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ABSTRACT

The main contribution of this work lies in challenging the common practice of inferential
statistics in the realm of simple linear regression for attaining a higher degree of accuracy when
multiple observations are available, at least, at one level of the regressor variable. We derive
sufficient conditions under which one can improve the accuracy of the interval estimations at
quite affordable extra computational cost. Two algorithms and a numerical example will be
presented to fully explain how our approach works and to compare the results of our approach
versus the results obtained from three of the well known statistical software systems.

Keywords: Simple linear regression, Multiple observations, Weighted least squares, Accuracy,
Power

1. INTRODUCTION

Linear regression models are among the most popular statistical tools which have been successfully
applied to a wide spectrum of problems. To apply regression models, the common practice is to
collect data and minimize the sum of squared deviations between the observed data and the values
coming from the underling relation, Montgomery et al. (2001) and Neter et al. (1996). Once the
regression model is developed, various tests of hypothesis as well as confidence and prediction
intervals can be presented.

Here, we start with the simple linear regression model shown in (1) which we label as the
Original Model throughout the article:

Y =X.B+¢€ (N
where
Y = (v “Ymq1 V12 " Ym,2 Yic " Ymec )T
my mp mc
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In this model there are m;, j=123,..,c observations from the response variable, Y, at each of
the ¢ levels of the regressor variable, X, such that there are n pairs of data altogether (see Figure 1).
For the sake of our discussion it suffices for just one m; to be strictly larger than 1.

This means that m; e N, Y m;=n

1 2 J c X
Figure 1 The layout of data in the Original Model

The commonly adopted assumptions in regression analysis include:

E(g) =0 D i=1,2,.,m )
Var(g) = 6? (unknown) ; i=1,2,..,n 3)
Cov(e;e) =0 ;o L,i'=1,2,..,n i#i 4)

Assuming that &;’s behave as normal random variables, appropriate confidence and prediction
intervals can be presented. Since it is possible that the unknown variances in (3) not to be fixed for
all ¢'s, one can adopt the weighted least squares to treat such a case.

The commonly adopted approach toward statistical inference in the regression problem as outlined
above, often fails to exploit all the potential that the collected data has to offer in order to arrive at
the best possible results. In this work we analytically establish the conditions under which such
potential is practically wasted while by bearing a very affordable cost one could have achieved
more accurate results. In the quest for identifying the optimal (regression) model, i.e., the model
that better exploits the potential of the collected data, we present two algorithms and by borrowing a
typical problem from literature we extensively demonstrate how our proposed approach works and
what it can achieve when compared with the approach which is commonly practiced.

This paper is organized in the following manner: section 2 investigates a model in which the mean
of observations at just one level of the independent variable takes the place of the observations
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themselves. We examine to see if relations (2), (3), and (4) are still true for such a case and then
arrive at the regression model. Section 3 presents a similar discussion when the means of
observations at more than one level of the independent variable are considered. Section 4 presents
an algorithm for finding a model with the smallest mean squared error (MSE). Section 5 is devoted
to generating a model with the largest accuracy. Section 6 includes a numerical example. Section 7
concludes the discussion and presents some ideas for further investigation.

2. REGRESSION ON THE MEAN OF OBSERVATIONS AT A SINGLE LEVEL

In this section we assume that at a single level of the regressor variable X we have available
m>1,j=12..,c observations on Y. Since it is irrelevant at which level of X these multiple
observations are collected, here we assume that the m; observations correspond to the level
xj where j = 1and we intend to employ the mean of these observations in fitting the regression

model. As such, we are dealing with the following model which we label as Model j where j = 1
(unless specified otherwise).

Y1=X1'B+El (5)
in which
1
Y, =( m—lZZZlykl V12 """ Ymy,2 Yic " Ymec )T
1 mp mc

isan (n —my + 1) X 1 matrix,

T
(1 1.1 1.1
X1=\x, xpowy, o xpex
o2 2 e 7
1 myp mc

isan (n —my + 1) X 2 matrix,

- 5)
B1)’
and finally,
_ 1 my T
€1=( — k=1 €k1 €12 " €my2 €1¢c """ Emec )
N—— N————
1 my mc

isan (n —my; + 1) X 1 matrix.
To arrive at the regression model in (5) we first present the following definitions:

S,: represents an (n —my; + 1) X n matrix of the form

n-mq
5 )

(=

0 0
51=|o...0 1(1)...0|

0 .. 0 |0 0

0 .. 0 |00 .. 1
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where in the first row the first m; entries are 1 and the remaining entries are 0. In the lower right
side of §1 there is an (n — my) X (n — m;) unit sub-matrix and all other entries of §; are 0.
W : stands foran (n —my; + 1) X (n —my + 1) matrix of the form

m% 0 .. 0
w,=(0 1 0

where each of its off diagonal entries is zero, and all diagonal entries are 1 except for the entry at
northwest corner which is 1/m;.

We have defined §4 and W, in a way such that by multiplying both sides of (1) by W.S1 one can
arrive at Model 1.

2.1. Parameter Estimation

We first examine to see if (2), (3), and (4) hold in Model 1. As can be seen below, (2) and (4) hold
true while this is not the case for (3). To get around this problem we resort to weighted least squares
to fit our model.

_ 1 _ 1
E(&) = m—12’,?=11 E(gg) =0 where & = m—IZZlil &k
E()=0 ; i=2,..,n—m+1

_ 1 m o2
Var(&) = m—lzzkil Var(egq) = p—

Var(g)=0¢% ; i=2,..,n—m;+1
Cov(&, &) = milzzzl Cov(egy, &) =0 ;o U=2,..,n—my+1
Cov(ee) =0 ; L,i'=2,..,n—m+1 i=+i
Therefore
1
" 0
E(el)=[0 0O 01" and Var(e;) = o? 0 1 0 = o2W,

It is clear that the weighted least squares (WLS) estimators of the parameters in Model 1 can be
written as Neter et al. (1996).

- -1 -
b, = (XT.wilX,) . XiL.wily, (6)

Now, we establish the fact that by is exactly the same as b (= [ XT.X]~1. XT.Y) which represents
the least squares (LS) estimators of the Original Model. To show this we substitute X4 and Y, in
(6) by W{.51.X and W.S§1.Y respectively to obtain

_ -1 _
by =[(Wy.S:. )T Wit (W1.5:.X) | " (W.S1.X)T. Wil.(W,.5,..Y)
= [XT.s{.w{.w;l.wl.sl.x]_l.xT.s{. wiwilw,s.y
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noting that WY = Wy and Wi1. W, = I, we will have ST.Wl. wilw,.s, = sT.w,.s,

e N R N2 W W B R
oo m 0 .. 010 0
_11 0 .. 0 01 - 0 0 0 0 1 0
01 .. Of°\: + =~ (% 0 oL Ty
;s E 00 - 1 : T
0 0 1 0O .. 00 0 .. 1
/?9::' f’\/m% oA 00 0)
110 .. o 0O .. 0 10 0
‘\0 - o)-kq -0 01 .0)
00 .. 1/ V0 . 0 00 .1
(1/m1 . 1/my| 0 .. ow
HY/mg . 1/my| 0
0 0
0 0 0 .. 1
Designating this matrix by A, we have
1/m; .. 1/my 0 .. 0
T (11 1.1 1.1 1/m1 1/m1 0 .. 0f_ yr
X 'Al - (xl"'xl XpXy xc"'xc). 0 0 1 .0 =X
0 0 0o .. 1

therefore, having in mind that ST. W,.S; = A; and XT.A; = X7, one can write
b, = [ XT.s]. Wl.sl.x]’l.xT.s{.wl.sl.Y =[XT.A..X]"L.XT.A,.Y =
[XT.X]"L.XT.Y=b

As can be seen, the LS estimators for Model 5 are exactly the same as those obtained for the
Original Model. The variance of the coefficients in the Original Model is

Var(b) = a%(X". X)_1

and since b4 in Model 1 is the same as b (in the Original Model), then obviously Var(b,) =
Var(b).

2.2. The Sum of Squares
2.2.1. The Sum of Squared Error (SSE)

So far we have shown that the estimated regression line in Model 1 coincides with the one in the
Original Model. By examining Figure 2
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1 2 e / c
7 X 1 2 e i c X
Original Model Model 1

Figure 2 Data layout for the Original Model and Model 1 around the line of regression

It is evident that the sum of squared errors (SSE) differ for the two models only at level x;. In fact,
SSE’s for the two models have identical terms at all the other levels of the regressor variable. Let
SSE, and SSE; designate the sum of squared errors in the Original Model and the proposed model
(Model 1) respectively. Thus we can write

m;j A \2 ~ m;j A\2
SSEq = Y51 Yk = 9) =Xk — 9% + Yi=2 Yl (ks = 95)
_ ~ m; ~ \2
SSE; = my.(¥; — Y1)2 + Z§=z Zkil(}’kj - Yj)

Where J; stands for the expected value of the dependent variable at level j of the regressor variable.
To set up a relation between SSE, and SSE;, we can write

SSE, — SSE, = 221:11(}’1{1 - }71)2 -my(y; — }71)2
= Z;{nil(yﬁl + 3712 = 2Yja Y1) —my (3_’12 + 3712 —2y191)
= 21;?:11 3’1%1 - ml}_’lz = Z;::l(ykl - }71)2
this means that SSE, = SSE; + Sy,, where Sy, = Yl (s — ¥1)2

In other words, when the mean of m; observations is used instead of the m; observations
themselves, SSE will be reduced by as much as Sy, = Yl (v — V)2

2.2.2. The Total Sum of Squares (SST)

To compare SST for the Original Model and Model 5 we first calculate the mean of the observed
values of the response variable for Model 5 as

— — 1 m;j
y® = M1+ S Vi) = 7 (Cpy Vi + 52 X2y vy )

mit+n—-m, (

=~ (T Tel i) =7
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Figure 3 Layout of data around y for the Original Model and Model 1

As expected, the mean of the observed values of Y in both models are identical. Now, according to the
situations displayed in Figure 3, SST for the Original Model, SST,, , and the proposed model, SST; , can
be written as

m; _\2 _ m; _\2
SSTy = Xj=1 Yk —7) =22 n —¥)* + Yiz2 Yl (k=)
_ m; 2
SSTy =my. 5 = M? + X5, 2, 2, (v — 7).
These SST differ by as much as
S§8Ty — SST, = Z;::l(}’kl - }7)2 -my(y; — }7)2
= Yho1 (Vi + 7% = 2via¥) = my (% + 7% = 2519)
= Z;::l 3"1%1 - 77113_’12 = Z;nil(J’m - 3_’1)2
which means that
SSTO = SSTl + Syl,
where Sy, = Z;{nil(ykl — ¥1)?, as before.

The last equation above reveals that by regressing on the mean of the observed values of Y at level x;, SST
tends to decrease as much as Sy, .

2.2.3. The Sum of Squares due to Regression (SSR)

Since SST = SSE + SSR holds so does the relation SSR; = SSR,, which means that SSR is the
same for both models.

2.3. The Mean Squared Error (MSE)
To compare the MSE’s of the Original Model and Model 1, i.e., MSE, and MSE; , we can write

SSEy = SSEy + Sy,
or
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(n - Z)MSEO = (n - m1 - 1)MSE1 + Syl

or finally

MSE, = —

P — [(n — 2)MSE, — Sy, ]

(n-my—
This means that for the proposed model to reduce the MSE, it is sufficient to have

~—[(n — 2)MSE, — Sy, | < MSE,

(n-m;-1)
or
MSE, < m11—1 Sy,.
Or, finally, we have
MSE, < S? (7)

where
2 1 m = )2
St = ml—_lzkil(ﬂa —¥1)°.
It is interesting to note that both MSE, and MSE, are unbiased estimators of &2 and in case the

relation (7) holds, the MSE in the proposed model will be smaller than that in the Original Model.
Besides, as shown earlier, the variances of the coefficients in both models are identical and equal to

Var(b) = o2(XT.X)""

Employing the unbiased estimators of g2 here, leads to the following point estimators for variances
of the coefficients:

Original. Model:  S2(b) = MSEo(XT.X)™"
Model 1: S2(b) = MSE, (XT.X) ™"

It is clear that forcing MSE, < S? ensures us that the estimators of variance of the coefficients in
the proposed model tend to decrease in comparison to the corresponding estimates from the
Original Model.

2.4. Coefficient of Determination R?

As far as the coefficient of determination is concerned, one can write

SSRy 4 2 _ SSRy

R2 = =
0™ ss1, 17 ssty

for the original and the proposed models. Now, the following relation shows that employing the
proposed model always tends to increase R2.
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2 SSRy _ SSRg SSRy _ 12
L7 ss1y T SSTo=Sy, ~ SST, 0

2.5. Power of the Tests and the Length of the Intervals

To judge the power of the tests as well as the length of the confidence and prediction intervals, in
this section we assume that the error terms behave as normal random variables.

2.5.1. Judging the Parameter Estimators

The two-sided 100(1 — @)% confidence interval for parameter f;, | = 1,2 for the proposed
model can be written as

bltt 1 S(bl), l=0,1

1—%; n-mq—
where S(b;) is the square root of the estimated variance of the point estimator of ;.

The length of this interval reflects upon the interval’s accuracy and the power of the corresponding
test in the sense that the shorter this interval, the higher the accuracy as well as the power would be.
Employing the proposed model will decrease the degrees of freedom and in spite of the fact that
MSE, < S? , the value of MSE and consequently the values of S(b;) tend to decrease. As such, for
comparing the accuracy and the power in employing the two models it would be sufficient to
compare the term

t MSE )]

a .
1-2d.f.

in the two models. Whenever this term for one of the models is smaller, that model provides a
higher degree of accuracy and more power.

2.5.2. Inferring on the Mean of the Response Variable at a Fixed Level of the Independent
Variable

A two-sided 100(1 — @)% confidence interval for the expected value of the response variable at
the level x; assumes the following form

7 TR (75 9)

where 9}, represents the value that the estimated line assumes when x = x; and S2(§},) is defined
as

S2(9,) = MSE. XL (XT.X) . Xy,
in which X, = ().

A comparison of confidence intervals presented in (9) for the two regression models leads again to
the comparison of (8) for these models.
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2.5.3. Inferring on a New Observation of the Response Variable at a Specified Level of X

The prediction interval for a new observation of the response variable when x is considered at level
Xp, can be written as

It t% pom,—1 - S(pred)
where .
S(pred) = (MSE.[1+ X (X".X) 7. X))’
Once again, comparing this interval for the two models leads to a comparison of (8) for them.
Our findings so far indicate that decreasing MSE by itself is not a sufficient yardstick for attaining

more accuracy and power and we showed instead that we should see to it that the following holds
true:

(48 nomyo - VMSEy < ty_a ;. MSEq

or
t a
1-5;n-mq—1 1 /
tz a 12 \/(n—ml—l) [(n — 2)MSE, — Syl] < VMSE
1—7; n-—
or
t a
—>; n—mq— S
1=3 11\/ 1 [(n—Z Y1]<1
L e, . (n-m;-1) MSE,
o
or
t
1 Sy 1-5;n-2
-2 -——"r| <« 2
\/(n—ml 1) [(n ) MSEO] tl—%;n—m1—1
or
t a 2
1——; n-2
MSE -D < a >
1—5; n-mq—1
or

t ., z
(n—Z)—(n—m1—1)<t i ) <N

MSEy’
1—%; n-mjp—1 0

and, finally, we have

t. «a 2
1— (n—m1—1)< 1-7n-2 >
(n-2) t1—%; n-mq—-1

SSEy < Sy, . (10)
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This means that once (10) holds, the proposed approach generates more powerful tests and more
accurate confidence and prediction intervals.

3. EMPLOYING OBSERVATIONS’ MEANS AT MORE THAN ONE LEVEL
3.1. Means at Two Levels

Let x;, and x;, represent the levels at which multiple measurements from the response variable are
available. We intend to employ means of such observations in fitting the regression model. To
achieve this purpose one can develop the intended model based on either the Original Model or
Model 5. In fact, the model will look like the following which we label as Model ji,j, , ji =
1, j, =2 meaning the model in which means are employed at levels x;, and Xj, of the regressor

variable.
Yi2 =X12.B8+¢€1 (11)

in which Y5  and € , represent (n —my; —m, +2) X 1 matrices, i.e.,

(5 > T
Yiz=(1 Y2 Y13 Vmez v Yie o Ymec)
N——_—— N— —
mg3 mc
and
— = T
€12 = (& &2 €13 " Emy3 €1c " Emec )
~————_— ~————_—
m3 mc
p=(%)
B1
and X , represents the following (n —m; —m, + 2) X 2 matrix
T
|1 1 1.1 1.1
X2 = <X1 Xy Xaexs e xpex )
[+ C
N o S — S——
1 1 m3 mc

Here, y;, ¥,, &, and &, represent the means of the observed data as well as the means of error terms
at levels x; and x, respectively.

To arrive at the model in (11), it suffices to multiply both sides of (5) by the matrix combination

m; n-m;—m;

/1 0 0 .. 0 10 .0 0 .0
EF=[0 0 1 .. 0].

LT 00 .. 0 [T ..0

0 0 o0 . 1/ \: P o iogrn

00 .. 0 [0 .1

where E and F are (n—my—my+2)X(n—m; —my,+2) and (n —m; —m, +2) X
(n —my + 1) matrices. It is quite straightforward to show that relations (2) and (4) hold for the
model in (11). One can resort to the weighted least squares to get around the nonhomogeneity of
variances of the errors.

By defining the (n — my —m, + 2) X (n — my — m, + 2) matrix W, , as
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Wi,=| 0 0 1 0
0 0 0 .. 1

the weighted least squares point estimators of the coefficients can be obtained. Specifically, in
suffices for Wy , to take the place of Wy in (6) and X; and Y; be substituted by X;, and Y,
respectively. Here, again it will be a simple matter to show that the point estimators are exactly the
same as the estimators in Model 1 and hence, in the Original Model.

Similar to what was shown, again it can be shown that
SSEI,Z = SSEl - SYZ = SSEO - Syl - SYZ

and
SSTl,Z = SSTl - SYZ = SSTl,Z = SSTO - SYl - SYZ

and
SSRl,Z = SSR1 = SSRO

As before, when MSE; < §2 = ﬁzzl:zl(ykz — ¥,)? holds, employing the model in (11) tends
-

to decrease the MSE when compared to Model 1. Now we derive the conditions under which the
model in (11) provides a smaller MSE compared to the Original Model.
In order for the inequality MSE; , < MSE|, to be true, we should have

n-2

—— (MSEy — Sy, — Sy,) < MSE,

n-mg;—

or
1
MSE, < pp— (Sy1 + SYZ)’

my
m; _\2 .
where Sy, =%, 7 (vi; = 3;)", j = 1.2

This point must be stressed that if Model1l(j =1) achieves a lower MSE than the
Original Model, and hence if Model 2 (j = 2) achieves an MSE smaller than that of the
Original Model, it would be reasonable to conclude that Model 1,2 (j; = 1, j, = 2) will follow
suit. The opposite of this argument is not necessarily true. In fact, it is possible for either of
Model 1 or Model 2 to have an MSE higher than that of the Original Model while Model 1,2
achieves a lower MSE than the Original Model. Under these circumstances, it can be asserted that
either of Model1 or Model 2 will certainly lower the MSE as that achieved by the
Original Model. This point can be explained in mathematical terms as follows.

If MSE, < S2 = (my — 1)MSE, < Sy,, and
MSEO < 522 = (mz - 1)MSEO < SYZ’ then

1
MSE, < m(Syl + SYZ)'

1
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The next important point is that if both Models 1 and 2 achieve lower MSE than the MSE provided
by the Original Model, it can be concluded that Model 1,2 achieves an MSE lower than what
provided by both Model 1 and Model 2. This is because: if MSE, < S? = MSE; < MSE, and
since MSE, < S2, then MSE; < MSE, < SZ. Therefore we obtain

MSE, , < MSE;.

In like manner, if MSE, < S2 = MSE, < MSE,, and since MSE, < S? then MSE, < MSE, <
SZ. Therefore we obtain

MSE, , < MSE,.

We conclude this section by pointing to the fact that Model 1,2 can be directly obtained from the
Original Model. To show this fact, one can simply multiply both sides of (1) by the following
(n—my —my +2) X (n —my —m, + 2) and (n — m; —m, + 2) X n matrix combination

M1 m; n—-m;—ms,

(1/7}11 0 0 .. 0 1 .11 0 .. 0 0 .. o0

0 1/m;, 0o .. 0 0 0
0 gm0 00T

: : : : 0O .. 00 .. 0 1 .. 0

0 0 0 1 \ A Do

0O .. 00 .. 0 0 .. 1

3.2. Employing the Mean Observation Values at All Levels of the Independent Variable

Here we assume that the number of observations of the response variable at each level of the
independent variable is strictly larger than 1. As such, our model labeled as Model 1,2, ..., c will
look like

Yi2,.c=X12. B+ €12, ¢ (12)
Where

Yig.o=( V2 ¥z o ¥

Xppo= (2 2 2 L)

£=(%)

€12,..c= (& & & &)’

inwhich Yy, .and €75 . are ¢ X 1 matrices and X;, . 1is a ¢ X 2 matrix. One can arrive at this
model by multiplying both sides of (1) by the following ¢ X ¢ and ¢ X n matrix combination
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1/my 0 0 0 f—m'; M2 me

0 1m 0 0 1 .. 1] 0 .. 0 . 0 .. 0
0 0 1ms . o |.l o . o w 0 .. 0
0 0 0 . 1/me 0 .. 00 .. 0 .-

Again, it can be simply shown that (2) and (4) hold. Also, we employ that weighted least squares to
resolve the lack of homogeneity of the variances of the error terms. The following shows that the
fitted model is the same as the original fitted model.

SSE1p,.c = SSEy — 25:1 Sy]-

SSTy,,.c = SSTo — $4 Sy,

SSRI,Z,...,C = SSRO
The relations that immediately follow, intend to establish this fine point that SSE in
Model 1,2, ..., c is the lowest value among all possible models’ SSE’s and is equal to the lack of fit

sum of squares (SSLF) in the Original Model. In other words, while SSE in the Original Model
assumes its largest value, it assumes its smallest value in Model 1,2, ..., c. We know that

SSE, = the pure error sum of squares(SSPE) + SSLF,

or
m; _\2 _ ~A\2
SSEq = X513 L (i = 75)" + Z§=amy. (75— 95) (13)

then
SSE1, .= SSLF.

Therefore, we can write
SSEp12,..c < Sumof Squared Error < SSE,

S§8Twy1,..c < Total Sum of Squares < SST,

All this means that R? assumes its largest value in Model 1,2, ...,c¢ and its smallest value in the

. . : SSR
Original Model. This assertion follows from the fact that RZ = 5550 R2, = >2M2wc 4nq (13)
SSTO rE SSTl,Z ''''' c

is true.
4, IDENTIFYING THE MODEL WITH THE SMALLEST MSE

In this section we explain how one can easily identify the model with smallest MSE from among
the existing models. Assuming m; = 2 at p levels p < c, then there are as many as 2P models
including the Original Model. The following algorithm is proposed to find the model with

smallest MSE.
Algorithm 1

Step 1: Set MSE,,,, = MSE, .
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Step 2: Compute sz and check the condition MSE,,,,, < S]-2 ,Vj.
If this inequality is not true for any, or if there is no remaining j to be considered, stop and treat

MSE, .., as the smallest MSE and the corresponding model is the model with smallest MSE.
Otherwise go to Step 3.

Step 3: Consider the level(s) at which the inequality in Step 2 is satisfied; employ the mean of
observations instead of the observations at each level and set MSE,,,,, equal to the MSE obtained
from this model; return to Step 2 for examining the remaining levels.

The discussion presented in section 3.1 provides the motivation for explaining why this algorithm is
expected to identify the model with smallest MSE.

It is obvious that MSE by itself is not a suitable criterion in comparing the existing models because
the model which lowers the MSE faces a decrease in the degrees of freedom as well. In fact, one
should judge based on relation (8) in the sense that the model with smallest value of (8) will be the
best linear fit on the basis of the power of the tests as well as the accuracy of the prediction and
confidence intervals.

5. IDENTIFYING THE MODEL WITH THE LARGEST ACCURACY

Assuming that at p out of ¢ levels of the independent variable, m; = 2 holds, we intend to identify
the best model on the basis of power of the tests.

We try to minimize

t MSE

a .
1—5; df
Based on a table of t-distribution, one can prepare a table for tabulating different values of

t! =1 ¢
1—%; af. Jdf.’

a
1-2;d.f.

for various values of @ and degrees of freedom. Thus this problem assumes the following form

, ’ p
Min tl_%; af." \/SSEO — X219 Sy;

where a;’s are p decision variables assuming value 0 or 1.

df.=n— Z?zlmjaj + Z?zla]- —-2.
One way to identify the most powerful and the most accurate model would be comparing the
objective function for all possible cases and determining the smallest value of (8) for the existing

models.

5.1. The Case of Identical Number of Multiple Observations at Selected Levels of the
Independent Variable

Suppose we are dealing with a problem in which there are an identical number of multiple
observations, m = 2, at each of p,1 < p < c levels of the regressor variable. This obviously is a
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special case of the problem as presented in section 3.1. The difference lies in the fact that for this
problem one can come up with a simple algorithm to identify the optimal model based on the power
of the tests and the accuracy of the confidence intervals.

The interesting point is that based on the nature of the reduction in the degrees of freedom one can
easily identify the optimal model. The reduction of degrees of freedom in Modelj, j =
1,2,...,p amounts to m — 1. There are as many as (11’) = p of such models. This number for

Model j,,j, stands at (g) = %p(p + 1) and the reduction in the degrees of freedom is as much as
2(m — 1). In general, when there are j levels of the independent variable, the reduction of the
degrees of freedom amounts to j(im — 1) and there will be (’J’) of such cases. In models with

identical degrees of freedom, the term ti—ﬁ- af in ti—ﬁ- af. VSSE remains the same and it
2 2’
suffices to concentrate on SSE which consists of two parts: SSE, and a quantity which must be

subtracted from SSE.

Since SSE| is the same for all models, then among the models with the same degrees of freedom the
model in which the largest quantity is subtracted from SSE, corresponds to the objective function
with the smallest value. Thus we propose the following algorithm to identify the optimal model.

Algorithm 2

Step 1: compute Sy at each level and sort them in descending order as

Sty Z ¥y 2 7 2 Svgy Z Sy
Step 2: compare the objective function for the following p + 1 models and deliver the optimal
model.

Original Model
Model (p)
Model (p),(p — 1)
Model (p),(p — 1, (p — 2)

Model (p),(p — 1), ...,(2)
Model (p): (p - 1)! ey (2)1 (1)

where, for example, Model (p), (p — 1) represents the model at levels (p) and (p — 1) such that
(p) = the level with the largest value of Sy and (p — 1) = the level with the second largest value of

Sy.

It must be noted that this algorithm needs just p + 1 and not 2P comparisons to deliver the optimal
model.

6. NUMERICAL EVALUATIONS

In this section we provide a detailed example to shed light on the merits of our approach. To this
end we borrow the following example from Neter et al. (1996).
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Example (Problem 20, page 38): Calculator maintenance. The Tri-City Office Equipment
Corporation sells an imported desk calculator on a franchise basis and performs preventive
maintenance and repair service on this calculator. The data below have been collected from 18
recent calls on users to perform routine preventive maintenance service; for each call, x is the
number of machines serviced and y is the total number of minutes spent by the service person.

Assume that first-order regression model (y; = Sy + B1x; + &;) is appropriate.

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xir 7 6 5 1 5 4 7 3 4 2 8 5 2 5 7 1 4 5
yi: 98 86 78 10 75 62 101 39 53 33 118 65 25 71 105 17 49 68

As Table 1 shows, there are 18 pairs of observations in this problem gathered at 8 levels of the
regressor variable. At 5 levels of X we have more than one observation on the dependent variable.

Table 1 values of sz forj=1,..,8

X Yij Yj Sy; 51'2
1 10, 17 13.500 24.500 24.500
2 33,25 29.000 32.000 32.000
3 39 — — —
4 62,53,49 54.667 88.667 44333
5 78,75,65,71,68 71.400 109.200 27.300
6 86 — - —
7 101,98, 105 101.333 24.667 12.333
8 118 - — -

By feeding these data to SAS (Statistical Analysis System) we arrive at the following model

§; = —2.322 + 14.738x;

Table 2 displays the outcome of all calculations for all possible cases. Figures 4 and 5 display the
same results graphically.

B tagss gy -VMSE

A\

Models
Figure 4 Comparing relation (8) for all 32 possible cases for a = 0.01
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The most common values of 1% and 5% for a are used in Table 2, Figure 4, and Figure 5.

Table 2 Summary of calculations for 32 models

Model SST SSR SSE MSE t0.975; df. - VMSE t0.995; df. - VMSE RZ
1,2,4,5,7 16224.966 16182.604 42.362 7.060 6.502 9.850 0.997
1,2,4,5 16249.633 16182.604 67.029 8.379 6.675 9.711 0.996
2,4,5,7 16249.466 16182.604 91.529 10.170 7.214 10.364 0.994
2,4.5 16274.133 16182.604 66.862 9.552 7.309 10.814 0.996
1,4,5 16281.633 16182.604 99.029 11.003 7.503 10.781 0.994
1,4,5,7 16256.966 16182.604 74.362 10.623 7.708 11.404 0.995
4,5 16306.133 16182.604 123.529 12.353 7.831 11.138 0.992
4,57 16281.466 16182.604 98.862 12.358 8.106 11.794 0.994
1,2,4 16358.833 16182.604 176.229 14.686 8.350 11.707 0.989
2,4 16383.333 16182.604 200.729 15.441 8.488 11.836 0.988
1,2,4,7 16334.166 16182.604 208.229 16.018 8.645 12.055 0.987
1,4 16390.833 16182.604 151.562 15.156 8.674 12.337 0.991
1,2,5 16338.300 16182.604 232.729 16.623 8.746 12.138 0.986
2,47 16358.666 16182.604 155.696 15.570 8.791 12.504 0.990
4 16415.333 16182.604 176.062 16.006 8.806 12.426 0.989
2,5 16362.800 16182.604 180.196 16.381 8.908 12.571 0.989
1,4,7 16366.166 16182.604 183.562 16.687 8.991 12.688 0.989
1,5 16370.300 16182.604 208.062 17.338 9.073 12.721 0.987
1,2,5,7 16313.633 16182.604 187.696 17.063 9.092 12.830 0.989
4,7 16390.666 16182.604 212.196 17.683 9.163 12.847 0.987
5 16394.800 16182.604 264.896 18.921 9.330 12.949 0.984
2,5,7 16338.133 16182.604 131.029 16.379 9.332 13.578 0.992
1,2 16447.500 16182.604 289.396 19.293 9.360 12.944 0.982
1,5,7 16345.633 16182.604 155.529 17.281 9.403 13.510 0.990
2 16472.000 16182.604 296.896 19.793 9.481 13.111 0.982
5,7 16370.133 16182.604 321.396 20.087 9.502 13.092 0.981

1 16479.500 16182.604 163.029 18.114 9.627 13.832 0.990
0* 16504.000 16182.604 187.529 18.753 9.648 13.723 0.989
1,2,7 16422.833 16182.604 264.729 20.364 9.747 13.592 0.984
2,7 16447.333 16182.604 240.229 20.019 9.749 13.669 0.985
1,7 16454.833 16182.604 296.729 21.195 9.875 13.705 0.982
7 16479.333 16182.604 272.229 20.941 9.884 13.783 0.983

* 0 represents the Original Model

togrs.df VMSE

Models
Figure 5 Comparing the relation (8) for all 32 possible cases for @ = 0.05



A New Approach in Fitting Linear Regression Models ... 113

As can be seen, for « = 0.01 and a = 0.05 Model 1,2,4,5 and Model 1,2,4,5,7 are the best
models respectively. Also, the ratio of the lengths confidence and prediction intervals of the
proposed best models to those of the Original Model which is commonly used in practice are

— 6.502 ; Model1,2,4,5,7 6.502 _
=005 : tog7s; af. - VMSE = {9.648 ;  Original Model Y 0.673

— 9.711 ; Model 1,2/4,5 9711 _
@=001:  togos;af-VMSE = {13.723 ;  Original Model = 5723 = 0708

All this means that Model 1,2,4,5 and Model 1,2,4,5,7 are capable of reducing the lengths of the
confidence and prediction intervals by %29.2 and %32.7 for ¢ = 0.01 and a = 0.05 respectively
when compared to the Original Model without any cost.

7. CONCLUSIONS

In this work we showed how one can improve the accuracy of the confidence and prediction
intervals in simple linear regression at no cost.

Our treatment has been confined to the problems with multiple observations on the dependent

variable at some levels of the regressor variable. In fact, by presenting an algorithm we showed that
it suffices to identify the model with smallest value of ¢, _a , I VMSE at a given level of «a, to

S df.
arrive at more accurate confidence and prediction intervals.

Extensions to this work consist of designing a more sophisticated algorithm to identify the model
with the smallest ¢, _a , £ VMSE ; designing statistical tests and test statistics for comparing
S af.

different models; and investigating the multiple regression models. Developing a computer code in
R system to implement this approach is another avenue for future research.
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