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ABSTRACT

The autocorrelation function (ACF) for the direction of the principal state of polarization (PSP) vector is
reported. The analytical results are compared with the simulation results. It is shown that the magnitude and
the directional ACF of the PSP vector are not independent. The directional correlation bandwidth for the PSP
vector is verified to be narrower than that of the PSP magnitude.
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1. INTRODUCTION

Polarization mode dispersion (PMD) in the single mode fibers (SMF) severely limits a communication system at a
speed of more than 10Gb/s. PMD of a SMF can be described by its (PSP) vector! € (w) in the Stokes space whose
magnitude, |Q (w) | describes the differential group delay (DGD). For a light launched into a SMF having PMD
the output state of polarization (SOP) varies as a function of optical frequency as 9s (w) /0w = £ (w) x s (w).%?
The frequency dependence of the PSP vector would cause the reduction of the degree of polarization (DOP)
for an optical pulse and the distortion of its pulse shape. Many properties of the PSP vector € (w) have been
investigated,*® for example its magnitude, i.e. DGD, satisfies the Maxwellian probability density function for
a highly mode coupled SMF.%¢ TIts ACFs have also been studied.” However, to the authors’ knowledge, there
is no report on the exact calculation of the PSP directional ACF. In this paper, we present an analytical result
confirming that the de-alignment of PSP vector direction is more significant than the mismatch of the PSP
magnitude (i.e. DGD) between neighboring frequencies. We also show that the direction and magnitude of PSP
vector ACF are not independent.

2. ANALYTICAL MODEL

We follow the same mathematical procedure introduced by Karlsson and Brentel.%” Here we treat a SMF
as having n segments of polarization maintaining fibers (PMF), and each segment has a constant birefringence
axis, described in Stokes space by unity vector &,, and a retardation v, (w). The Muller matrix of a single
section can be written by the use of the matrix exponential as: M, = exp [y, (w) &, %] = I + sin (7, (w)) &, X
+[1 - cos (7 (w))] &, x &,x. The PSP vector Q,(w) of the first n fiber segments can be obtained from the

Gisin-Pellaux® recursion relation:

dyn .
dZ;: n + M1 (1)

Using the above recursion relation, Karlsson and Brentel have calculated the ACF of the PSP vector, i.e.,
E(2(w1) - Q(w2)) where the average is done over &,. In the limit of highly mode coupled SMF they obtained
the following analytical result:

Q, =

3
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where Aw = w; — ws. However, this result does not separate the ACF for PSP direction Q and its magnitude
Ar. Our strategy to get the PSP directional ACF involves calculating two quantities: E[(Q2(w1) - Q(w2))?] and
E[|Q(w1)2|2w2)|?])- The second autocorrelation has been also reported,® and it is:

E[ar? (Aw)2>:|

2+4E[AT2] 12 [l—exp (— 3

B0 0 )] = (B [ar)" + =25 s

3)

Following Karlsson and Brentel, we assume each fiber segment having the same DGD value ¢ except their direction
can be pointing anywhere on the Poincaré sphere, then we can have the following:

Qn (wl) . Qn (LJQ) = t2 + tén . [Qn—l (wl) + Qn—l (wg)] + cos (tAw) Qn-—l (wl) . Qn—-l (w2)
+ sin (tAw) én - [Qn—l (wl) X Qn—l (wg)] (4)
+ []. — COS (tAw)] [én - Qn—l (wl)] [én - Qn—l (CUQ)] .

Now averaging over the solid angle &, for the square of the last expression, we get the following expression:
E[(@n @) 2 @))’] = ¢+ 5 [B (191 @)F) + B (121 @2)*)]
+7DE [Qn1 (1) - Ry (w2)] (5)
+CE (-1 (@1)]* Q1 (w2)]*
+dE | (o1 (w1) - Qo1 (w2))?]

where b = 4(1 + cos (tAw)) /3, ¢ = 2(3 — cos (tAw) — 2 cos? (tAw))/15 and d = (4 cos? (tAw) + 2 cos (tAw) — 1) /5.
In arriving the last equation, we have used the following &,, solid angle average formula:

E[(en (en B)]— %(AB) (6)
E[(é.-A)(&,-B)(é, - C)(é, D)= [(A-B)(C-D)+(A-C)(B-D)+(A-D)(B-C),

where A, B, C, and D are constant vectors. To proceed, we use the recursion relation derived by Karlsson and
Brentel:
E[Q,(w1) - Qp(w2)] = 2 + [1 + 208 (tAw)] E[Qn—1(w1) - n—1(w2)]/3. (7)

Furthermore, one can derive the following two recursion relations:
E (190 @)l 90 @) = ¢+ 8 (B[00 @] + B 121 @)])

+§§—2E[Qn—1 (1) - Q1 (w2)]
4B (1901 (00 90 ()]

E [\Qn (w)|2] = P2+E [Iﬂn-1 (w)|2] .
After some algebra, one can get the following:

E []Qn (w)ﬁ] = nt?,
E [ﬂn (wl) -Q, (w2)] = 2 11—{1{17 n 9)
E [|Qn (w1)|2 125 (WQ)IQ] =t [n + _(L%(—TT-)“—)] >

where a = (1 + 2cos (tAw))/3. By plugging the above results into (5), we have the following recursion relation:

E [0 (@) - 0 (@a))?] = ¢+ 35— 1) + £p152"
S (10 )= 1550+ etn -1 1o
FE [(Qnon (1) - Ruon (@2))7]
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By formally introducing the following function:

2 1- 4 1 1—-a”
_ 44 4 4 4 4 _
fln) = f+3fn+tb1 a+f [ +31_a(n l—a)]' (11)

Eq. 10 can be written as:

B [($n (1) - R (2))?] = Zf i, (12)

The series sum can be done; however, we neglect the final expression because of its length. In the last step,
similar to the work of Karlsson and Brentel, we take the limit n — oo while keeping n*t = E[A72] = constant.
We finally find the E[(Q(w1) - £2(w2))?] in the highly mode coupling limit:

E[@@) 2w = CE atard o

3 (Aw)? 3(Au.1)‘l
E[Aar?)(Aw)?
R [_ J_;_(_>] (13)
+ﬁ; exp [—E [ATQ] (Aw)2] .
If we use the conjecture” that the two properties of the PSP vector i.e. its length AT (the DGD) and its direction
2 (the PSP) are independent, we should easily derive the PSP directional ACF:

2] B (@) 2 (w)’]
|(ptn o) - B2 @P 12 @)P] "

However, numerical simulation shows that the two properties are not independent, therefore, Eq. (14) is an
approximation for the PSP directional ACF. Furthermore, we will next show that it is a good approximation.

3. SIMULATION RESULTS

To verify the analytical results on the ACFs, we perform Monte Carlo simulations of the directional ACF given in
Eq. (14) as well as ACFs given in Egs. (3) and (13). We consider 20000 SMF's each having 500 segments. Each
segment is considered to have a uniformed random DGD such that over all DGD in fiber obeys the Maxwellian
distribution. Figure 1 (left) compares the ACF given in Eq. (3) with its simulation result for average DGD value
of 10 ps which corresponds to (A7?) = 117.8 ps?. Figure 1 (right) compares the ACF given in Eq. (13) with its

simulation result for the same DGD value. Note that we scaled the ACFs by ( AT2>2. That makes the graphs to

be depended on E [AT2] (Aw)? rather than (AT); therefore, the graphs remain unchanged as one changes (A7).
The dash-dotted line with a few error bars represents the simulation and the solid line represents the analytical
ACF; the agreement is quite perfect.

Figure 2 shows the simulation and analytical results of the second order directional ACF for the same
parameters as Fig. 1. Since we have a perfect match between the analytical results and the simulations in Figure
1, we expect the same perfect agreement for the analytical expression given in Eq. (14). However, Figure 2
shows a discriminable gap between them. This clearly proves that the ACF of the two properties of the PSP
vector i.e. its length A7 and its direction € are not independent. In fact, it shows that they are independent
only for small Aw and for large Aw, but there is a dependency (at most 10%) elsewhere. Note again that both
simulation and analytic directional ACF depend only on the product of E [Ar?] and (Aw)?.

To verify our conclusion for the dependency of the At and Q2 ACF, we perform Monte Carlo simulations of
the following ACFs: E[|Q(w:)||Q(ws)]], E[Q(w)) - Q(w,)] and E[Q(w;) - ©(w,)]. Figure 3 shows the numerical
results for the first order directional and magnitude ACF for PSP. Also, in Figure 3 (left), the numerical results
for the directional ACF has been compared with the ratio of E[Q(w;) - Q(w2)]/E[|Q(w1)]|R(w2)|] (solid line).
Similar as Fig. 2, it shows a gap between them. Figure 4 compares the first order analytical ACF for PSP given
in Eq. (2) with its simulation as well as with the numerical product of the directional and magnitude ACFs from
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Figure 1. The magnitude ACF given by Eq. (3) (left) and the ACF given by Eq. (13) (right) are compared with their
simulation results for average DGD values of (A1) = 10 ps over 20000 SMFs each having 500 segments.

T T

1

0.9t 1
< o8 ]
o
3
< 0.7t
-~ 0.7 <ATt>=10 ps
S
= 06
w
0.5¢ ,
0.4 AN ]
0 10 20 5 3'02 40 50
E[AT)(Aw)

Figure 2. The second order directional ACF for the PSP vector for E[A7] = 10 ps. Dash-dotted line with the error bars
is the simulation result and the solid line is the analytical result given in Eq. (14).

simulation. The first order analytical ACF for PSP has been discussed and compared with the experimental
result by Karlsson and Brentel.” They conjectured the independence between the magnitude and directional
ACF for PSP. However, note that the numerical product of the PSP directional and magnitude ACFs from
simulation clearly deviates from the analytical ACF given by Eq. (2). Figure 4 again shows the dependency
between the magnitude and the direction ACF of the PSP vector.

Furthermore, we report the correlation bandwidth for the first and second order directional ACF for PSP as
well as the correlation bandwidth for the first and second order magnitude ACF for PSP. We define the correlation
bandwidths to be the half width of the variation of the corresponding ACFs. For example, one can show that Eq.
(14) approaches to 1 as E [A7%] (Aw)® goes to zero, and to 1/3 as E [A72] (Aw)? goes to infinity. Hence, placing
Eq. (14) equal to (14+1/3)/2=2/3, we can find the correlation bandwidth of the second order directional ACF for
PSP from: E [A7%] (Awp[$2))? = 1.8953. From its simulation result, we can find the correlation bandwidth from:
E [AT?] (Awp[€))? ~ 1.425. Similarly, we can find the correlation bandwidth for the second order magnitude
ACF for PSP given in Eq. (3) from E [A72] (Awg[|Q]])? = 7.670787257. Clearly Awp[€2] < Awg[|2]]. Table 1

summarizes all correlation bandwidths to the corresponding ACF. Again Awp[€2] < Awpg[|Q|] for the first order

Proc. of SPIE Vol. 5260



o
©
®©

Q(o,)VEIAT]
3

E[l (o,

0.88

—_

o o
S o ©»
© N &

0.86

E[ATZ](A(D)Z

Figure 3. Simulation results for the first order directional (left) and the magnitude (right) ACF. Directional ACF (left)
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is also compared with the ratio of E[Q2(w1) - Q(w2)]/E[|Q(w1)||(w2)]] (solid line).
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Figure 4. Analytical ACF (solid line) for the PSP vector given by Eq. (2) is compared with its simulation (dash-dotted
line). The numerical product of the PSP directional and magnitude ACFs from simulation is the dotted line. E[A7] =10

ps.

ACFs. Results obtained from simulations are marked by (*).

4. CONCLUSION

We have derived an approximate analytical expression for the second order directional ACF of the PSP vector.
We have shown that our results agree with the simulation within 10%. We have shown that the two correlation
properties of the PSP vector i.e. its length A7 (the DGD) and its direction §2 (the PSP) are not independent.

Table 1. Correlation bandwidths

[ E[AT?](Awp)? | Directional ACF | Magnitude ACF | ACF |

First order

4.269*

7.397*

4.781

Second order

1.425*

7.671

2.047
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Our results show that the ACF frequency bandwidths are inversely proportional to the mean DGD. However,
the frequency bandwidth for the PSP directional ACF is narrower than that for the PSP magnitude ACF for
a given DGD for both first and second order ACFs. (First order about 1 — 1/4.269/7.397 ~ 24% narrower and
second order about 1 —/1.425/7.6707 = 57% narrower.) In other words, the PSP directional ACF de-correlates
faster than the PSP magnitude ACF. Moreover, one can obtain ACFs of the higher order frequency derivative
of PSP vector (and therefore correlation bandwidths) simply by differentiations with respect to w; and/or ws.
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