The third prospective validation procedure,
calledincremental prospective validation, takes advantage
of this property by incrementally adding instances from
the test set and using them for future predictions. To this
end, records in the test set were ordered by ICU admission
date, and evaluated in that order. When evaluating a given
record with admission dated, the instance base consists of
all records from both the training set and test set with dis-
charge date prior tod. For the first record from the test
set this procedure yields the same prediction as in the sec-
ond validation procedure. But for later records, the num-
ber of possibly similar instances is much larger, and there-



Estimator method Predictive feature(s) Kernel type ttw Relative bias AUC ± S.D.

Single APACHE II Epan 100 -3.85 0.792± 0.033
Single SAPS II Unif 50 -1.65 0.860± 0.030
Single APACHE II, SAPS II Epan 20 4.50 0.854± 0.031
Single APACHE II, admission type Epan 20 0.04 0.828± 0.029
Single APACHE II, diagnosis category Unif 20 -4.22 0.831± 0.029
Single APACHE II, adm. type, diag. category Unif 20 -6.70 0.818± 0.029
Dual APACHE II or alternative features Epan 100 -11.90 0.818± 0.033
Dual SAPS II or alternative features Epan 50 -1.07 0.854± 0.030

LR model APACHE II - - - 0.796± 0.033
LR model SAPS II - - - 0.867± 0.027

Table 1: Results from the internal validation (jackknife cross-validation on the training set, 1559 ICU admissions). The
predictive bias, averaged over all cases, is expressed as a percentage of the hospital mortality (14.8%). The alternative
features for the dual method estimator are minimum temperature, minimum systolic blood pressure, minimum bicarbonate,
and maximum creatinine values during the first 24h of ICU stay.

fore the predictions may be more accurate. Furthermore, in
this way the prediction method accommodates to changes
in the population characteristics (drift), a phenomenon that
frequently occurs in medical applications.

In each validation procedure we computed the area un-
der the ROC curve (AUC) for all IBR estimators. The AUC
quantifies a estimator’s ability to discriminate between pa-
tients who survive and those who die. An AUC value of
0.5 indicates that the estimator does not predict better than
chance, while an AUC value of 1 indicates perfect discrim-
ination. For the APACHE II and SAPS II scoring systems
an AUC of> 0.80 is considered to be good.

4 Results
4.1 Internal validation
Table 1 shows the results from the internal validation.
When regarding the AUCs, we see that the SAPS II IBR es-
timator is superior to the APACHE II IBR estimator (0.860
vs. 0.792). The LR model of SAPS II is better than that
of APACHE II (0.867 vs. 0.796), and the SAPS II IBR
estimator. The multivariate IBR estimator that uses both
scores yields a slightly worse performance than SAPS II
alone (0.860 vs 0.854) but these differences have not been
tested for significance.

The APACHE II LR model employs information on
the patient’s diagnosis and type of admission besides the
score, so employing this information with the IBR estima-
tor should lead to better results as well. This is done by
combining the APACHE II score and the admission type
and/or diagnosis category in the IBR estimator. We see in
Table 1 that adding either APACHE II admission type or
diagnosis category leads to a increase in performance com-
pared to that of the APACHE II alone in the IBR estimator.
The performance is slightly worse when both the admission
type and diagnosis category are used.

Since predictions for cardiac surgery patients by the
APACHE II and SAPS II LR models are believed to be un-
reliable, the predictions by the single method IBR estima-
tor may be unreliable as well. The dual method estimator
attempts to improve performance by using alternative fea-
tures for these patients. The desired effect is however only

obtained for the APACHE II score and not for SAPS.

Table 1 also shows that the uniform kernel and Epanech-
nikov kernel were almost equally often selected by the op-
timization algorithm. So, the uniform kernel (i.e., equal
weight for all instances in the neighborhood) may perform
equally well or better than the Epanechnikov kernel in prac-
tical circumstances, even though the Epanechnikov kernel
appears to be superior from a theoretical point of view.

Interestingly, the optimization algorithm has chosenttw
values (i.e., effective neighborhood sizes) that are relatively
large compared to the values that are usually reported in the
literature (less than 20 neighbors is common). Presumably,
the explanation is that in our application, the neighboring
outcomes are used to estimate the probability of death in-
stead of the dominant class, and therefore a larger neigh-
borhood size is required. Note that lowerttw values are
selected for the multivariate estimators, due to sparsity in
the multidimensional feature space of these estimators.

Becausek-NN regression does not optimize a global
likelihood formula, its predictions may show structural de-
viations from the observed outcome; we refer to this phe-
nomenon aspredictive bias. In Table 1 we have listed the
predictive bias of each of the estimators, expressed as a
percentage of the observed outcome. The APACHE II IBR
estimator (first row), for instance, predicts a total of 221.1
deaths, whereas 230 out of 1559 patients actually died; the
estimator thus underestimates mortality with 3.85%. The
dual method estimator for APACHE II (seventh row) has a
serious negative bias of -11.9% (202.6 deaths predicted).

Figure 2 shows smoothing plots of observed versus pre-
dicted probabilities for the APACHE II and SAPS II IBR
estimators. The plots illustrate well the superior fit of the
SAPS II estimator to the data: its plot is far more smooth
and extends further into the upper region of the probabil-
ity interval. The APACHE II plot, in contrast, is rather
bumpy and the estimator appears to perform very poorly
for patients with a high score. So, the APACHE II score
appears to contain ‘errors’ that are difficult to repair, even
for a highly adaptive method such ask-NN regression.
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Figure 2: Observed vs. predicted probabilities in the APACHE II (a) and SAPS II (b) IBR estimators. The observed
probabilities (on they-axis) are obtained by loess smoothing on the observed outcome values (0 and 1), and are surrounded
by 95% confidence intervals.

4.2 Prospective validation
Table 2 shows the results of all prospective validations. For
each prospective validation, the mean predictive bias and
AUC are displayed.

In the settings validation, the IBR estimators are applied
to new data with the kernel type and target total weight
settings that were optimized on the training set. For all
estimators, the performance is equally good or better on
the test set (explained by the fact that this set is somewhat
larger than the training set). We conclude that the settings
that optimized on the training set generalize well to new
data.

Also in the plain prospective validation, where instances
from the training set are used to make predictions on the
test set, the performance is similar to the internal perfor-
mance on the training set. So, we can use the IBR esti-
mators to make predictions for future, unseen cases. The
predictive bias, however, increases.

In the incremental prospective validation, the perfor-
mance of estimators based on the APACHE II score further
increases. Apparently, these estimators take advantage of
the increasing size of the instance base. This does not hold
for the estimators based on SAPS II. Furthermore, the pre-
dictive bias now reduces. An explanation for the latter fact
is that the feature space becomes more densely populated
since instances are added. A denser population means that
the neighborhood does not have to expand as much as with
a sparse population. This is especially advantageous near
the boundaries, where the predictive bias is usually larger.

5 Discussion and conclusion
We have used IBR to predict hospital mortality for patients
admitted to the ICU. Comparing our study to other applica-
tions of IBR in medicine, we note that in most studies IBR
is used for classification (e.g.[Schmidt and Gierl, 2005;
Lopez and Plaza, 1997]) and only sparsely for prediction.
Anand et al.[Anandet al., 2001] usek-NN in a hybrid sys-
tem to predict time to survival in cancer patients, Gottrup

et al. [Gottrupet al., 2005] predict infarcted regions of the
brain after cerebral stroke, based on MRI scans. Often IBR
is used as part of a larger system, e.g. as in[Montaniet al.,
2000].

From our experiments we conclude that IBR can be used
to make reliable prognoses from clinical scores, and is
competitive to LR in this task. For the APACHE II score,
IBR prediction even outperforms the LR model. The ap-
plied method has been shown to generalize well to future
patients, especially when new patients are added to the in-
stance base to compensate for drift in the population char-
acteristics.

When comparing the performance of the APACHE II
and SAPS II scores in the IBR algorithm, we see that the
SAPS II score performs better than the APACHE II score.
The SAPS II scoring system was developed by scaling the
coefficients that were obtained with multiple LR analysis.
In contrast, the APACHE II scoring system is based on ex-
pert knowledge and the associated prognostic model was
obtained from a LR analysis. This may be the reason that
the IBR estimator does not perform better than the SAPS II
LR model. These different approaches (expert knowledge
vs. multiple LR analysis) to the development of a scoring
system appears to be an important factor in the performance
of IBR compared to a LR model. We think that this differ-
ence may also be apparent in other medical domains.

In the multivariate IBR estimators, we have used the
Manhattan distance metric. Euclidean distance or other
more sophisticated metrics may lead to better results. Sim-
ilarly, it may be beneficial to weigh the predictive features,
instead of treating them as equally important. However,
Kohavi et al. [Kohavi et al., 1997] found that weighing
features rapidly leads to overfitting. Furthermore, we note
that these adjustments only affect the multivariate estima-
tors, whereas very good results were obtained already with
our univariate estimators.

In the multivariate experiments, the combination of
APACHE II and SAPS II scores performed worse than the



Feature(s) Settings validation Plain prospective validation Incr. prospective validation
Bias AUC ± S.D. Bias AUC ± S.D. Bias AUC ± S.D.

APACHE II -3.83 0.821± 0.026 -11.22 0.784± 0.029 -4.37 0.809± 0.027
SAPS II -0.73 0.865± 0.024 -2.23 0.867± 0.024 0.26 0.867± 0.024
APACHE II, SAPS II -3.30 0.869± 0.022 -3.02 0.861± 0.025 0.83 0.863± 0.024
APACHE II, admission type -2.81 0.843± 0.024 -8.57 0.832± 0.025 -4.74 0.839± 0.024
APACHE II, diagnosis category -3.01 0.840± 0.023 -7.60 0.829± 0.025 -4.88 0.835± 0.024
APACHE II, adm. type, diag. category -13.78 0.826± 0.024 -7.88 0.828± 0.024 -5.64 0.831± 0.024
Dual method APACHE II -12.12 0.818± 0.024 -16.95 0.812± 0.027 -11.82 0.834± 0.025
Dual method SAPS II -1.52 0.863± 0.024 -1.15 0.870± 0.024 1.68 0.872± 0.023
APACHE II LR model - - - 0.804± 0.027 - 0.804± 0.027
SAPS IILR model - - - 0.877± 0.022 - 0.877± 0.022

Table 2: Results from the prospective validations (1868 ICU admissions). The hospital mortality in this dataset is 16.3% .

SAPS II score alone. A possible explanation is found in
the fact that the distance metric regards these two scores
on two independent axes, perpendicular to each other. This
is not correct, because both scores indicate the severity of
illness; they are collinear. In future experiments, we have
planned to use local regression models[Cleveland, 1979],
which is expected to adjust for this phenomenon.
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