
Research Article
Real-Time and Real-Fast Performance of General-Purpose
and Real-Time Operating Systems in Multithreaded Physical
Simulation of Complex Mechanical Systems

Carlos Garre,1 Domenico Mundo,1 Marco Gubitosa,2 and Alessandro Toso2

1 Universita della Calabria, Viale Pietro Bucci, Cubo 45 C., 87036 Arcavacata di Rende, Italy
2 LMS International, Interleuvenlaan 68, 3001 Leuven, Belgium

Correspondence should be addressed to Carlos Garre; carlos.garre@gmail.com

Received 27 February 2014; Accepted 16 April 2014; Published 22 May 2014

Academic Editor: Her-Terng Yau

Copyright © 2014 Carlos Garre et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Physical simulation is a valuable tool inmany fields of engineering for the tasks of design, prototyping, and testing. General-purpose
operating systems (GPOS) are designed for real-fast tasks, such as offline simulation of complex physical models that should finish
as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test) requires instead maximizing time
determinism, for which real-time operating systems (RTOS) are designed. In this paper, real-fast and real-time performance of
RTOS andGPOS are comparedwhen simulatingmodels of high complexity with large time steps.This type of applications is usually
present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance
of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads.
The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task
switches and to the latency associated with interprocess communication (IPC) and task switch.

1. Introduction

Real-time operating systems (RTOS) are present in the auto-
motive industry mainly in two scenarios. One is the systems
embedded in the vehicle for controlling active systems.
These systems are simple compared with a general-purpose
computer and in some cases the system is so simple that one
could not say that it has a running operating systembut rather
an ad hoc control logic. In the other side, RTOS are also
present during the process of vehicle prototyping and testing,
in this case running on powerful computers capable of
executing complex physical simulations. One typical scenario
for a RTOS is hardware-in-the-loop (HIL) testing, where
the electronic control unit (ECU) of some subsystem of the
vehicle is tested against computer-controlled conditions, that
is, a physical simulation of the vehicle. The ECU typically
works at a specific rate, and the computer running the HIL
must be able to communicate with the ECU at this rate. The
bottleneck to achieve communication at this rate does not
come from the hardware, which is typically composed of

communication boards specifically designed for this purpose.
Instead, the bottleneck is on the capability of the system to
attend the inputs coming from the ECU and to give feedback
(output) to the ECU at the right time. Figure 1 shows two
different scenarios where an external device (the ECU in the
case of a HIL test) communicates with a computer running
a physical simulation. For each input, a time step of the
simulation is run (the green block in Figure 1) to provide an
output.

In the figure, 𝑇
𝑖
represents the time needed to attend an

input (interrupt dispatch latency), 𝑇
𝑠
the time required to

compute one time step of the simulation, and𝑇
𝑤
the idle time

waiting for a new input. If 𝑇 is the inverse of the working
frequency of the external system, then

𝑇 = 𝑇
𝑖
+ 𝑇
𝑠
+ 𝑇
𝑤
. (1)

Having 𝑇
𝑤
< 0 means that the system is not capable of

running at the given rate. For a fixed value of 𝑇, this situation
may happen when the value of 𝑇

𝑖
or the value of 𝑇

𝑠
is too

large. Figure 1(a) shows a scenario where a high value of 𝑇
𝑖

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 945850, 14 pages
http://dx.doi.org/10.1155/2014/945850



2 Mathematical Problems in Engineering

Input Output

Step start

Input

Ti TwTs

(a)

Input Output

Step start

Input

Ti TwTs

(b)

Figure 1: Two different scenarios of physical simulation with an
external system in the loop. (a) Short time step and simple models.
(b) Larger time step and more complex models.

is more prone to be the cause of a missed deadline. This is
the case of a system working at a very high rate and running
a simple simulation, that is, a simulation not implying too
many bodies nor complex dynamics or constraints. In this
case, having a small interrupt dispatch latency (𝑇

𝑖
) is critical.

For this reason, RTOS are the obvious choice for this type of
scenario.

Figure 1(b) shows a different scenario, where the rate
is not so high but instead the simulation is very complex;
that is, it includes a high number of bodies and/or complex
constraints and/or complex physical properties of the bodies
(such as nonlinear elasticity). In this case, the system may
miss a deadline in the case of a complete fail of the interrupt
dispatch (extremely high value of 𝑇

𝑖
), but the most probable

source of missed deadlines would be having a too large
value of 𝑇

𝑠
, which means that the system is not able to

compute all the complexity of a simulation step in the given
time. The classical scenario for HIL testing in automotive
applications has been more similar to that of Figure 1(a) [1],
but the complexity of the physical simulation scenarios that
modern computers can achieve is growing more and more
and nowadays it is possible to run interactive simulations
of highly complex systems [2, 3]. When simulating more
complex models which are closer to reality, the accuracy of
the tests is significantly improving, but the time required to
each step (𝑇

𝑠
) may be higher, which means that the scenario

gets closer to that of Figure 1(b).
RTOS are designed with a focus on maximizing time

determinism, by minimizing latencies of basic operations
such as task switch (mainly when the switch is from a
low priority to a high priority task), interrupt dispatching
(𝑇
𝑖
), or interprocess communication (IPC) in the case of

parallelized applications. On the other side, general-purpose
operating systems (GPOS) are designed with a focus on
maximizing throughput. The main goal of a GPOS is to
be able to accomplish more work in less time, and for this
reason it is more suitable for tasks where instead of wanting
results at a specific moment we want as many results as
possible in less time (such as computing 𝑇

𝑠
in the case of

a complex simulation). These tasks, known as best-effort or
real-fast tasks, require a lot of computation power and a lot of
resources (such as memory). Unfortunately, the mechanisms
used for maximizing throughput, such as fair scheduling [4]

or memory paging [5], typically break determinism and thus
a GPOS cannot give guarantees on when a specific task will
start and finish.

In this paper, we analyze the scalability of a physical sim-
ulation running in a GPOS and in a RTOS.The idea is to find
the system that better responds to the increasing complexity
of the simulation in terms of number of bodies to simulate
and number of concurrent threads for parallelization of the
solver. Real-time and real-fast performance of both systems
are compared. In the case of real-time, the performance of
the system is analyzed in terms of hard real-time [6], which
means that, instead of measuring the difference between the
desired rate and the achieved rate (the value of𝑇

𝑤
), wewant to

measure the binary condition: the system canwork at this rate
or not (𝑇

𝑤
≥ 0). This is the condition desired in HIL testing,

where losing the synchronization with the ECU may cause a
system failure and more in an embedded system where the
consequence can be critical with the loss of human lives. We
analyze the results for strict hard real-time applicationswhere
a single miss can be critical and also for more permissive
scenarios where a small number of misses may be acceptable.
To test real-fast performance, 60 seconds of simulation was
run for each configuration (number of bodies and threads)
without a fixed rate (𝑇

𝑤
= 𝑇
𝑖
= 0), and the total computation

time was measured.
This paper is an extension of the work in [7], where

a real-time microbenchmark for choosing a representative
case of RTOS was run and a preliminary study on real-
time performance of RTOS and GPOS was presented. The
present work begins with the description in Section 3 of new
aspects to take into account when choosing a RTOS, starting
from a summary of the microbenchmark in [7]. A detailed
comparison with the results obtained by other authors is also
presented in Section 3.1.

In Section 4, the performance of the RTOS (Xenomai)
and the GPOS (GNU/Linux) chosen in the microbenchmark
is compared in a physical simulation scenario. A simple
tire model was designed specifically for this purpose. The
model is easily scalable in the number of elements to simulate
(masses and springs) and in the level of parallelization of
the solver (number of concurrent threads).The real-time and
real-fast simulations are run on each system (the RTOS and
the GPOS) with different configurations (different number of
elements and different levels of concurrency). To benchmark
real-time performance, the scenario consists of the physical
simulation loop running at a specific rate isolated from
the intervention of external interrupts. The lower interrupt
dispatch latencies (𝑇

𝑖
) of RTOS with respect to GPOS are

extensively analyzed in other works on benchmarking [8, 9]
and we want to focus instead on the computation of the time
step (𝑇

𝑠
). For real-fast performance, the same scenario is used

but with eliminating the idle time for synchronization (𝑇
𝑤
)

and thus simulating at the highest possible rate.
The presented results are an extension of the preliminary

study in [7] with three main contributions. First, real-fast
performance is studied only on this work and was not
considered in [7]. Second, the model is much closer to real
applications due to the optimization of the parallel solver and
to the well-balanced discretization of the geometry. The new



Mathematical Problems in Engineering 3

parallel solver allows us to simulate up to 57000 masses in
hard real-time while the preliminary solution was capable
of simulating up to 3149 masses instead. The performance
scalability of the new solver is much different, as explained
in Section 4.2, and is closer to the scalability of a real parallel
solution. The discretization is improved on one side with
the balanced distribution of the mass achieved by proper
subdivision of the circumference arcs and on the other side by
interconnecting the tire spokes without the need of a central
mass. Having a central mass connected to all the spokes
breaks the balance between the threads because the thread
simulating the central mass always presents a much higher
computational load.The last contribution is the deep study of
the obtained results, including the analytical formulation of
the computation time (in Section 4.5) and the detailed study
of the scalabilitywith different levels of parallelization (in Sec-
tion 4.2). Independent results are presented for visualization
of hard and soft real-time performance as well as for real-fast
performance.

2. Related Work

Benchmarking the performance of complex applications such
as physical simulation is not an easy task and there exist
many different approaches depending on the nature of the
applications and on the aspects of performance which are
more relevant in each case. In this paper we establish a clear
difference between real-time and real-fast performance, but
even when focusing on only one of these aspects the choices
are multiple.

Real-time performance can be measured at the low-
est level using a microbenchmark [10], which consists in
measuring the latency of basic operations such as task
switching or interprocess communication (IPC). The basic
reference of real-timemicrobenchmarking is Rhealstone [11],
which provides a unique score (the Rhealstone value) of rt-
compliance for each system. Rhealstone can be useful for
having an overview of the basic real-time performance of a
system, but it is difficult to extrapolate its results to systems
running complex applications. Synthetic benchmarks [12],
on the other side, try to model the behavior of typical
applications (usually through stochasthic models) but in a
controlled way. Hartstone [13] is the most representative of
real-time synthetic benchmarks and is the core of many
other implementations [14]. Unfortunately, the results of
synthetic benchmarks are still difficult to extrapolate to the
performance of final complex applications. Many authors
have provided benchmarks for specific applications such as
air defense [15], unmanned vehicles control [16], or air traffic
collision detection [17], but these benchmarks are focused on
measuring the absolute performance of the application rather
than on comparing the performance on different systems or
configurations. Comparing the performance of a complex
application running in different systems is a big challenge,
mainly because of the impossibility to isolate the different
factors that may affect performance. Porting a complex
application to the different systems to be compared usually
implies a big effort for adapting the source code to the native

API of each system, and a lot of decisions have to be taken on
how to apply these modifications in an optimal way.

The main difference between microbenchmarks, syn-
thetic benchmarks, and benchmarkingwith final applications
is on the level of abstraction on which performance is mea-
sured. A different classification can be established depending
not on the level at which performance is measured, but on
the nature of the applications. There exists a lot of work on
real-time benchmarking for embedded applications [18–20].
Our work focuses instead on RTOS designed for complex
applications running on general-purpose computers.The fast
rate at which these systems evolve makes the results obtained
in previous works [6, 8, 15–17, 20] probably not applicable
to current systems when there is an important difference in
time and then in all the technologies implied. Although some
authors have compared some of the systems considered in our
microbenchmark for selection of one RTOS [8, 20, 21], none
of them have compared the four of them (RTAI, Xenomai,
Preempt-patched Linux, and Linux), and their results may
be outdated as will be discussed in Section 3.1. For a more
detailed survey on real-time benchmarking, the reader may
refer to [6, 22].

Regarding real-fast performance, there exists previous
work on integrating real-time and best-effort tasks on real-
time systems [23], on improving best-effort performance of
real-time systems [24] and even operating systems specifi-
cally designed to optimize the trade-off between best-effort
and real-time performance [25]. Although we benchmark
separately real-time and real-fast performance, the model
we have developed cannot be defined as purely real-time or
purely real-fast. Having a large time step and a lot of com-
putations inside each step makes the computation of a step
a real-fast task which is bounded by a real-time constraint.
Other works on benchmarking assume that a task can have
either real-time or best-effort nature, but we have not found
any study considering hybrid tasks where both performance
criteria are relevant. In [26] the performance of a RTOS
and a GPOS achieving some specific tasks (controlling fuel
injection for an industrial engine and compiling a Linux
kernel) is compared, providing very interesting clues on how
to choose between a RTOS or a GPOS depending on the
application. However, the application cases presented are
clearly biased to real-time (in the case of the fuel injection)
or to best-effort (in the case of kernel build) without showing
any case of an application where a real trade-off is needed.

3. Choosing a Real-Time Operating System

To compare the performance of two different types of sys-
tems, such as RTOS and GPOS, the first step is to select one
representative case of each type of system. This was achieved
in [7] by designing and running a microbenchmark for
choosing a good representative case of RTOS from a test set
including RTAI [27], Xenomai [28], andGNU/Linux patched
with IngoMolnar’s preemption patch (RT-Preempt from now
on) [29]. Xenomai was the selected RTOS candidate and
GNU/Linux was chosen as the closest example of GPOS,
considering that Xenomai is Linux based.



4 Mathematical Problems in Engineering

A different approach would be to compare a set of GPOS
with a set of RTOS, instead of only one case of each, so
that the results can be considered of more general appli-
cation. Unfortunately, doing this would require porting the
whole application to each of the operating systems. Porting
applications between OS with different APIs is a heavy task
and more in the case of a relatively complex application
such as the implemented physical model. Apart from saving
work time, which may not be a reason in itself, the fact that
each RTOS has its own API and programming semantics
means that building a complex applicationmay require doing
things in a different way and then adding uncontrolled
variables which may affect performance. As an example,
periodic tasks are implemented in the native API of RTAI
[27], while implementing a periodic task using only POSIX
is not straightforward. Of course, periodic tasks could be
implemented in RTAI in the POSIX way, but then we should
answer the question: What is fairer, comparing the systems
when doing things in the best way they can or comparing the
systems when doing exactly the same things?The availability
of the POSIX skin in Xenomai allowed us to build exactly the
same code for both systems (Linux and Xenomai) and then
to avoid the need to face this question at this point. Although
out of the scope of this work, the answer to this question
is still open and could be a good starting point for future
work.

In the next subsections we will provide additional clues
for more complete criteria when choosing RTOS, not only
for benchmarking but also for developing final applications.
We start in Section 3.1 with a brief summary of the results
obtained in [7] and with a discussion on the reasons why
our results differ from other authors, including a new run
of the microbenchmark comparing different Linux kernels.
We complete the microbenchmark with an additional test
for checking the vulnerability of each system to one of the
biggest risks in complex real-time applications involving
parallel tasks, which is priority inversion, in Section 3.2. In
Section 3.3 we talk about other qualitative aspects which
cannot be measured or benchmarked but can be determinant
when choosing a RTOS. Finally, in Section 3.4 we describe
in detail the process of latency measurement used in the
microbenchmark, which can be used for other works on
benchmarking or software profiling.

3.1. Summary and Discussion of the RTOS Selection. The
microbenchmark presented in [7] included tests for mea-
suring average and worst-case latencies for three different
atomic operations: switching between tasks of equal priority
(task switch), preempting a low priority task for execution
of a high priority task (preemption), and obtaining access
to a semaphore lock as a typical example of IPC operation
(IPC). A summary of the obtained results is shown in Table 1,
focusing only on worst-case latencies for the purpose of hard
real-time.

These results clearly present Xenomai as the best candi-
date. RTAI was expected to have better performance, because
Xenomai uses the RTAI kernel with an additional abstraction
layer that may add some (slight) overhead and because there

Table 1: Summary of worst-case latencies (in nanoseconds) in the
three tests of the microbenchmark for RTOS selection.

Task switch (ns) Preemption (ns) IPC (ns)
RTAI 12060 14855 12986
Xenomai 1422 2922 1282
RT-Preempt 27085 15986 19776
Linux 13200 >106 12453

exists previous work reporting better performance of RTAI
compared to Xenomai [8, 21].

There are two main explanations for these unexpected
results compared to the work of Barbalace et al. [8]. The first
reason is the different nature of the experiments. Barbalace
et al. do not run a microbenchmark but a benchmark with a
final application with threemain sources of latency: interrupt
handling, datagram processing, and rescheduling. Regarding
interrupt handling, in the case of Xenomai all the interrupts
are captured by the ADEOS nanokernel, which dispatches
them to the Xenomai nucleus in the case of a real-time
interrupt or to Linux in other cases. In RTAI instead, all
interrupts are first captured by the RTAI nucleus and only
forwarded to ADEOS in the case of a non-RT interrupt
(and then ADEOS will forward it to Linux as well). This
means that handling RT interrupts on Xenomai requires an
additional step (passing through ADEOS) not present on
RTAI, which is translated in a slight increase of latency. Since
we are not benchmarking interrupt handling, this latency
is not affecting our results (but it is affecting the results
of Barbalace et al.). Interrupt handling is not considered
in our benchmark, because most previous work on real-
time benchmarking focuses mainly on this aspect. Our main
contribution on this work is on studying the other sources
of latency implied in physical simulation applications, so we
isolated them from the influence of interrupt handling issues.
Regarding datagram processing, we implemented a simple
UDP protocol to send the simulation states for graphical
render of the simulation on an external computer, but this
was done only for the demonstrator (see Figure 3) and
all UDP communication was removed for the purpose of
the benchmark. Summarizing, the only source of latency in
common with the work of Barbalace et al. is rescheduling.
Not only the software side of their experiment but also the
hardware is different. Their setup is basically an embedded
system instead of a general-purpose computer. Indeed, they
had to do their own port of RTAI to their platform, which
means that they were not using an official RTAI version. In
our opinion, this makes a big difference for two reasons.
On one side, the fact of doing their own port means that
they are not really benchmarking RTAI, but their own imple-
mentation adapted to their specific hardware. The infinite
versatility of open-source turns into a drawback when trying
to establish a comparison between different open-source-
based systems. We believe that a fair comparison is possible
only when official stable versions can be compared without
any modification.

The second cause of the different results we obtained
compared with the work of Barbalace et al. is the significant



Mathematical Problems in Engineering 5

Low priority task

Medium priority task

Lock

High priority task

Preempt LockPreempt

Deadlocked

Holding lock

Figure 2: Scenario presenting a deadlock caused by priority inversion.

Table 2: Comparison of the worst-case latencies (in nanoseconds)
of themicrobenchmark on the Linux kernel used in Xenomai (3.5.7)
and on the Linux kernel used in RTAI (2.6.38).

Task switch (ns) Preemption (ns) IPC (ns)
3.5.7 13200 >106 12453
2.6.38 125435 >106 147888

difference on versions. Although they do not specify the
versions used for each RTOS and for the Linux kernel, even
assuming the latest available at the time of publication, they
would have used RTAI 3.5 and Xenomai 2.4. From those
versions to the versions we have used, the rates of update have
been very different forRTAI andXenomai.The latest available
(at the date of this work) RTAI version (3.9.1) supports Linux
kernel up to 2.6.38.8, while Xenomai 2.6.2.1 supports Linux
kernel up to 3.5.7. We believe that the significant difference
(7 years) on the kernels used is one of the main reasons
of the different results. To confirm this, we have compared
the results of the microbenchmark running on two different
kernels: the one used by Xenomai (3.5.7) and the one used by
RTAI (2.6.38).The results of this comparison are presented in
Table 2.

Regarding the hardware, the processor used by Barbalace
et al. (MPC 7455) is from year 2001, while ours (i7-3930K) is
from year 2011. This big difference (10 years) in the hardware
makes it imprudent to compare the obtained results. Apart
from numbers, a study of the changelog of both projects
shows that most of the updates of RTAI were basically
for supporting more architectures and for improving tools
such as RTAI-Lab, which are great but are not used in our
benchmark. Instead, the changelog of Xenomai shows an
important number of improvements directly related with
real-time performance, mainly in version 2.5, when amassive
rework of some core components was done to improve
performance.

There is another work comparing Xenomai and RTAI
real-time performance from the year 2007 [21] presenting
very interesting results. In this case, Xenomai performs
better than RTAI when working in kernel-space, while RTAI
performs better in three of the four experiments in user-
space (considering always only the worst-case). The versions
used were RTAI 3.5 and Xenomai 2.3.3. The changelog of
Xenomai from that version shows a clear effort on improving

user-space performance. While there are references only
to small kernel-space improvements, there were significant
improvements on performance of user-space latency for all
architectures in version 2.5.5.1 and full support for real-time
IPC in user-space (which was previously only in kernel-
space) from version 2.5.

The work in [20] is from a more recent date, compar-
ing Xenomai with RT-Preempt. Unfortunately, RTAI is not
included in the benchmark and the nature of the experiments
is very different from ours, but Xenomai shows a much better
performance compared with RT-Preempt.

3.2. Priority Inversion. Our microbenchmark was based on
the Rhealstone benchmark, which includes a test for mea-
suring latency due to priority inversion deadlocks. Instead
of measuring howmuch these deadlocks break determinism,
we consider a binary condition for the purposes of hard real-
time: the system is vulnerable or not to priority inversion
deadlocks. Figure 2 shows an example scenario of priority
inversion, which is the one reproduced on this test of the
benchmark.

Priority inversion happens when a high priority task
cannot start execution due to a lock being held by a low
priority task. If a third task, of medium priority, causes
starvation of the low priority task, the high priority task
will be deadlocked until the medium priority task yields
execution. A typical solution to priority inversion is imple-
menting priority inheritance [30]. None of the systems were
vulnerable to priority inversion when using semaphores,
and even Linux has priority inheritance implemented since
kernel version 2.6.18 [31]. The same scenario should also
be tested with other IPC mechanisms if they were to be
used in a specific application. For example, we found Linux
vulnerable to priority inversionwhen using spin locks instead
of semaphores.

3.3. Other Considerations for RTOS Selection. Beside quan-
titative aspects, such as worst-case latencies, other aspects
should be considered when choosing a RTOS, especially
for this type of applications where the complexity of the
software can be very high. One of the most important
qualitative aspects is portability, mainly when following the
typical approach of developing under a GPOS for later
cross compilation. We started writing the microbenchmark



6 Mathematical Problems in Engineering

using standard POSIX system calls to run it in Linux.
This application was ported almost immediately to the RT-
Preempt installation. We only found a different behavior
when using the clock nanosleep system call with the request
argument set to zero. This was used for yielding execution
between tasks, so we changed it with the more natural
sched yield system call and RT-Preempt was able to run the
(POSIX) microbenchmark without problems. We followed
the same strategy with Xenomai, using the POSIX skin,
and the portability was almost immediate as well. Apart
from adding some lines to the makefile (for the POSIX
skin) we found some problems with the use of sem t type
for implementing semaphores, so we used pthread mutex
instead. Summarizing, only minor changes were needed to
have a working POSIX application ported from Linux to both
RT-Preempt and Xenomai.

In the case of RTAI we had two possibilities. We could
use the RTAI API to build a kernel module with the hardest
possible real-time or we could follow the (currently more
popular) approach of using RTAI LXRT to have hard real-
time even in user-space with some POSIX compatibility [32].
We followed the second approach to have the best possible
portability, but even in this case the effort of porting the
POSIX application to RTAI LXRT was much higher than in
the case of the other systems. Porting required not only doing
a systematic translation of the system calls to those of the
LXRT API, but also changing some semantics of the code.

Considering that porting even a simple application such
as the microbenchmark was not straightforward, porting the
much more complex physical simulation application would
mean a big effort and a too heterogeneous scenario for fair
comparison, as mentioned before in Section 3.

3.4. Nonintrusive Time Measuring. Measuring latency im-
plies taking at least two samples of system time. When
measuring latency of very simple operations, the operation
of sampling itself could be adding a significant latency. It is
also important to take the time samples from themost reliable
timing source, which implies using timers with the highest
possible resolution and nonsensitive to external events. To
measure time, we took into account the following.

(1) The system call used for measuring time was
clock gettime with clk id set to CLOCK MONO-
TONIC. CLOCK REALTIME presents the same res-
olution, but it is dependent on system time and thus
is not strictly monotonically increasing [33].

(2) The time samples were stored in a static array.
Dynamic memory allocation may break determinism
[34] and disk and console I/Owas completely avoided
until the end of the tests.

(3) No operations with the time samples were done
during the tests. The subtraction of time samples for
computing elapsed times was done in a postprocess,
as well as statistical computations and finding the
worst-case values.

Despite all these precautions, the latency added by the
time measuring had to be measured to ensure that it was

not significantly affecting the results. For this, we run a test
consisting of running a loop with and without time measures
for each iteration, comparing then the total time required to
finish the loop in both cases. The average overhead of time
measuring can then be obtained by subtraction of the average
times required to run each iteration of the loop with and
without time measuring. The average overhead was in the
order of less than 100 nanoseconds, which is negligible com-
pared to the scale of the measures obtained in the tests of the
microbenchmark (in the order of 103 and 104 nanoseconds).
Only in the case of the IPC overhead test is the overhead
of time measuring significant with respect to the latency of
semaphore shuffle in Xenomai, but this value is so far from
the latencies obtained for the other systems;magnitude is not
affected.

4. Comparing Real-Time and General-Purpose
Operating Systems

The performance of a physical simulation application is
compared when running in the chosen RTOS (Xenomai)
and in the GPOS (GNU/Linux). Both real-time and real-
fast performance are considered in separate benchmarks.
The test application consists in the simulation of a physical
model specifically designed for benchmarking purposes, pre-
senting the typical characteristics of many real applications:
multiple bodies affected by forces, contact formulated with
constraints, numerical integration of positions and velocities,
(linear) elastic forces, and amultithreaded parallel solver.The
model consists of a vehicle tire starting in free fall and then
deforming due to collision with a floor plane. In the case of
the real-time benchmark, the simulation runs at a fixed rate of
100Hz (time step of 10ms). For the real-fast benchmark, the
time step is also of 10ms, but the steps are computed as fast
as possible instead of being synchronized with the real-time
rate.

The hardware used for the benchmarks is an Intel i7-
3930K (6HT cores at 3.2 GHz) with 32GB of RAM (DDR3
at 1866MHz) and an ASUS P9X79-LE/C/SI motherboard.
The programming language is C, using GCC 4.4.3 com-
piler with options -pipe -O2 -D REENTRANT. Although a
demonstrator was built for visualization of the simulation
(see Figure 3(c)) in a second computer, the actual bench-
mark was run without any graphical output or network
communication. The chosen hardware is representative of a
typical modern workstation for high performance physical
simulation, but care was taken to minimize the impact of the
choice of the hardware on the results. Regarding the CPU, the
number of available cores is critical for the performance of
a multithreaded solution and more in the case of a simple
algorithm as the one presented, not designed for massive
parallelization. For this reason, the tests were done only
for a number of threads multiple of the number of cores
available in our setup. In this way, instead of considering a
quantitative number of threads (1, 6, 12, and 24 in our case),



Mathematical Problems in Engineering 7

A

B

C

D

E

F

G

H

(a) (b) (c)

Figure 3: Example of different resolutions of the tire model. (a) 8 nodes and 12 springs, showing the detail of the springs connected to node
B. (b) 400 nodes and 600 springs. (c) Textured render for the demonstrator.

we consider qualitative differences in the number of threads
independently from the number of cores available:

(1) one thread only (monoprocessor),
(2) one thread per physical core (maximum parallelism

without considering hyperthreading),
(3) one thread per virtual core (maximum parallelism

considering hyperthreading),
(4) two threads per virtual core (more than one thread

per core).
The influence of the amount of available memory is

avoided thanks to the use of the mlockall system call in all
the tests. This avoids memory swapping and thus the only
benefit of having more memory is to be able to simulate
more elements, but the performance for each configuration
is the same regardless of the amount of memory. The latency
associated with the technology of the memory may increase
or decrease the time measures, but the average offset would
be the same regardless of the operating system used.

4.1. Physical Model. The physical model of a vehicle tire
has been chosen because of its scalability. The tire surface
can be discretized with any number of nodes. Each node
is a point mass linked through a spring and damper to all
adjacent nodes. Each node is considered to be adjacent to
other two nodes in the same quadrant and also to a specular
node in the opposite quadrant of the circumference. As an
example, Figure 3(a) shows in red the three spring-dampers
linked to node B, coupling it with nodes A, C, and F. The
minimum discretization of the surface starts with 4 nodes
(one on each edge of the vertical and horizontal axis) and
can grow in steps of 4 by subdivision of the four quadrants
of the circumference. Figure 3 shows an example of two
tire models using different resolutions (number of surface
masses and spring-dampers) and the final render used in the
demonstrator.

The parameterization of the model and the methods used
for solving each time step must be chosen to ensure that the

computational cost is the same for each step except for the
operations requiring the use of operating system services,
such as task switching or interprocess communication. The
mass-spring system is solved using an explicit Euler integra-
tor, because it guarantees that all the time steps will be solved
in a fixed number of iterations. A low stiffness had to be
used to guarantee stability of the simulation with the explicit
solver. Gravity was used as the only force source, and the
floor was simulated with a simple geometric constraint. Since
collision detection is checked only against the floor level, all
time steps require the same amount of computations to detect
collisions. Using more constraints and/or a more complex
collision detection scheme such as bounding volume hier-
archies [35] would imply significantly different costs when
computing each time step. Mass-spring-damper systems are
a typical approach for dynamics simulation of vehicle tires
[36], although there exist other widely used approaches [37].
Although mass-spring-damper systems are only one of many
simulation approaches, the characteristics of the tire model
make it a good representative case of the main components
usually found in most physical simulation scenarios.

4.2. Parallel Solver. Solving one time step for the tire model
with the explicit integration scheme implies first computing
the forces of all springs and then integrating positions and
velocities of all nodes. Both operations can be parallelized by
division of the elements to simulate in a number of groups
and launching one thread for each group of elements. In
a first attempt, we divided both the spring forces and the
integration of nodes, but we found that the synchronization
between threads when waiting to have other forces computed
before integrating nodes was causing an important overhead.
We found it more efficient to split only the integration of
the nodes. In this way, all the threads compute all the forces
affecting their associated nodes, although they have each
force computed twice (by different threads) and then each
thread integrates only a subset of the nodes. The detailed
algorithm is shown in Algorithm 1.



8 Mathematical Problems in Engineering

For each thread:
Assign ⌊𝑛/𝑖⌋ nodes
For each simulation Step:
(1) Read node positions and velocities of adjacent nodes from other threads
(2) Compute spring forces
(3) Integrate positions and velocities of assigned nodes
(4)Write positions and velocities of assigned nodes

Algorithm 1: Algorithm for parallelization of the tire model, where 𝑛 is the total number of nodes and 𝑖 the number of threads.

The steps with boldface text require access to mutual
exclusion regions shared by all threads.Themutual exclusion
regions consist of one binary semaphore controlling access
to each of the nodes (position and velocity). For each step,
each thread must access 3⌊𝑛/𝑖⌋ adjacent nodes and must
write down the new values for ⌊𝑛/𝑖⌋ nodes. This algorithm
is not optimal but presents the typical characteristics of a
parallel solver for physical simulation, dividing the elements
to simulate in a number of threads and synchronizing threads
using IPCmechanisms (semaphores in this case). All threads
are created with the same priority of the parent process,
avoiding forced preemption inside the solver. The parent
process waits in a join to all threads before starting the
compilation of benchmark data (number of missed deadlines
for real-time benchmarking and elapsed time for real-fast
benchmarking).

To understand how the efficiency of this algorithm scales
with respect to the number of threads, Figure 4 shows four
example scenarios with different numbers of threads per
CPU. Each image represents the main blocks executed by one
CPU (not thread) for one time step. There are three types of
basic blocks.

Red Blocks. Read/write operations with mutual exclusion
(potential locks), which appear only when reading nodes
position and velocities from other threads and when writing
self nodes positions and velocities to be later read by the other
threads: red blocks correspond to the steps with boldface text
in the description of the algorithm in Algorithm 1.

Green Blocks. Computation of spring forces and integration
of nodes positions and velocities, which are never preempted
(considering a real-time scheduler, such as FIFO): the sum of
red and green blocks for each time step represents the total
computation time 𝑇

𝑠
.

Blue Blocks. Idle time for synchronization with the real-time
rate (𝑇

𝑤
).

Figure 4(a) shows a nonparallel solver, with only one
thread running in one CPU. In this case, there is only one
large green block since there is no communication between
threads.

Figure 4(b) presents an example of a configuration with-
out full parallelization, where there is less than one thread per
CPU (i.e., some CPUs are idle, but there are at least two CPUs
with one thread each). In this case, most of the time is still

Compute Wait

(a)

Read Compute WaitWrite

(b)

ComputeRead WaitWrite

(c)

R R WaitW CC W

(d)

Figure 4: Blocks executed by one CPU in four different configura-
tions: (a) one thread in one CPU (monoprocessor); (b) less than one
thread per CPU; (c) one thread on each CPU; and (d) two threads
on each CPU.

spent in the green block, since each thread must compute a
lot of nodes.

In the case of having one thread per CPU, Figure 4(c),
each CPU computes fewer nodes than in the previous case
and then the green block is smaller. The size of the red
blocks should decrease in the same scale but, since there are
more threads, it is more probable to find a lock closed when
trying to access a node. This means that the size of the red
blocks may decrease, but there are no guarantees on their
size because of potential locks. The net result is that there
is an advantage on reducing the size of the green block and
a probable (but not guaranteed) reduction of the size of red
blocks. Then we have a bigger blue block, which translates in
a reduced probability of missing deadlines.

Figure 4(d) shows a configuration with two threads per
CPU. In this case, green blocks are even smaller, and the size
of the red blocks may (or may not) decrease. The problem
is that now we have twice the number of red blocks and
that we cannot give any guarantees on the size of red blocks.
The net result will depend on the relative size of green
and red blocks. In the image, the big size of red blocks
shows a clear disadvantage. In other cases (depending on the
number of nodes, CPUs, and threads) we could have a more
promising situation. It is important to remark that, in any



Mathematical Problems in Engineering 9

case, the size of red blocks cannot be estimated a priori, due
to potential waits in the semaphores.This could also translate
in different sequences, as for example having the red block of
one thread starting before the green block of another thread
and finishing after that green block. Summarizing, the size of
red blocks is quite unpredictable, but they cannot be avoided
because only thanks to them can we reduce the size of green
blocks.

4.3. Real-Fast Performance. When real-time is not needed,
as in the case of offline simulation without interface with
external systems, the tire model can be simulated without
timing constraints, trying to compute the whole simulation
time as fast as possible. This means that there is no idle
time for synchronization (𝑇

𝑤
= 0) and the blue blocks in

Figure 4 are completely removed.This is an example of a real-
fast task [26], for which GPOS are specifically designed and
optimized.

One of the main differences between a GPOS and a
RTOS is the task scheduler. Real-time applications usually
trust in real-time scheduling policies such as FIFO (First In,
First Out). FIFO scheduling gives the programmer control
on when and which task switches happen, unless a task
switch is forced due to preemption of a high priority task
or due to any condition requiring the task to wait for some
resource (such as a semaphore lock). On the other side,
GPOS use scheduling policies designed to optimize best-
effort (real-fast) performance of all the applications that could
be concurrently running on the system and do not trust in
the programmer of a single application for control of task
switches. In the case of GNU/Linux, the Completely Fair
Scheduler (CFS) [4] is designed to provide equal CPU power
to all concurrent tasks. Although both systems (Xenomai
and Linux) allow the use of both the FIFO and the CFS
scheduler, a fair comparison between RTOS and GPOS
assumes that each system is using the scheduler for which
it is designed, that is, the FIFO scheduler for Xenomai and
the CFS scheduler for Linux. For each system, the benchmark
is then run using its native scheduler, but results are also
presented for CFS scheduling in Xenomai, demonstrating
that the results are not only influenced by the choice of the
scheduling policy.

Figures 5 and 6 show the computation time of the tire
model being run as a real-fast task in the GPOS (Linux)
and the RTOS (Xenomai), respectively. The simulation was
run with four different parallelization levels: single process (1
thread), one thread per physical core (6 threads), one thread
per virtual core (12 threads), and multithreading inside the
cores (24 threads). The y-axis shows the total computation
time in seconds, while the x-axis shows the number of masses
in the model. The difference between the green and red
curves represents the advantage of using hyperthreading. For
systems not supporting hyperthreading, the correct reference
formaximumparallelismwould be that the red curve and the
green curve should be ignored. As explained in Section 4.2,
the black curve (multithreading inside the cores) depends on
the number of threads running on each core and could easily
go above the blue curve (single process) when the number of

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

5

10

15

20

25

1 thread
6 threads

12 threads
24 threads

Figure 5: Computation time of a real-fast simulation of the tire
model using Linux with CFS scheduler. The x-axis shows the
number of nodes being simulated, while the y-axis shows the total
computation time in seconds.The simulation timewas of 60 seconds
for all configurations.

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

5

10

15

20

30

25

1 thread
6 threads

12 threads
24 threads

Figure 6: Computation time of a real-fast simulation of the tire
model using Xenomai with FIFO scheduler. The x-axis shows the
number of nodes being simulated, while the y-axis shows the total
computation time in seconds.The simulation timewas of 60 seconds
for all configurations.

threads is excessive and most of the time is spent in accessing
mutex locks.

The results of the real-fast execution show, as expected,
a better performance of the GPOS when the only timing
constraint is to finish as soon as possible. There are two main
reasons for the better performance of the GPOS. The first is
the overhead added by the RTOS nucleus. For Xenomai, the
Linux kernel is seen as a user application running on top of
the Xenomai nucleus. This means that the RTOS implements



10 Mathematical Problems in Engineering

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

5

10

15

20

30

25

1 thread
6 threads

12 threads
24 threads

Figure 7: Computation time of a real-fast simulation of the tire
model using Xenomai with CFS scheduler. The x-axis shows the
number of nodes being simulated, while the y-axis shows the total
computation time in seconds.The simulation timewas of 60 seconds
for all configurations.

an additional software layer for all user applications. The
second reason is the use of fair scheduling. The algorithms
behind theCFS scheduler tend to give an optimal distribution
of CPU time among all the running processes. The stochastic
nature of these models means that there may not be an
advantage for short computations, but each test implied com-
puting 6000 steps, and on each step up to 5900 node positions
and velocities were integrated and up to 8850 spring-damper
forces were computed.

Figure 7 shows the computation time for a real-fast run of
the tire model in the RTOS using the CFS scheduler instead.
In this case, the superior performance of theGPOS is due only
to the overhead added by the Xenomai nucleus. It demon-
strates that, although many current RTOS such as Xenomai
are designed for general-purpose computers, GPOS are still a
better choice when our applications do not include real-time
tasks.

The FIFO scheduler does not have any compensation
mechanism for threads that have been waiting for semaphore
locks and then the total computation time is very dependent
on the particular sequence of locks of each run. The CFS
scheduler instead tries to compensate for big wait times
rewarding the starving threads with more CPU time.The net
effect can be observed in the high amount of oscillations in
Figure 6 compared with Figures 5 and 7.

4.4. Real-Time Performance. Real-time performance can be
measured in different ways depending on how strict the
timing of our applications is. For some soft real-time applica-
tions, the deviation between the desired and the obtained rate
can be measured as a quantitative value in nanoseconds or in
any other time units. However, important concerns regarding
these quantitative measures have been discussed [6] and we

Th
re

ad
s

Masses
5 20 35 50 65 80 95

6
12
18
24
30
36
42
48
54
60
66
72
78
84
90

Figure 8: Missed deadlines in Linux when using a high number of
threads with few masses and a short time step. The x-axis shows
the number of elements to simulate and the y-axis the number of
concurrent threads. Each black point represents a configuration for
which at least one time step was not computed in real-time.

instead measure real-time performance as a binary condition
for each time step: deadline was met or not.

As explained in Section 4.2, due to the overhead added
by IPC and task switches there is no advantage in making
the number of threads (𝑖) grow above some threshold. To find
an empirical threshold for the convenient maximum number
of threads for our solver, we run a pretest of the benchmark
using a much smaller time step (0.5ms) to obtain missed
deadlines even with few nodes. Figure 8 shows the result
of the pretest for Linux. The graph shows on the x-axis the
number of masses in the simulation (𝑛) and on the y-axis
the number of threads used in the solver (𝑖). A black point
in the graph means that, for that combination of masses and
threads, the system was not able to meet all the deadlines (at
least one deadline was missed).

The first missed deadlines appear when using 40 threads
with only 41 nodes, and, when having more nodes, it seems
that having more than 24 threads deadlines are missed in
most cases. 24 threads are then chosen as themaximumnum-
ber of threads for all the tests, which means a maximum of 2
threads per virtual core (or 4 threads per physical core). This
threshold represents a point of trade-off between reducing
computation time (size of green blocks on Figure 4(d)) and
having more IPC overhead (more red blocks on Figure 4(d)).
Since this threshold is of stochastic nature, it can be estimated
only by obtaining empirical data from running simulations
and it depends on the algorithm chosen for parallelization of
the solver. It is outside of the scope of this paper to discuss
the best choice of the algorithm and the scalability of different
algorithms with respect to the number of threads.



Mathematical Problems in Engineering 11
Th

re
ad

s

Masses

40
00

80
00

12
00

0
16

00
0

20
00

0
24

00
0

28
00

0
32

00
0

36
00

0
40

00
0

44
00

0
48

00
0

52
00

0
56

00
0

60
00

0
64

00
0

68
00

0
72

00
0

76
00

0
80

00
01

6
12
18
24

Figure 9: Hard real-time performance of Xenomai using FIFO
scheduler. The x-axis shows the number of elements to simulate
and the y-axis the number of concurrent threads. Each black point
represents a configuration for which at least one time step was not
computed in real-time.

Th
re

ad
s

Masses

40
00

80
00

12
00

0
16

00
0

20
00

0
24

00
0

28
00

0
32

00
0

36
00

0
40

00
0

44
00

0
48

00
0

52
00

0
56

00
0

60
00

0
64

00
0

68
00

0
72

00
0

76
00

0
80

00
01

6
12
18
24

Figure 10: Hard real-time performance of GNU/Linux using CFS
scheduler. The x-axis shows the number of elements to simulate
and the y-axis the number of concurrent threads. Each black point
represents a configuration for which at least one time step was not
computed in real-time.

As in the case of real-fast benchmarking, the real-time
benchmark is run using the native scheduler for each system:
CFS for the GPOS and FIFO for the RTOS. Results are also
presented for Linux running with FIFO scheduler, proving
that the choice of the scheduler is not themain factor affecting
performance.

The hard real-time performance of each systemmeasured
with the benchmark is shown in Figures 9 and 10.The graph is
similar to that of Figure 8, showing the number of simulated
elements in the x-axis and the number of threads in the y-
axis. The y-axis shows only results for a number of threads
which are significant with respect to the number of available
cores, allowing then easy extrapolation of these results to
other setups.

In Figure 9 it is observed that Xenomai achieves hard
real-time in simulations with up to 14000 nodes regardless
of the number of threads used. The best performance is
achieved with maximum parallelism (one thread per virtual
core, which is 12 threads in our case). In this case, hard
real-time is guaranteed for up to 57000 nodes. In the case
of Linux (Figure 10), real-time is lost with only 6000 nodes
when running on a single CPU andwith 24000 formaximum
parallelism (one thread per virtual core).

The results show that the RTOS provides better guaran-
tees of hard real-time than the GPOS during the simulation
of a time step of a complex simulation. To isolate the time
required for computation of the time step (𝑇

𝑠
), the interrupt

dispatch latency (𝑇
𝑖
) was not taken into account. Considering

that other works demonstrate that the interrupt dispatch
latency is lower for a RTOS than for a GPOS (mainly in the
worst-case) [8, 9], the combination of all latencies (𝑇

𝑖
and 𝑇

𝑠
)

presents globally better hard real-time performance for the

0 2

1 >2

Th
re

ad
s

Masses

40
00

80
00

12
00

0
16

00
0

20
00

0
24

00
0

28
00

0
32

00
0

36
00

0
40

00
0

44
00

0
48

00
0

52
00

0
56

00
0

60
00

0
64

00
0

68
00

0
72

00
0

76
00

0
80

00
01

6
12
18
24

Figure 11: Soft real-time performance of Xenomai using FIFO
scheduler.The x-axis shows the number of elements to simulate and
the y-axis the number of concurrent threads. The legend shows the
number of missed deadlines.

Th
re

ad
s

Masses

40
00

80
00

12
00

0
16

00
0

20
00

0
24

00
0

28
00

0
32

00
0

36
00

0
40

00
0

44
00

0
48

00
0

52
00

0
56

00
0

60
00

0
64

00
0

68
00

0
72

00
0

76
00

0
80

00
01

6
12
18
24

0 2

1 >2

Figure 12: Soft real-time performance of GNU/Linux using CFS
scheduler.The x-axis shows the number of elements to simulate and
the y-axis the number of concurrent threads. The legend shows the
number of missed deadlines.

RTOS even in the case of complex simulations with large time
steps (scenario 2 of Figure 1).

Figures 11 and 12 show the same data, but, instead of a
binary plot of configurations presenting at least one missed
deadline (hard real-time performance), the number ofmissed
deadlines for each configuration is coded with colors. The
figures demonstrate that the RTOS performance is very
predictable when using a maximum of one thread per core.
When the number of nodes to simulate exceeds the capability
of the system, the curve turns from blue to red with only
a tight transition phase (a few teal and yellow dots). In the
case of Linux, there is no clear separation between blue (real-
time capable) and red (non-real-time) regions, but instead an
unpredictable behavior telling us that in some configurations
it may be even better than the RTOS, but there are no
guarantees for it. When having more than one thread per
core (18 and 24), the performance is quite unpredictable
in both systems due to the high amount of potential locks
(unexpected size of red blocks in Figure 4(d)), but Xeno-
mai presents fewer red dots even for the more complex
configurations.

The use of different scheduling policies for each system
could be a determinant factor that may be biasing the results
toward one of the candidates if the algorithm used for paral-
lelization was better suited for one specific policy. Figure 13
shows the performance of Linux using a FIFO scheduling
policy, demonstrating that obtaining RT performance is not
just a matter of using a specific scheduling policy on any
system. Comparing the performance of Linux using the CFS
or the FIFO scheduler, with FIFO policy the behavior seems
to be more predictable, but the performance is significantly



12 Mathematical Problems in Engineering
Th

re
ad

s

Masses

40
00

80
00

12
00

0
16

00
0

20
00

0
24

00
0

28
00

0
32

00
0

36
00

0
40

00
0

44
00

0
48

00
0

52
00

0
56

00
0

60
00

0
64

00
0

68
00

0
72

00
0

76
00

0
80

00
01

6
12
18
24

0 2

1 >2

Figure 13: Soft real-time performance of GNU/Linux using FIFO
scheduler.The x-axis shows the number of elements to simulate and
the y-axis the number of concurrent threads. The legend shows the
number of missed deadlines.

worsewith respect toXenomai and evenwith respect to Linux
using the CFS scheduler.

4.5. Discussion of the Results. An explanation for the better
real-time performance of the RTOS can be found in the
latencies obtained in Table 1. The algorithm used for the
parallelization of the solver (see Section 4.2) makes the total
time required for computing the time step (𝑇

𝑠
) depend on

(i) the total number of elements (𝑛),
(ii) the number of elements assigned to each thread (𝑒 =
⌊𝑛/𝑖⌋),

(iii) the latencies associated with semaphore lock (𝑇ipc),
with task switch (𝑇switch), and with the computation
of a spring force (𝑇spring) and a mass position and
velocity (𝑇mass),

(iv) the average number of task switches (𝑁switch) not due
to semaphore lock and of semaphore locks (𝑁ipc).

The following equation shows the general expression of
the total latency (𝑇

𝑠
) for each thread of the solver:

𝑇
𝑠
= 𝑁switch𝑇switch + 4𝑒𝑁ipc𝑇ipc + (2𝑒 + 1) 𝑇spring + 𝑒𝑇mass.

(2)

In the case of the FIFO scheduler, 𝑁switch is zero consid-
ering that the code of the thread does not include any explicit
yield, while for the CFS scheduler a time slice could finish
during the computation of the time step and thus nonexplicit
task switchesmay happen (the time slice of the CFS scheduler
was dynamically changing between 2.25ms and 18ms). This
implies that the term 𝑁switch𝑇switch is zero for the RTOS but
not for the GPOS. Even having an equal value for𝑁switch, the
task switch latency (𝑇switch) is also bigger for the GPOS, as
reported in Table 1. The other terms of (2) present similar
values for the RTOS and the GPOS (around 80 ns for 𝑇mass
and 400 ns for 𝑇spring) except for the term 𝑇ipc, which is also
known to be bigger for the GPOS, as reported in Table 1.
Apart from the threads created by the benchmark application,
there were other processes running on the system, some of
which with more than 1% CPU usage. Many processes were
related with the graphical interface (Xorg, gnome-terminal)
but others such as init or bash were needed in any case. It is
possible to run the benchmark after stopping the GUI, but we

found it anachronistic for a benchmark oriented to modern
general-purpose computers wheremost applications useGUI
interfaces [38, 39].

Summarizing, the existence of nonexplicit task switches
in the CFS scheduler and the bigger (worst-case) latencies for
task switch and for IPC makes the GPOS require more time
to compute one time step in the worst-case.

While a single worst-case latency can ruin real-time
performance, real-fast performance is much less sensitive to
outliers. The stochastic nature of fair scheduling algorithms
makes real-fast performance dependent mainly on the aver-
age value of 𝑇

𝑠
and more when there are a large number of

statistical samples (a large number of time simulated steps).
Hard real-time performance depends instead on (single)
outlier values of 𝑇

𝑠
among all the simulated steps. In some

soft real-time applications, the standard deviation of 𝑇
𝑠
may

be the value of interest. Summarizing, a system is real-time
capable if it presents a small enough (not as small as possible)
average𝑇

𝑠
and an upper bound for𝑇

𝑠
which is below the time

step value. On the other side, a real-fast performance system
is better as long as the average value of 𝑇

𝑠
is lower.

5. Conclusions

In this paper, real-time and real-fast performance of real-
time and general-purpose operating systems were compared
when running parallelized physical simulations with high
computational cost. The physical simulation is run with a
large time step, which means that the computation of one
single step is closer to the nature of real-fast tasks. If themodel
must be computed at a fixed rate, the computation time of
each step is bounded and the real-fast computation of each
step is constrained by real-time requirements.This makes the
model lay between the real-fast and real-time frontiers and
thus the choice between running the simulation on a real-
time or on a general-purpose operating system is not clear.

The first part of this work presented clues on how to
choose a RTOS for benchmarking or other applications, start-
ing from the results obtained in previous work by the authors.
The second part consisted in comparing the performance of
a RTOS (Xenomai) with that of a GPOS (GNU/Linux). A
vehicle tire model based on a mass-spring-damper system
and solved in amultithreaded fashionwas used as application
case for benchmarking. The model was configurable in
the number of bodies (masses, springs, and dampers) to
simulate and on the number of threads of the parallel solver,
allowing the measuring of performance for many different
configurations. Tomeasure real-fast performance, 60 seconds
of simulation time was run for each configuration on each
system, and the total elapsed time was measured. The GPOS
demonstrated superior real-fast performance compared with
the RTOS. For real-time performance, the number of missed
deadlines was measured for each configuration, and the
RTOS showed a better performance compared to the GPOS
for both hard and soft real-time.

Different scheduling policies were tested for each operat-
ing system, demonstrating on one side that using a scheduler
oriented to real-time applications does not guarantee a better



Mathematical Problems in Engineering 13

real-time performance in a general-purpose system and
on the other side that RTOS designed for general-purpose
computers are less performant for real-fast tasks even if the
same scheduling policies of a GPOS are used.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research leading to these results has received funding
from the People Programme (Marie Curie Actions) of the
EuropeanUnion’s Seventh Framework Programme FP7/2007
–2013 under REA Grant Agreement no. 285808, INTER-
ACTIVE: Innovative Concept Modelling Techniques for
Multi-Attribute Optimization of Active Vehicles (http://www
.fp7interactive.eu/). Furthermore, the authors kindly ac-
knowledge IWT Vlaanderen for the support of the ongoing
research project “Model Driven Physical Systems Operation-
MODRIO,” which is part of the ITEA2 project 11004 “MOD-
RIO” (in turn, supported by the European Commission).

References

[1] H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein, “Review
of hardware-in-the-loop simulation and its prospects in the
automotive area,” in Modeling and Simulation for Military
Applications, vol. 6628 of Proceedings of SPIE, April 2006.

[2] C. Garre and M. A. Otaduy, “Haptic rendering of objects with
rigid and deformable parts,” Computers and Graphics, vol. 34,
no. 6, pp. 689–697, 2010.

[3] W. C. Prescott, G. Heirman, J. De Cuyper et al., “Using high-
fidelity multibody vehicle models in real-time simulations,” in
Proceedings of the SAE World Congress, pp. 5–22, 2012.

[4] C. S. Pabla, “Completely fair scheduler,” Linux Journal, no. 184,
2009.

[5] M.Gorman,Understanding the LinuxVirtualMemoryManager,
Prentice Hall, 2004.

[6] W. A. Halang, R. Gumzej, M. Colnarič, and M. Družovec,
“Measuring the performance of real-time systems,” Real-Time
Systems, vol. 18, no. 1, pp. 59–68, 2000.

[7] C. Garre, D. Mundo, M. Gubitosa, and A. Toso, “Performance
comparison of real-time and general-purpose operating sys-
tems in parallel physical simulation with high computational
cost,” SAE Technical Paper, 2014.

[8] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa,
and C. Taliercio, “Performance comparison of VxWorks, Linux,
RTAI, and Xenomai in a hard real-time application,” IEEE
Transactions onNuclear Science, vol. 55, no. 1, pp. 435–439, 2008.

[9] P. Regnier, G. Lima, and L. Barreto, “Evaluation of interrupt
handling timeliness in real-time linux operating systems,”
SIGOPS Operating Systems Review, vol. 42, no. 6, pp. 52–63,
2008.

[10] B. Bershad, R. P. Draves, and A. Forin, “Using microbench-
marks to evaluate systemperformance,” inProceedings of the 3rd
Workshop on Workstation Operating Systems, pp. 148–153, 1992.

[11] A. C. Heursch, E. Horstkotte, and H. Rzehak, “Preemption
concepts, rhealstone benchmark and scheduler analysis of linux

2.4,” in Proceedings of the Real-Time and Embedded Computing
Conference, 2001.

[12] H. J. Curnow and B. A. Wichmann, “A synthetic benchmark,”
Computer Journal, vol. 19, no. 1, pp. 43–49, 1976.

[13] N. Weiderman, “Hartstone: synthetic benchmark requirements
for hard real-time applications,” in Proceedings of the Working
Group on Ada Performance Issues, pp. 126–136, 1990.

[14] B. G. Ujvary and N. I. Kameno, “Implementation of the
hartstone distributed benchmark for hard realtime distributed
systems: results and conclusions,” in Proceedings of the Joint
Workshop onParallel andDistributedReal-Time Systems, pp. 98–
103, 1997.

[15] L. R. Welch and B. A. Shirazi, “Dynamic real-time benchmark
for assessment of QoS and resource management technology,”
in Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium (RTAS ’99), pp. 36–45, June 1999.

[16] F. Nemer, H. Cassé, P. Sainrat, J. P. Bahsoun, andM. DeMichiel,
“Papabench: a free real-time benchmark,” in Proceedings of the
Workshop on Worst-Case Execution Time, 2006.

[17] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek,
“CDx: a family of real-time java benchmarks,” in Proceedings of
the 7th International Workshop on Java Technologies for Real-
Time and Embedded Systems (JTRES ’09), pp. 41–50, September
2009.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “Mibench: a free, commercially
representative embedded benchmark suite,” in Proceedings of
the Workload Characterization IEEE International Workshop,
pp. 3–14, 2001.

[19] S.-L. Tan andB. T.Nguyen, “Survey andperformance evaluation
of real-time operating systems (rtos) for small microcon-
trollers,” IEEE Micro, vol. 99, no. 1, 2009.

[20] J. H. Brown and B. Martin, “How fast is fast enough? choosing
between xenomai and linux for realtime applications,” in Pro-
ceedings of the Real Time Linux Workshops, pp. 25–27, 2010.

[21] M. Piątek, “Real-time application interface and xenomai mod-
ified gnu/linux real-time operating systems dedicated to con-
trol,” in Proceedings of the 6th Conference on Computer Methods
and Systems, pp. 179–184, 2007.

[22] R. Gumzej, A. Halang, and W. Springer, Real Time Systems
Quality of Service. Introducing Quality of Service Considerations
in the Life Cycle of Real-Time Systems, Springer, 2010.

[23] Y. Zhang and A. Sivasubramaniam, “Scheduling best-effort and
real-time pipelined applications on time-shared clusters,” in
Proceedings of the 13th Annual Symposium on Parallel Algo-
rithms and Architectures (SPAA ’01), pp. 209–219, July 2001.

[24] S. Banachowski, T. Bisson, and S. A. Brandt, “Integrating best-
effort scheduling into a real-time system,” in Proceedings of the
25th IEEE International Real-Time Systems Symposium (RTSS
’04), pp. 139–150, December 2004.

[25] M. Dellinger, P. Garyali, and B. Ravindran, “ChronOS Linux:
a best-effort real-time multiprocessor Linux kernel,” in Pro-
ceedings of the 48th ACM/EDAC/IEEE Design Automation
Conference (DAC ’11), pp. 474–479, June 2011.

[26] P. E. McKenney, “Real time vs. real fast: how to choose?” in
Proceedings of the Linux Symposium, pp. 57–65, 2008.

[27] P.Mantegazza, E. L. Dozio, and S. Papacharalambous, “Rtai: real
time application interface,” Linux Journal, no. 72es, 2000.

[28] P. Gerum, “Xenomai-implementing a rtos emulation frame-
work on gnu/linux,” White Paper, Xenomai, 2004.



14 Mathematical Problems in Engineering

[29] S.-T. Dietrich and D.Walker, “The evolution of real-time linux,”
in Proceedings of the 7th RTL Workshop, 2005.

[30] D. Locke, L. Sha, R. Rajikumar, J. Lehoczky, and G. Burns, “Pri-
ority inversion and its control: an experimental investigation,”
ACM SIGAda Ada Letters, vol. 8, pp. 39–42, 1988.

[31] D.Calleja, “Linux 2.6.18,” 2007, http://kernelnewbies.org/Linux
2 6 18.

[32] E. Bianchi and L.Dozio, “Some experiences in fast hard realtime
control in user space with rtai-lxrt,” in Proceedings of the Real
Time Linux Workshop, 2000.

[33] R. Love, Linux System Programming: Talking Directly to the
Kernel and C Library, O’Reilly Media, 2013.

[34] I. Puaut, “Real-time performance of dynamic memory alloca-
tion algorithms,” in Proceedings of the 14th Euromicro Confer-
ence on Real-Time Systems, pp. 41–49, 2002.

[35] M. C. Lin and S. Gottschalk, “Collision detection between geo-
metric models: a survey,” in Proceedings of the IMA Conference
on Mathematics of Surfaces, pp. 37–56, 1998.

[36] A. Gallrein and M. Bäcker, “CDTire: a tire model for comfort
and durability applications,” Vehicle System Dynamics, vol. 45,
no. 1, pp. 69–77, 2007.

[37] H. B. Pacejka andE. Bakker, “Magic formula tyremodel,”Vehicle
System Dynamics, vol. 21, no. 1, pp. 1–18, 1992.

[38] J. De Cuyper, M. Furmann, D. Kading, and M. Gubitosa,
“Vehicle dynamicswith LMSvirtual. labmotion,”Vehicle System
Dynamics, vol. 45, no. 1, pp. 199–206, 2007.

[39] R. Capitani, G. Masi, A. Meneghin, and D. Rosti, “Han-
dling analysis of a two-wheeled vehicle using MSC. ADAMS/
motorcycle,” Vehicle System Dynamics, vol. 44, no. 1, pp. 698–
707, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


