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Abstract 
CERN controls software is often developed on Java 

foundation. Some systems carry out a combination of 
data, network and processor intensive tasks within strict 
time limits. Hence, there is a demand for high performing, 
quasi real time solutions. Extensive prototyping of the 
new CERN monitoring and alarm software required us to 
address such expectations. The system must handle 
dozens of thousands of data samples every second, along 
its three tiers, applying complex computations 
throughout. To accomplish the goal, a deep understanding 
of multithreading, memory management and interprocess 
communication was required. There are unexpected traps 
hidden behind an excessive use of 64 bit memory or 
severe impact on the processing flow of modern garbage 
collectors. Tuning JVM configuration significantly affects 
the execution of the code. Even more important is the 
amount of threads and the data structures used between 
them. Accurately dividing work into independent tasks 
might boost system performance. Thorough profiling with 
dedicated tools helped understand the bottlenecks and 
choose algorithmically optimal solutions. Different virtual 
machines were tested, in a variety of setups and garbage 
collection options. The overall work provided for 
discovering actual hard limits of the whole setup. We 
present this process of architecting a challenging system 
in view of the characteristics and limitations of the 
contemporary Java runtime environment. 

OVERVIEW 

Diagnostics and Monitoring at CERN 
Device monitoring and alarm management systems 

have long been running separately as part of the CERN 
accelerator controls environment [1]. Both deal with a 
vast quantity of diverse devices scattered around CERN 
installations to acquire, process and redistribute their data. 
What makes a difference is the meaning of data. 
Monitoring system periodically collects the statuses of the 
supervised infrastructure. In principle, data shows no 
irregularities, as the underlying equipment is by and large 
healthy. The alarm system, however, carries the 
information already known to have indicated abnormal 
conditions. They must be swiftly delivered, through the 
Operators, to the experts capable of solving the problem. 
In one case both systems clearly intersect: when the 
monitoring data flags an erroneous situation and must be 
converted into an alarm. 

Prototyping 
Recently it has been decided to prepare and evaluate an 

architecture of the combined solution, a system that 
would coalesce all the types of data, devices and users, 

embracing both worlds. Significant effort has been put to 
model several possible outcomes based on well 
established CERN software packages [2][3]. To constitute 
a solid foundation for such analysis and discover genuine 
physical boundaries we would certainly face, an 
independent prototype was constructed [4]. 

For prototyping it was decided to only cover the most 
critical topics. The outcome was focused and tuned to 
maximal extent to satisfy the hardest requirements. From 
a technical viewpoint such effort helped us to: 
 determine if the requirements can be realistically 

matched with available components, 
 establish hard limits for performance & scalability, 
 find optimal solutions for the most resource-

consuming operations. 
In this paper we discuss selected subjects - design 

choices, issues, best practices - that have become 
important in achieving expected quality. 

ARCHITECTURE 

Problem Description 
CERN monitoring system works in a heterogeneous 

environment. It has to communicate with a variety of 
devices, through a set of different protocols. Many 
devices are regular CERN Linux servers. Majority, 
however, typically front-ends to the physical equipment, 
operate on less standard or legacy architectures, unknown 
to Java products. Devices provide monitoring or alarm 
data in form of metrics, sample values describing their 
state. Metrics are published either periodically 
(monitoring agents) or immediately after an erroneous 
condition is discovered (alarm agents). Devices and the 
network that connects them are not fully reliable. No real-
time infrastructure is used to communicate with them. 
Once delivered to the monitoring server, metrics have to 
be verified, correlated, converted into alarms, etc. Such an 
individual calculation based on metric(s) is defined in a 
rule. Decisions are made which of them and in what form 
should be afterwards delivered to the clients - the GUI 
applications that present the state of the CERN 
infrastructure to the Operators. Information flow must be 
preserved for future inquiries too. 

Requirements 
The system is expected to fulfil a long list of 

requirements, of which a subset relevant to this paper is 
presented. For this paper we focus on the performance, 
scalability and reliability issues. The system must be at 
the time of writing able to: 
 acquire alarm metrics from around 10000 devices, 
 deliver alarms within bounded time frame, 
 acquire 50 metrics/min from 2500 monitoring agents, 
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flow through. The same metric can be obviously used by 
many rules. As rules are laid out at the startup, it is 
always known where every original or artificial metric 
should be passed to. 

Rule engine is a classic example of task, data and 
pipeline decomposition [7]. Each metric is an independent 
immutable piece of data. Rule is a task, which must be 
performed every time a set of arguments, metrics, is 
available. The input metric channel, along with the paths 
they flow between rules, constitutes a data-driven pipeline 
processor, a chain of responsibility. The overall structure 
vows for concurrent architecture. 

There are three tiers of processing in that model. The 
first is an input channel, where immutable metrics are 
prepared and made available. The second tier is made up 
of rule resolvers (identifiers). They place each metric 
among the arguments of every rule they belong to. Once 
the argument list is complete, a self-contained rule job 
representing a single rule calculation is created. The last 
tier is comprised of rule processors, which take such jobs 
and perform associated calculations, likely producing 
artificial metrics (Fig. 1). As metrics and rule jobs are 
immutable and independent, numerous rule identifiers and 
rule processors can act autonomously. It gives the ground 
for parallelism. 

The crucial is however what separates those three tiers. 
Java 6 Queue implementations (FIFO buffers) constitute 
the buffering layer [8]. The first layer holds metrics, the 
second keeps rule jobs, however they are both identically 
set up. Buffering layer implements the asynchronous 
Reader/Writer pattern. What has a decisive impact on the 
performance of the rule engine is the number of buffers, 
their sizes and the strategy for choosing one to read or 
write. Long tests proved the following to perform 
optimally in our setup. The layer is composed of a few 
buffers (2-4), each has a capacity of about half a million 
elements. Writers and readers are at least twice as 
numerous as the buffers. The strategy on reading the data 
is straightforward: pick the buffer holding the least 
elements. For writing, use the smallest buffer at the time 
for a period, e.g. 1000 writings, then repeat choosing. 
Both round-robin or random choosing strategies appeared 
to have fallen short of the selected policy. Its efficiency 
depends on many aspects, some being low level hardware 
properties (e.g., CPU cache hits). 

Having a buffering layer configurable, including 
various R/W policies, is a precious feature. It greatly 
helps to find an optimal setup for a given architecture. 
During the tests it is essential to monitor the contents of 
the buffers and watch against any missed writings. 

Because of the hierarchical composition of rules there 
is a natural tendency to break calculations into periodic 
stages, rounds. It partly roots in the fear that generating 
artificial metrics and passing them further may spark off 
an avalanche of computations. On the contrary, we have 
found no legitimate reason for staging the processing. The 
rule engine is left to run at its natural speed continuously. 
Artificial metrics are not directly handed to the following 
rules, but fed back into the input channel. It gives a 

perfectly consistent view on both processing and data. It 
also results in the highest throughput of all, reaching 
100000 non-trivial calculations a second sustained for 
over a week without a single metric lost. 

It is worth mentioning the thread scheduling discipline 
is typically OS-specific. Therefore a designer must 
guarantee that multicore CPU will be properly utilized for 
a given setup. It might need additional tweaking of the OS 
parameters. 

Garbage Collection 
Once the architecture is optimized at the level of data 

structures, algorithms and task parallelization, tuning the 
garbage collection remains as the pivotal job. 
Understanding how garbage collectors affect an 
application is crucial to laying out realistic boundaries on 
how performing the system can be. 

The combination of extensive computing (non-trivial 
method calls) and frequent memory allocations 
contributes to numerous garbage collections within a time 
frame. Moreover, in such case garbage collectors require 
to operate on those heap structures (e.g. old generation) 
that inflict stop-the-world pauses - all the application 
threads get inhibited for a considerable period [9]. Unlike 
the Java Real Time System, none of four main garbage 
collectors available in Standard Edition guarantees non-
interruptible work for the underlying application. They 
however differ in the lifecycle of such interruptions and 
the use of threads to perform on. 

Although our system in general exhibits only soft real 
time requirements, in order to achieve massive continuous 
processing of metrics it is essential to impose almost hard 
real time requirements on the JVM. Testing various 
configurations of GC options for heightened number of 
calculations, we experienced a common pattern - failing 
scenario. Once the GC starts pausing the application on a 
regular basis, it will inevitably break down having less 
and less chance to make up for the lost time. 

Having thoroughly tested our prototype with JRockit, 
Parallel-Compacting, Concurrent Mark-Sweep and 
GarbageFirst (G1) collectors in a variety of options, we 
found the last two establish the most sustainable 
environment. Due to the nature of processing and 
uniqueness of our setup such a statement cannot be 
generalized. It remains only as an incentive for every 
designer to never neglect the topic. 

 
 Table 1: Example Options Used with Tested GC’s 
GC Selected options 

PC 
UseParallelOldGC, DisableExplicitGC, 
ParallelGCThread, CompileThreshold, 
MaxGCPauseMillis, NewSize 

CMS 

CMSIncrementalMode, 
CMSIncrementalPacing, 
CMSIncrementalDutyCycleMin, 
CMSIncrementalDutyCycle 

G1 
GCPauseIntervalMillis, 
G1ParallelRSetUpdatingEnabled, 
G1ParallelRSetScanningEnabled 

FRBHMUST02 Proceedings of ICALEPCS2011, Grenoble, France

1324C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing



GarbageFirst is a server-style collector, targeted for 
multi-processors with large memories. It also well utilizes 
the 64 bit architecture. G1 is considered the most efficient 
mechanism available in Java Standard Edition and has 
been decided a default solution shipped in JDK7.  

Garbage collectors undergo constant development, 
changing their shape across JVM versions. Modern 
research concepts, as split bytecode verification or lock 
coarsening, enhance the overall process. 

Memory Allocation 
Organising memory allocation is a subject 

complementary to garbage collection. Java developer is 
offered to set up at least the boundaries of memory 
available to the application through a series of JVM 
options. Besides, the choice of the computer architecture 
and operating systems notably influences the outcome. As 
64 bit multicore servers have become a prevailing 
standard, excessive use of the heap space emerged 
tempting. When the 4GB limit per JVM is surpassed 
(effectively much less depending on the operating system, 
see Table 2) an application can handle massive volumes of 
data in memory. The number of threads allowed to be 
created is also substantially larger. Nonetheless, 
experimenting with the settings shows it immediately 
brings a performance penalty in form of extended garbage 
collections, a hindrance we struggle to overcome at any 
cost. The other known effect of upgrading to 64 bit 
architecture comes with the need to operate on extended 
memory addresses. It is generally considered to 
moderately hamper the speed of processing. 

Table 2: Memory Available in 32 bit Java SE [10] 

OS Heap Size 
Linux 2.2-3 GB 
Solaris 3.5-4 GB 
Windows 1.4-1.8 GB 
MacOS <4GB  

 
As for the garbage collection, choosing the right 

computer architecture and finally tuning the memory 
available affects the overall quality of our application. All 
those topics should be consciously scrutinized. 

Profiling 
Testing a complex Java system cannot be effectively 

carried out without the help of profiling tools. A 
rudimentary support for code orchestration comes with a 
JDK tool, VisualVM [11]. It allows to watch a lifecycle 
of the application with respect to its CPU, memory and 
thread consumption. Monitoring these characteristics is 
indispensable when tuning the garbage collection and 
memory allocation properties. 

VisualVM and JConsole rely on the JMX support that 
JVM instance offers. We can easily profit from the 
feature by exposing some parts of our system as JMX 
calls. It lets manage the system during tests using a 
standard out of the box tool. 

CONCLUSIONS 
Java software design should always be considered with 

respect to the characteristics and shortcomings of the 
modern Java runtime environment. Conversely, garbage 
collection and memory allocation settings are often 
perceived superfluous, concise choice of data structures 
and concurrent routines considered secondary. 
Performance and scalability tests tend to be 
underestimated. 

CERN monitoring and alarm system is a high 
throughput, semi real-time and most importantly reliable 
application based on the Java components. Architecting 
its prototype has brought tangible evidence how some 
often neglected issues determine the overall result of 
software development.  

We have shortly discussed a selection of topics whose 
deep understanding may be vital to achieving a quality 
distributed software. They are more than likely to 
influence an outcome of designing any Java-based system 
that shares similar requirements. 
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