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ABSTRACT 
 

The main contribution of this work lies in challenging the common practice of inferential 
statistics in the realm of simple linear regression for attaining a higher degree of accuracy when 
multiple observations are available, at least, at one level of the regressor variable. We derive 
sufficient conditions under which one can improve the accuracy of the interval estimations at 
quite affordable extra computational cost. Two algorithms and a numerical example will be 
presented to fully explain how our approach works and to compare the results of our approach 
versus the results obtained from three of the well known statistical software systems. 

 

Keywords: Simple linear regression, Multiple observations, Weighted least squares, Accuracy, 
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1. INTRODUCTION 
 
Linear regression models are among the most popular statistical tools which have been successfully 
applied to a wide spectrum of problems. To apply regression models, the common practice is to 
collect data and minimize the sum of squared deviations between the observed data and the values 
coming from the underling relation, Montgomery et al. (2001) and Neter et al. (1996). Once the 
regression model is developed, various tests of hypothesis as well as confidence and prediction 
intervals can be presented. 
 
Here, we start with the simple linear regression model shown in (1) which we label as the 

   throughout the article:  
 
    .   (1) 
 
where 
        ⋯           ⋯         …         ⋯     
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  ⋯               ⋯          ⋯           ⋯  
⋯          ⋯         ⋯         ⋯

 

   

       ⋯          ⋯         ⋯         ⋯     

 
In this model there are    ,    1,2,3, … ,   observations from the response variable, , at each of 
the  levels of the regressor variable, , such that there are  pairs of data altogether (see Figure 1). 
For the sake of our discussion it suffices for just one    to be strictly larger than 1. 
 
This means that      ,       ∑  
 

 

Figure 1 The layout of data in the    
 
The commonly adopted assumptions in regression analysis include: 
 
 0                                        ;       1, 2, … ,  (2) 
            ;       1, 2, … ,  (3) 
 , 0                             ;       , 1, 2, … ,              (4) 
 
Assuming that ’s behave as normal random variables, appropriate confidence and prediction 
intervals can be presented. Since it is possible that the unknown variances in (3) not to be fixed for 
all ′s, one can adopt the weighted least squares to treat such a case. 
 
The commonly adopted approach toward statistical inference in the regression problem as outlined 
above, often fails to exploit all the potential that the collected data has to offer in order to arrive at 
the best possible results. In this work we analytically establish the conditions under which such 
potential is practically wasted while by bearing a very affordable cost one could have achieved 
more accurate results. In the quest for identifying the optimal (regression) model, i.e., the model 
that better exploits the potential of the collected data, we present two algorithms and by borrowing a 
typical problem from literature we extensively demonstrate how our proposed approach works and 
what it can achieve when compared with the approach which is commonly practiced. 
 
This paper is organized in the following manner: section 2 investigates a model in which the mean 
of observations at just one level of the independent variable takes the place of the observations 
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themselves. We examine to see if relations (2), (3), and (4) are still true for such a case and then 
arrive at the regression model. Section 3 presents a similar discussion when the means of 
observations at more than one level of the independent variable are considered. Section 4 presents 
an algorithm for finding a model with the smallest mean squared error ( ). Section 5 is devoted 
to generating a model with the largest accuracy. Section 6 includes a numerical example. Section 7 
concludes the discussion and presents some ideas for further investigation. 
 
2. REGRESSION ON THE MEAN OF OBSERVATIONS AT A SINGLE LEVEL 
 
In this section we assume that at a single level of the regressor variable  we have available 

1 , 1,2, … ,  observations on . Since it is irrelevant at which level of  these multiple 
observations are collected, here we assume that the  observations correspond to the level 
 where   1 and we intend to employ the mean of these observations in fitting the regression 

model. As such, we are dealing with the following model which we label as    where 1 
(unless specified otherwise). 
 
 .  (5) 
 
in which 

    ∑           ⋯         ⋯         ⋯     

 
is an  1 1 matrix, 

               ⋯           ⋯           ⋯  
         ⋯         ⋯         ⋯

 

 
is an  1 2  matrix, 

 , 

 
and finally, 

    ∑           ⋯         ⋯         ⋯     

 
is an 1 1  matrix. 
 
To arrive at the regression model in (5) we first present the following definitions: 
 
: represents an  1    matrix of the form 

 

1 … 1 0 0 … 0

0 … 0
0 … 0
⋮ ⋱ ⋮
0 … 0

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1
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where in the first row the first    entries are 1 and the remaining entries are 0. In the lower right 
side of  there is an  unit sub-matrix and all other entries of  are 0.  

: stands for an  1 1    matrix of the form 

 

0 … 0

0 
⋮
0

1
⋮
0

…
⋱
…

0
⋮
1

 

 
where each of its off diagonal entries is zero, and all diagonal entries are    except for the entry at 
northwest corner which is 1/m1.  
 
We have defined  and  in a way such that by multiplying both sides of (1) by .  one can 
arrive at  1. 
 
2.1. Parameter Estimation 
 
We first examine to see if (2), (3), and (4) hold in  1. As can be seen below, (2) and (4) hold 
true while this is not the case for (3). To get around this problem we resort to weighted least squares 
to fit our model. 
 

   ∑ 0                ∑  

 0        ;        2, … ,   1 

     ∑  

        ;        2, … ,   1 

   , ∑ , 0        ;        2, … ,   1 

 , 0       ;        , 2, … ,   1         
 
Therefore 

  0       0         ⋯         0        and   

0 … 0

0
⋮
0

1
⋮
0

…
⋱
…

0
⋮
1

 

 
It is clear that the weighted least squares (WLS) estimators of the parameters in  1 can be 
written as Neter et al. (1996). 
 

 . .   . . .  (6) 
 
Now, we establish the fact that  is exactly the same as     . . .  which represents 
the least squares (LS) estimators of the   . To show this we substitute  and  in 
(6) by . .  and . .  respectively to obtain 
 

   . . . . . .   . . . . . . .  

         . . . .   .   . . . . . .   .   .  
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noting that  and .   , we will have . . .   .   .   .    

   

1
⋮
1

0 … 0
⋮ ⋱ ⋮
0 … 0

0
⋮
0

1 … 0
⋮ ⋱ ⋮
0 … 1

.

0 … 0

0
⋮
0

1
⋮
0

…
⋱
…

0
⋮
1

.

1 … 1 0 0 … 0
0 … 0
0 … 0
⋮ ⋱ ⋮
0 … 0

1 0 … 0
0 1 … 0
⋮  ⋮  ⋱ ⋮
0 0 … 1

 

 

 

1
⋮
1

0 … 0
⋮ ⋱ ⋮
0 … 0

0
⋮
0

1 … 0
⋮ ⋱ ⋮
0 … 1

.

⋯ 0 0 … 0
0 … 0
0 … 0
⋮ ⋱ ⋮
0 … 0

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

 

 

 

1⁄ … 1⁄

⋮    ⋱     ⋮
1⁄ … 1⁄

0 … 0
⋮ ⋱ ⋮
0 … 0

0     …     0
⋮     ⋱      ⋮
0     …     0

1 … 0
⋮ ⋱ ⋮
0 … 1

 

 
Designating this matrix by , we have 
 

 .     ⋯               ⋯          ⋯           ⋯  
⋯          ⋯         ⋯         ⋯

.

1⁄ … 1⁄

⋮     ⋱      ⋮
1⁄ … 1⁄

0 … 0
⋮ ⋱ ⋮
0 … 0

0     …     0
⋮     ⋱      ⋮
0     …     0

1 … 0
⋮ ⋱ ⋮
0 … 1

 

 

 
therefore, having in mind that .   .    and . , one can write 

   . .   .   . . . .   .   .   . . . . .

              . . .  
 
As can be seen, the LS estimators for  5 are exactly the same as those obtained for the 

  . The variance of the coefficients in the    is 
 

 .  
 
and since   in  1 is the same as  (in the   ), then obviously 

. 
 
2.2. The Sum of Squares 
 
2.2.1. The Sum of Squared Error ( ) 
 
So far we have shown that the estimated regression line in  1 coincides with the one in the 

  . By examining Figure 2 
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Figure 2 Data layout for the    and  1 around the line of regression 
 
It is evident that the sum of squared errors ( ) differ for the two models only at level . In fact, 

’s for the two models have identical terms at all the other levels of the regressor variable. Let 
 and  designate the sum of squared errors in the O    and the proposed model 

(  1) respectively. Thus we can write 
 

 ∑ ∑
 

∑ ∑ ∑  

 . ∑ ∑  
 
Where  stands for the expected value of the dependent variable at level  of the regressor variable. 
To set up a relation between  and , we can write 
 
 ∑  

 ∑ 2 2  

 ∑ ∑  

 
this means that  , where ∑ . 
 
In other words, when the mean of    observations is used instead of the  observations 
themselves,  will be reduced by as much as ∑ . 
 
2.2.2. The Total Sum of Squares ( ) 
 
To compare  for the    and  5 we first calculate the mean of the observed 
values of the response variable for  5 as 
 

 ∑ ∑ ∑ ∑    

 ∑ ∑     
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Figure 3 Layout of data around  for the    and  1 
 
As expected, the mean of the observed values of  in both models are identical. Now, according to the 
situations displayed in Figure 3,  for the   ,  , and the proposed model,  , can 
be written as 
 

 ∑ ∑  
 

∑   ∑ ∑    

 . ∑ ∑ . 
 
These  differ by as much as 
 
 ∑  

 ∑ 2 2  

 ∑ ∑  

 
which means that 
 
 , 
 
where ∑ , as before. 
 
The last equation above reveals that by regressing on the mean of the observed values of   at level ,  
tends to decrease as much as . 
 
2.2.3. The Sum of Squares due to Regression ( ) 
 
Since  holds so does the relation , which means that  is the 
same for both models. 
 
2.3. The Mean Squared Error ( ) 
 
To compare the ’s of the    and   1, i.e.,  and  , we can write 
 
  
or  
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 2 1  
 
or finally 

 2  

 
This means that for the proposed model to reduce the , it is sufficient to have 
 

 2  

 
or  

 
 
. . 

 
Or, finally, we have 
 
  (7) 
 
where 

 
 
∑ . 

 
It is interesting to note that both   and  are unbiased estimators of   and in case the 
relation (7) holds, the  in the proposed model will be smaller than that in the   . 
Besides, as shown earlier, the variances of the coefficients in both models are identical and equal to  
 

 .  
 
Employing the unbiased estimators of  here, leads to the following point estimators for variances 
of the coefficients: 
 

 . :        .  

  1:                       .  
 
It is clear that forcing    ensures us that the estimators of variance of the coefficients in 
the proposed model tend to decrease in comparison to the corresponding estimates from the 

  . 
 
2.4. Coefficient of Determination  
 
As far as the coefficient of determination is concerned, one can write 
 

       and         

 
for the original and the proposed models. Now, the following relation shows that employing the 
proposed model always tends to increase . 
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2.5. Power of the Tests and the Length of the Intervals 
 
To judge the power of the tests as well as the length of the confidence and prediction intervals, in 
this section we assume that the error terms behave as normal random variables. 
 
2.5.1. Judging the Parameter Estimators  
 
The two-sided 100 1 % confidence interval for parameter   , 1,2  for the proposed 
model can be written as 
 
     ;   .   , 0,1 

 
where  is the square root of the estimated variance of the point estimator of . 
 
The length of this interval reflects upon the interval’s accuracy and the power of the corresponding 
test in the sense that the shorter this interval, the higher the accuracy as well as the power would be. 
Employing the proposed model will decrease the degrees of freedom and in spite of the fact that  

 , the value of  and consequently the values of  tend to decrease. As such, for 
comparing the accuracy and the power in employing the two models it would be sufficient to 
compare the term 
 
 ;  . . .  √  (8) 

 
in the two models. Whenever this term for one of the models is smaller, that model provides a 
higher degree of accuracy and more power. 
 
2.5.2. Inferring on the Mean of the Response Variable at a Fixed Level of the Independent 
Variable 
 
A two-sided 100 1 % confidence interval for the expected value of the response variable at 
the level  assumes the following form 
 
     ;   .    (9) 

 
where  represents the value that the estimated line assumes when  and  is defined 
as 
 

 . . . .  
 

in which   . 

 
A comparison of confidence intervals presented in (9) for the two regression models leads again to 
the comparison of (8) for these models. 
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2.5.3. Inferring on a New Observation of the Response Variable at a Specified Level of   
 
The prediction interval for a new observation of the response variable when  is considered at level 

 can be written as 
 
     ;   .    

 
where 

 . 1 . . .  

 
Once again, comparing this interval for the two models leads to a comparison of (8) for them. 
 
Our findings so far indicate that decreasing  by itself is not a sufficient yardstick for attaining 
more accuracy and power and we showed instead that we should see to it that the following holds 
true: 
 
 ;   .   ;   .    

 
or 

 
; 

; 

2      

 
or 

 
; 

; 

2    1 

 
or 

 2  
;   

; 

 

 
or 

 2   1
;   

; 

 

 
or 

 2 1
;   

; 

  , 

 
and, finally, we have 
 

 1
;   

; 

    .  (10) 
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This means that once (10) holds, the proposed approach generates more powerful tests and more 
accurate confidence and prediction intervals. 
 
3. EMPLOYING OBSERVATIONS’ MEANS AT MORE THAN ONE LEVEL 
 
3.1. Means at Two Levels 
 
Let  and  represent the levels at which multiple measurements from the response variable are 
available. We intend to employ means of such observations in fitting the regression model. To 
achieve this purpose one can develop the intended model based on either the    or 

 5. In fact, the model will look like the following which we label as   ,    ,    
1,    2  meaning the model in which means are employed at levels  and  of the regressor 

variable.  
 
 , , . ,  (11) 
 
in which ,  and ,  represent  2 1    matrices, i.e., 

 ,                      ⋯         ⋯         ⋯    

 

and 
 ,   ̅           ̅           ⋯         ⋯         ⋯     

  

 
and ,  represents the following  2 2  matrix 

 ,
                        ⋯          ⋯           ⋯  
                ⋯         ⋯         ⋯

 

 
Here, , , ̅ , and ̅  represent the means of the observed data as well as the means of error terms 
at levels  and  respectively. 
 
To arrive at the model in (11), it suffices to multiply both sides of (5) by the matrix combination 
 

 

1   0    
0 ⁄

0 … 0
0 … 0

0   0    
⋮   ⋮   
0   0   

1 … 0
⋮ ⋱ ⋮
0 … 1

.

1 0 … 0
 0 1 … 1

0 … 0
0 … 0

0 0 … 0
⋮  ⋮   ⋱ ⋮
0 0 … 0

1 … 0
⋮ ⋱ ⋮
0 … 1

 

 
where  and  are 2 2  and 2

1  matrices. It is quite straightforward to show that relations (2) and (4) hold for the 
model in (11). One can resort to the weighted least squares to get around the nonhomogeneity of 
variances of the errors. 
 
By defining the 2 2  matrix ,  as 
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 ,

⁄ 0      
0    ⁄

0 … 0
0 … 0

0      0    
⋮       ⋮    
0      0    

1 … 0
⋮ ⋱ ⋮
0 … 1  

 

 
the weighted least squares point estimators of the coefficients can be obtained. Specifically, in 
suffices for ,  to take the place of  in (6) and  and  be substituted by ,  and ,  
respectively. Here, again it will be a simple matter to show that the point estimators are exactly the 
same as the estimators in   1 and hence, in the   . 
 
Similar to what was shown, again it can be shown that 
 ,  
 
and 
 ,   ,  
 
and 
 , . 
 

As before, when  ∑   holds, employing the model in (11) tends 

to decrease the  when compared to  1. Now we derive the conditions under which the 
model in (11) provides a smaller  compared to the   .  
In order for the inequality ,  to be true, we should have 
 

     

 
or 

  ,  

 

where  ∑ , 1,2. 

 
This point must be stressed that if  1  1  achieves a lower  than the 

  , and hence if  2  2  achieves an  smaller than that of the 
  , it would be reasonable to conclude that  1,2  1, 2  will follow 

suit. The opposite of this argument is not necessarily true. In fact, it is possible for either of 
 1 or  2 to have an  higher than that of the    while  1,2 

achieves a lower  than the   . Under these circumstances, it can be asserted that 
either of  1 or  2 will certainly lower the  as that achieved by the 

  . This point can be explained in mathematical terms as follows. 
 
 If  ⇒ 1 , and  
   ⇒ 1 , then  

 . 
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The next important point is that if both  1 and 2 achieve lower  than the  provided 
by the   , it can be concluded that  1,2 achieves an  lower than what 
provided by both   1 and  2. This is because: if  ⇒    and 
since , then   . Therefore we obtain  
 
 , . 
 
In like manner, if  ⇒   , and since  then 
  . Therefore we obtain 
 
 , . 
 
We conclude this section by pointing to the fact that   1,2 can be directly obtained from the 

  . To show this fact, one can simply multiply both sides of (1) by the following 
2 2  and 2  matrix combination 

 

 

⁄ 0      
0    ⁄

0 … 0
0 … 0

0      0    
⋮       ⋮    
0      0    

1 … 0
⋮ ⋱ ⋮
0 … 1

.

1 … 1 0 … 0

  0 … 0 1 … 1

0 … 0
0 … 0

0 … 0 0 … 0
⋮ ⋱ ⋮   ⋮  ⋱ ⋮
0 … 0 0 … 0

1 … 0
⋮ ⋱ ⋮
0 … 1

 

 
3.2. Employing the Mean Observation Values at All Levels of the Independent Variable 
 
Here we assume that the number of observations of the response variable at each level of the 
independent variable is strictly larger than 1. As such, our model labeled as  1,2, … ,  will 
look like 
 
 , ,…, , ,…, . , ,…,  (12) 
 
Where 
 
 , ,…,                             ⋯           

 , ,…,
                               ⋯          
                          ⋯        

   

  

 , ,…,   ̅           ̅         ̅         ⋯         ̅     
 
in which , ,…,  and , ,…,  are 1 matrices and , ,…,  is a 2 matrix. One can arrive at this 
model by multiplying both sides of (1) by the following  and  matrix combination 
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⁄     0     
0      ⁄

  
0       …       0
 0       …       0

0        0    
    ⋮         ⋮        
    0        0       

⁄     …       0
    ⋮         ⋱        ⋮  
      0       …      ⁄

.

1 … 1 0 … 0

  0 … 0 1 … 1

… 0 … 0
… 0 … 0

⋮  ⋱ ⋮   ⋮  ⋱  ⋮
0 … 0 0 … 0

⋱  ⋮ ⋱ ⋮
… 1 … 1

 

 
Again, it can be simply shown that (2) and (4) hold. Also, we employ that weighted least squares to 
resolve the lack of homogeneity of the variances of the error terms. The following shows that the 
fitted model is the same as the original fitted model. 
 
 , ,…, ∑  

 , ,…, ∑  

 , ,…,  
 
The relations that immediately follow, intend to establish this fine point that  in 

 1,2, … ,  is the lowest value among all possible models’ ’s and is equal to the lack of fit 
sum of squares ( ) in the   . In other words, while  in the    
assumes its largest value, it assumes its smallest value in  1,2, … , . We know that 
 
           ,  
 
or 

 ∑ ∑    ∑ .  (13) 
 
then 
 , ,…, . 
 
Therefore, we can write 
 , ,…,        

 , ,…,        
 
All this means that      assumes its largest value in  1,2, … ,   and its smallest value in the 

  . This assertion follows from the fact that  ,  , ,…,
, ,…,

, ,…,
 and (13) 

is true. 
 
4. IDENTIFYING THE MODEL WITH THE SMALLEST  
 
In this section we explain how one can easily identify the model with smallest  from among 
the existing models. Assuming  2 at  levels , then there are as many as 2   models 
including the   . The following algorithm is proposed to find the model with 
smallest . 
 
Algorithm 1 
 
Step 1: Set   . 
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Step 2: Compute   and check the condition     , ∀  . 
If this inequality is not true for any, or if there is no remaining  to be considered, stop and treat 

 as the smallest  and the corresponding model is the model with smallest . 
Otherwise go to Step 3. 

Step 3: Consider the level(s) at which the inequality in Step 2 is satisfied; employ the mean of 
observations instead of the observations at each level and set  equal to the  obtained  
from this model; return to Step 2 for examining the remaining levels. 
 
The discussion presented in section 3.1 provides the motivation for explaining why this algorithm is 
expected to identify the model with smallest . 
 
It is obvious that  by itself is not a suitable criterion in comparing the existing models because 
the model which lowers the  faces a decrease in the degrees of freedom as well. In fact, one 
should judge based on relation (8) in the sense that the model with smallest value of (8) will be the 
best linear fit on the basis of the power of the tests as well as the accuracy of the prediction and 
confidence intervals. 
 
5. IDENTIFYING THE MODEL WITH THE LARGEST ACCURACY 
 
Assuming that at  out of  levels of the independent variable, 2 holds, we intend to identify 
the best model on the basis of power of the tests. 
 
We try to minimize 
 
 ;  . . .  √    

 
Based on a table of t-distribution, one can prepare a table for tabulating different values of  

 
;  . . . .

  . ;  . . 

 
for various values of  and degrees of freedom. Thus this problem assumes the following form 
 

        
;  . .

 .   ∑ .  

 
where  ′   are  decision variables assuming value 0 or 1. 
 
 . . ∑ ∑ 2 . 

 
One way to identify the most powerful and the most accurate model would be comparing the 
objective function for all possible cases and determining the smallest value of (8) for the existing 
models. 
 
5.1. The Case of Identical Number of Multiple Observations at Selected Levels of the 
Independent Variable 
 
Suppose we are dealing with a problem in which there are an identical number of multiple 
observations, 2, at each of  ,1  levels of the regressor variable. This obviously is a 
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special case of the problem as presented in section 3.1. The difference lies in the fact that for this 
problem one can come up with a simple algorithm to identify the optimal model based on the power 
of the tests and the accuracy of the confidence intervals. 
 
The interesting point is that based on the nature of the reduction in the degrees of freedom one can 
easily identify the optimal model. The reduction of degrees of freedom in    ,   

1,2, … ,  amounts to 1. There are as many as  of such models. This number for 

  ,  stands at  1  and the reduction in the degrees of freedom is as much as  

2 1 . In general, when there are  levels of the independent variable, the reduction of the 

degrees of freedom amounts to 1  and there will be   of such cases. In models with 

identical degrees of freedom, the term  
;  . .

 in  
;  . .

 .  √   remains the same and it 

suffices to concentrate on   which consists of two parts:  and a quantity which must be 
subtracted from .  
 
Since  is the same for all models, then among the models with the same degrees of freedom the 
model in which the largest quantity is subtracted from   corresponds to the objective function 
with the smallest value. Thus we propose the following algorithm to identify the optimal model.  
 
Algorithm 2 
 
Step 1: compute 

 
 at each level and sort them in descending order as 

  ⋯ . 

Step 2: compare the objective function for the following 1 models and deliver the optimal 
model. 
 

 

 

 

  , 1

  , 1 , 2
  
⋮
 

  , 1 , … , 2

  , 1 , … , 2 , 1

 

 
where, for example,   , 1  represents the model at levels  and 1  such that 

 the level with the largest value of 
 
 and 1  the level with the second largest value of 

 
. 

 
It must be noted that this algorithm needs just 1 and not 2  comparisons to deliver the optimal 
model. 
 
6. NUMERICAL EVALUATIONS 
 
In this section we provide a detailed example to shed light on the merits of our approach. To this 
end we borrow the following example from Neter et al. (1996). 
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Example (Problem 20, page 38): Calculator maintenance. The Tri-City Office Equipment 
Corporation sells an imported desk calculator on a franchise basis and performs preventive 
maintenance and repair service on this calculator. The data below have been collected from 18 
recent calls on users to perform routine preventive maintenance service; for each call, x is the 
number of machines serviced and y is the total number of minutes spent by the service person.  
 
Assume that first-order regression model ( ) is appropriate. 
 

:  1  2  3  4  5  6  7 8 9 10 11 12 13 14 15  16  17  18

:  7  6  5  1  5  4  7 3 4 2 8 5 2 5 7  1  4  5
:  98  86  78  10  75  62  101 39 53 33 118 65 25 71 105  17  49  68

 
As Table 1 shows, there are 18 pairs of observations in this problem gathered at 8 levels of the 
regressor variable. At 5 levels of  we have more than one observation on the dependent variable. 
 

Table 1 values of   for 1,… ,8 
   

1 10 , 17 13.500 24.500 24.500 
2 33 , 25 29.000 32.000 32.000 
3 39  
4 62 , 53 , 49 54.667 88.667 44.333 
5 78 , 75 , 65 , 71 , 68 71.400 109.200 27.300 
6 86  
7 101 , 98 , 105 101.333 24.667 12.333 
8 118  

 
By feeding these data to SAS (Statistical Analysis System) we arrive at the following model 
 
   2.322 14.738  
 
Table 2 displays the outcome of all calculations for all possible cases. Figures 4 and 5 display the 
same results graphically. 
 

Figure 4 Comparing relation (8) for all 32 possible cases for 0.01 
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The most common values of 1% and 5% for    are used in Table 2, Figure 4, and Figure 5. 
 

Table 2 Summary of calculations for 32 models 

Model     . ; . . . √  . ;  . . . √   
1,2,4,5,7 16224.966 16182.604 42.362 7.060 6.502 9.850 0.997 
1,2,4,5 16249.633 16182.604 67.029 8.379 6.675 9.711 0.996 
2,4,5,7 16249.466 16182.604 91.529 10.170 7.214 10.364 0.994 
2,4,5 16274.133 16182.604 66.862 9.552 7.309 10.814 0.996 
1,4,5 16281.633 16182.604 99.029 11.003 7.503 10.781 0.994 

1,4,5,7 16256.966 16182.604 74.362 10.623 7.708 11.404 0.995 
4,5 16306.133 16182.604 123.529 12.353 7.831 11.138 0.992 

4,5,7 16281.466 16182.604 98.862 12.358 8.106 11.794 0.994 
1,2,4 16358.833 16182.604 176.229 14.686 8.350 11.707 0.989 
2,4 16383.333 16182.604 200.729 15.441 8.488 11.836 0.988 

1,2,4,7 16334.166 16182.604 208.229 16.018 8.645 12.055 0.987 
1,4 16390.833 16182.604 151.562 15.156 8.674 12.337 0.991 

1,2,5 16338.300 16182.604 232.729 16.623 8.746 12.138 0.986 
2,4,7 16358.666 16182.604 155.696 15.570 8.791 12.504 0.990 

4 16415.333 16182.604 176.062 16.006 8.806 12.426 0.989 
2,5 16362.800 16182.604 180.196 16.381 8.908 12.571 0.989 

1,4,7 16366.166 16182.604 183.562 16.687 8.991 12.688 0.989 
1,5 16370.300 16182.604 208.062 17.338 9.073 12.721 0.987 

1,2,5,7 16313.633 16182.604 187.696 17.063 9.092 12.830 0.989 
4,7 16390.666 16182.604 212.196 17.683 9.163 12.847 0.987 
5 16394.800 16182.604 264.896 18.921 9.330 12.949 0.984 

2,5,7 16338.133 16182.604 131.029 16.379 9.332 13.578 0.992 
1,2 16447.500 16182.604 289.396 19.293 9.360 12.944 0.982 

1,5,7 16345.633 16182.604 155.529 17.281 9.403 13.510 0.990 
2 16472.000 16182.604 296.896 19.793 9.481 13.111 0.982 

5,7 16370.133 16182.604 321.396 20.087 9.502 13.092 0.981 
1 16479.500 16182.604 163.029 18.114 9.627 13.832 0.990 
0* 16504.000 16182.604 187.529 18.753 9.648 13.723 0.989 

1,2,7 16422.833 16182.604 264.729 20.364 9.747 13.592 0.984 
2,7 16447.333 16182.604 240.229 20.019 9.749 13.669 0.985 
1,7 16454.833 16182.604 296.729 21.195 9.875 13.705 0.982 
7 16479.333 16182.604 272.229 20.941 9.884 13.783 0.983 

*   0 represents the    

Figure 5 Comparing the relation (8) for all 32 possible cases for 0.05 
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As can be seen, for 0.01 and 0.05   1,2,4,5 and  1,2,4,5,7 are the best 
models respectively. Also, the ratio of the lengths confidence and prediction intervals of the 
proposed best models to those of the    which is commonly used in practice are 
 

 α 0.05  ∶         t . ;  . . . √MSE  
6.502      ;     Model 1,2,4,5,7
9.648      ;    Original Model

     →     
.

.
0.673 

 α 0.01  ∶         t . ;  . . . √MSE  
9.711      ;        Model 1,2,4,5
13.723      ;      Original Model

 →   
.

.
0.708 

 
All this means that  1,2,4,5 and  1,2,4,5,7 are capable of reducing the lengths of the 
confidence and prediction intervals by %29.2 and %32.7 for 0.01 and 0.05 respectively 
when compared to the    without any cost. 
 
7. CONCLUSIONS 
 
In this work we showed how one can improve the accuracy of the confidence and prediction 
intervals in simple linear regression at no cost. 
 
Our treatment has been confined to the problems with multiple observations on the dependent 
variable at some levels of the regressor variable. In fact, by presenting an algorithm we showed that 
it suffices to identify the model with smallest value of ;  . . .  √   at a given level of , to 

arrive at more accurate confidence and prediction intervals. 
 
Extensions to this work consist of designing a more sophisticated algorithm to identify the model 
with the smallest ;  . . .  √   ; designing statistical tests and test statistics for comparing 

different models; and investigating the multiple regression models. Developing a computer code in 
R system to implement this approach is another avenue for future research. 
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