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Abstract. Stability analysis of piecewise linear systems, without affine
terms, consists of the problem of finding maximal stabilizing sets of
switching paths among possible system coefficients and that of obtaining
a sequence of state-space partitions in the order of increasing refinement.
Exploiting the fact that these two problems can be solved separately, one
can find subsets of the state space such that the piecewise linear system
restricted to these sets is uniformly exponentially stable.

1 Introduction

Successful analysis of the stability of a piecewise linear system hinges on one’s
ability to construct an appropriate Lyapunov function. Common approaches in-
volve piecewise quadratic Lyapunov functions [1–4] and piecewise higher-order
polynomial Lyapunov functions [5, 6]. However, these approaches are conserva-
tive because only a subset of all asymptotically stable piecewise linear systems
admits these types of Lyapunov functions.

We focus on discrete-time piecewise linear systems under a polyhedral parti-
tion of the state space but without affine terms, and propose that the problem
of determining the asymptotic stability of such a system be divided into two
separate problems. The first problem draws on the recent characterization of
all uniformly stabilizing sets of switching sequences [7]. To obtain stabilizing
switching sequences, it suffices to obtain so-called maximal admissible sets of
switching paths of length L over L = 0, 1, . . . . These sets are independent
of the switching structure imposed by the underlying state-dependent switch-
ing among different system coefficients, and associated with each of them is a
switching-path-dependent quadratic Lyapunov function. On the other hand, the
second problem is to obtain all admissible polyhedral partitions of depth L over
L = 0, 1, . . . . The task here is to explore the underlying switching structure
of the system by obtaining an increasing family of state-space partitions. This
task can be done regardless of how each state-space partition affects the form of
the Lyapunov function. Combining these two problems leads to a novel stability
analysis method for piecewise linear systems.
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2 Problem Formulation

Let A = {A1, . . . ,AN} with A1, . . . , AN ∈ Rn×n. Let D = {D1, . . . , DN} be a
partition of Rn (i.e.,

⋃N
i=1 Di = Rn and Di ∩Dj = ∅ whenever i 6= j). Then the

pair (A,D) defines the discrete-time piecewise linear system represented by

x(t + 1) = Aθ(t)x(t) (1)

with θ(t) = {i : x(t) ∈ Di} for t = 0, 1, . . . .

Definition 1. Let C ⊂ Rn. The pair (A,D) is said to be C-uniformly exponen-
tially stable if there exist c ≥ 1 and λ ∈ (0, 1) such that

‖x(t)‖ ≤ cλt−t0‖x(t0)‖ (2)

for all t0, t ∈ {0, 1, . . . } with t ≥ t0 and for all x(t0) ∈ C.

Given a pair (A,D), our stability analysis problem is to determine a (maxi-
mal) set C ⊂ Rn such that the pair (A,D) is C-uniformly exponentially stable.

3 Two Separate Problems

The first problem is to find maximal admissible sets of switching paths. Let Θ ⊂
{1, . . . , N}∞ be nonempty. The pair (A, Θ) defines the discrete-time switched
linear system represented by (1) over all (θ(0), θ(1), . . . ) ∈ Θ. Searching for
all Θ such that the pair (A, Θ) is uniformly exponentially stable amounts to
finding (the countable family of) all A-maximal sets [7]. We shall write X < 0
to mean that X is symmetric and negative definite. To simplify notation, set
(ij , . . . , ik) = 0 if j > k, and set {1, . . . , N}0 = {0}.
Definition 2. The pair (A, Θ) is said to be uniformly exponentially stable if
there exist c ≥ 1 and λ ∈ (0, 1) such that (2) holds for all t0, t ∈ {0, 1, . . . } with
t ≥ t0, for all x(t0) ∈ Rn, and for all (θ(0), θ(1), . . . ) ∈ Θ.

Definition 3. Let L be a nonnegative integer. Elements of {1, . . . , N}L+1 are
called L-paths. A nonempty set N of L-paths is said to be A-admissible if, for
each (i0, . . . , iL) ∈ N , there exist an integer M > L and a (iL+1, . . . , iM ) ∈
{1, . . . , N}M−L such that (iM−L, . . . , iM ) = (i0, . . . , iL) and (it, . . . , it+L) ∈ N
for 0 ≤ t ≤ M − L, and if there exist matrices X(j1,...,jL) > 0 such that

AT
iL

X(i1,...,iL)AiL
−X(i0,...,iL−1) < 0 (3)

for all L-paths (i0, . . . , iL) ∈ N . Moreover, if the only A-admissible Ñ with Ñ ⊂
N (resp. N ⊂ Ñ ) is N itself, then N is called A-minimal (resp. A-maximal).

Lemma 4. [7] There exists a nonempty Θ ⊂ Ω such that the pair (A, Θ) is
uniformly exponentially stable if and only if there exist an integer L ≥ 0 and
an A-admissible N ⊂ {1, . . . , N}L+1. Associated with each A-minimal N is a
periodic θ = (θ(0), θ(1), . . . ) such that (A, {θ}) is uniformly exponentially stable.



The second problem is to generate a countable family of partitions of the
state space in the order of increasing refinement. Each of these partitions are
made according to the switching structure that the underlying state-dependence
of the switching sequence dictates. Define sets D(i0,...,iL) ⊂ Rn recursively by

D(i0,...,iL+1) = {x ∈ D(i0,...,iL) : Ai0x ∈ D(i1,...,iL+1)}

for L = 0, 1, . . . and for (i0, . . . , iL) ∈ {1, . . . , N}L+1. Then, for each L, the
indexed family {D(i0,...,iL) : (i0, . . . , iL) ∈ {1, . . . , N}L+1} defines a partition of
Rn, which we shall call an L-path partition of Rn.

4 Proposed Algorithm for Stability Analysis

We propose that the stability analysis formulated in Section 2 be tackled by
combining the two decoupled problems described in Section 3. Suppose we have
solved the two problems described above. Let us fix a nonnegative integer L, and
suppose that DL and DL+1 are the L-path partition and (L+1)-path partition of
the state space. Partition DL+1 is finer than DL and enables one to construct a
switching sequence as follows: given a nonempty D(i0,...,iL) ∈ DL, let θ(0) = i0,
. . . , θ(L) = iL; if there exists a nonempty D(i0,...,iL,iL+1) ∈ DL+1, then let
θ(L + 1) = iL+1; if there exists a nonempty D(i1,...,iL+1,iL+2) ∈ DL+1, then let
θ(L+2) = iL+2; and so on. Any switching sequence that can be constructed this
way generates an infinite chain of L-paths, which we shall call a chain of L-paths
generated by D(i0,...,iL) and DL+1. The following is immediate by construction:

Lemma 5. Let D(i0,...,iL) ∈ DL. If each chain of L-paths generated by D(i0,...,iL)

and DL+1 has a limit set that is contained in an A-maximal set of L-paths, then
the piecewise linear system (A,D) is D(i0,...,iL)-uniformly exponentially stable.

This lemma suggests an algorithm to generate a nested sequence C0 ⊂ C1 ⊂
· · · such that the pair (A,D) is Ci-uniformly exponentially stable for each i:

Step 0. Set C−1 = ∅; set L = 0.
Step 1. Obtain the partition DL+1 of the state space.
Step 2. Obtain A-maximal sets of L-paths.
Step 3. Let CL be the union of CL−1 and all D(i0,...,iL) such that each chain of

L-paths generated by D(i0,...,iL) and DL+1 has a limit set that is contained
in an A-maximal set of L-paths.

Step 4. Increment L to L + 1; go to Step 1.

For example, if N = 2 and if A and D have

A1 =
[

0 0
−1/2 3/2

]
, A2 =

[
1/2 1
−1 1/2

]
;

{
D1 =

{
[x1 x2]T ∈ R2 : x1 ≥ x2

}
,

D2 =
{
[x1 x2]T ∈ R2 : x1 < x2

}
,

then the algorithm gives us C0 = C1 = C2 = ∅, C3 = D1212∪D2121∪D2212, and
C4 = C5 = · · · = D1212 ∪D2121 ∪D2212 ∪D22212. In this particular example, the
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Fig. 1. Illustrative example. (a) the four-path partition of the state space. (b) a typical
state trajectory converging to the origin.

process of iteratively partitioning the state space terminates at the path length
of L = 4 since none of the states in R2 \C4 converges to the origin. The stability
of the pair (A,D) can be completely assessed using the four-path partition given
by Fig. 1(a); a typical state trajectory that starts in C4 is depicted in Fig. 1(b).

5 Conclusion

A novel stability analysis method was proposed based on the fact that the task
of characterizing all stabilizing sets of switching sequences can be done indepen-
dently of that of successively refining the partition of the state space. Questions
to be answered regarding the algorithm presented in Section 4 are as follows: (a)
Is C∞ = limi→∞ Ci maximal? (b) Under what condition, do we have C∞ = Rn?
(c) Under what condition, do we have C∞ = CL for some finite L?
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