

Modeling Timed Elaborate Requirements in Service-Oriented

Seyed Morteza Babamir (babamir@kashanu.ac.ir)
1
 and Seyyed Hosein Seyyedi Arani (h.seyyedi@yahoo.com)

2

1
Department of Computer, University of Kashan

2
Islamic Azad University, North Tehran Branch

Abstract - In recent years, various organizations by following

the concept of service oriented architecture, offer their services

with independent and reusable programs on Internet. Since

these services can be called by application programs and other

services, the concept of implementing inter-organizational

workflow by dynamically composing the services is being

developed. The necessary requirement of this development is the

existence of formally defined standard methods for specification

of these compositions in an abstract way.

In a service oriented system, users' requirements fall into

simple and elaborate categories. To satisfy the former, it is

sufficient to call one service; however, to satisfy the latter, it is

necessary to call a composition of services. Additionally, to

satisfy many of elaborate requirements, time constraint is a

determinant of requirement satisfaction. In this paper, we first

specify common types of elaborate and time-based users'

requirements in service oriented systems, and then using an

three-step approach, suggest a specific composition of services

for each type of requirement. In the first step of the approach,

an operator is introduced for informal stating a composite

service. In the second step, the composition is formally specified

using a model based on Transition Timed Petri-Nets, and in the

third step, the model is defined formally.

Keywords: Service oriented architecture (SOA), Web service,

Services composition, Requirement specification, Petri-Nets.

1 Introduction

Service oriented architecture (SOA) [1,2,3], is a distributed

architecture in which an integrated set of services (web

services) interactively with each other, offers various services to

clients. (services are reusable, autonomous and self descriptive

application programs that can be accessible via messaging).

Services can be presented on a network of computers with

different operating systems platforms as well as various

programming languages.

In SOA, every person or organization can be a service

provider or a service requester and the communication between

them is achieved with XML messages and SOAP [4] protocols.

Services specifications are stored in a repository called UDDI1

[5]. The language that is used for this specification is WSDL2

[4].

Before SOA, distributed object oriented architectures were

popular and amongst the CORBA [6] is distinguishable from

the rest. Hence a comparison of SOA with CORBA is useful. In

CORBA, the idea is that every application program can

remotely access objects of other programs and therefore must

specify and call the method and its parameters. In this way,

when a client requests a service from a service provider, it

would be necessary for the client to know the names and the

parameters needed for the call. Thus there is not fully

1
 Universal Description, Discovery and Integration

2
 Web Services Description Language

abstraction for the client. However, in SOA messages and

operations for accessing the services are defined independent of

physical implementations and technical details. In fact, client

only specify what has to be done and does not involve in how it

is being carried out.

In SOA, data is available to all systems and every service

provider receives a SOAP message, carries out the needed

operations on its local data with its local methods and

procedures and returns the result to the client. Therefore, in

SOA dependency between programs is omitted. Also, in SOA it

is possible to provide services dynamically, at execution time

and according to users needs, whereas CORBA has not this

feature.

In CORBA, a large set of rules exists which are complex and

difficult to learn by users and also setting up, maintenance and

transfer of programs are not simple. However in SOA, only

Internet standards such as HTTP are needed which are available

everywhere and to learn and use them is easy.

After object oriented architectures, the message oriented

middleware (MOM3) [7], was developed which did not have the

problems of object oriented architecture. In this architecture, all

clients and service providers must install the middleware on

their operating systems in order to be able to have transparent

communication with each other; however in SOA,

communication between a client and a service provider is

completely based on SOAP and extra software is not needed.

In SOA, as a distributed system, different programming

languages and platforms exist, and any service can interact with

other services independent of its programming language and

operating system. Hence extensive costs of integrating

platforms are omitted and concentration on the purpose of a

service or services composition is possible.

It is necessary that services, as reusable elements, be able to

participate in various compositions in order to each composition

can carry out a process. In the past, for executing a process in a

form of chained tasks by different organizations (B2B4), it was

necessary to use a human agent to carry the result of one task

and hand it over to an operator for performing the following

task, and this human interference caused more cost, time and

risk of human errors. Therefore automation of B2B process has

been introduced as a big goal. SOA has been achieved to the

goal in this way that a chain of tasks in a process from

beginning to the end, can be performed by a composition of

base services. However to make a big improvement in

electronic services on the web environment, the ability of

composing reusable ready services, quickly and dynamically,

with respect to variable needs and conditions, is essential. The

result would be organizations agility in response to variable

conditions.

To reach these capabilities, use of visual and descriptive

tools that can quickly and easily model services and their

compositions as well as analyzing them before implementing,

was necessary and in this paper we discuss these issues, the

tool, that we use for specification of services is Petri-Nets in

3
 Message Oriented Middleware

4
 Business To Business

which the operation of services and their compositions are

shown visually and abstractly that makes it easier for the reader

to understand them. Also for the presented models, services can

be analyzed and features such as deadlocks and accessibility in

service compositions are discussed.

Previously, Petri-Net was used for specification of services

and their compositions [8] but the important parameter of time

was not considered. Timing limitations in receiving a response

from services is an important issue that we will discussed in this

paper. In SOA, accessibility of service when invoked and also,

receiving a response from it in specified time after issuing a

request is not reliable and guarantying service execution in a

specified time is an important challenge. Most of the services

must have a timing parameter to insure quality of service. For

instance, consider a shopping service that must be activated for

shopping online based on SOA, and by convention, selling

agent must assure delivery of chosen goods to the client address

within a specified time. In most of services like this example,

disregarding time constraint causes the outcome of a service

delivery useless. Therefore, discussing the timing issue in SOA

is extremely important.

In a service oriented system, users' requirements fall into

simple and elaborate categories. To satisfy the former, it is

sufficient to call one service; however, to satisfy the latter, it is

necessary to call a composition of services. Additionally, to

satisfy many of elaborate requirements, time constraint is a

determinative factor for requirement satisfaction.

In this paper, we first specify common types of elaborate and

time-based users' requirements in service oriented systems, and

then using a three-step approach, suggest a specific composition

of services for each type of requirement. In the first step of the

approach, an operator is introduced for informal stating a

composite service. In the second step, the composition is

formally specified using a model based on Transition Timed

Petri-Net, and in the third step, the model is defined formally.

The use of the approach makes: (1) easy analyzing elaborate

users' requirements of service-oriented systems and (2)

acquiring a appropriate composition of the services. By the

approach, it is possible to verify some cases such as deadlock

and state reachability.

In section 2 of this paper, related works are pointed out and

SOA and its components are introduced in section 3. The need

for visual modeling as well as introducing Petri-Nets as one of

the tools for modeling are discussed in section 4. The base

services we used are introduced in section 5. Common types of

elaborate requirements and our approach for specifying

composite services which satisfy them are presented in section

6. The technologies that support SOA are described in section 7.

Finally, we conclude our discussion in section 8.

2 Related works

Since a decade ago, workflow management systems have

become popular. The idea of these systems was that for an

organization to be successful, it is necessary to manage its

internal business processes. However, today what is known as

B2B operation is inter-organizational workflow which its

purpose is to automate the existing commercial processes

between different organizations so that, for reaching a common

target, they interact with each other. With presence of SOA,

automation of this process with the noticeable idea of dynamic

composition of services at execution time is being followed. All

of these ideas need tools for specification.

In case of workflow management, [9,10,11] specified

workflow using Petri-Nets. In [12] authors has specified inter-

organizational workflows using Petri-Nets. [13], by following

this work and considering every organization functionality as a

service, has modeled workflow between them as a composition

of services.

In [8], a number of operators for proposing different

compositions of web services were given and formal meaning

of these operators is shown using Petri-Nets. Any relation

among services shown as an expression of these operators can

be converted to a model in Petri-Nets. Also, by using several

features for these operators, it is possible to transform and

improve relationships between them in such a way that their

initial properties be unchanged.

This work is valuable in our view, because the existing

relations between web services in most of the compositions can

be considered as an expression consisting of one or several

introduced operators and hence would cause simplicity and

organization in expressing the compositions. Also, presenting

formal specification of the compositions using Petri-Nets is

appropriate. However, in this work, time as an effective

parameter is not considered. In service oriented environment, it

is possible that a service do not be accessible sometimes or

unable to respond in a certain time period. Hence, ability to

guarantee a service operation in a time period is a major

difficulty. In business applications that use service orientated

paradigm, to guaranty quality of service, time limitation must be

considered. New feature of our work, is presenting an approach

for expressing and specifying compositions that are faced with

timing limitations. Therefore, several common kinds of

requirements with this limitation are stated and for response to

every kind, a composition of web services is suggested. Then,

by introducing an operator, the meaning of that composition is

expressed. Finally every composition is formally specified

using timed Petri-Nets and a formal definition of that is

presented.

3 Service Oriented Architecture

SOA is a way of designing distributed software systems

using services as building blocks. Services are independent of

platform, autonomous and reusable applications which are

identified and accessible by related interfaces. Communication

with services can be done by message passing without need to

any knowledge of detailed internal information of them. This

means that to use these services, it is not necessary to know how

they are implemented. Services which are implemented with

different programming languages on different operating systems

can interact and composed together to provide bigger services

for implementing processes.

The three fundamental standards of web services technology

are: WSDL, SOAP and UDDI. Structure of data in different

documents that these standards deal with is XML. In XML as

compared to HTTP, labels are not only used for formatting data

to be presented, but provide a tree structure for data.

Additionally in comparison with HTTP frame, that use a

constant set of predetermined labels, XML allows users to

specify their own labels.

The first layer of SOA illustrates how different standards can

be used for transferring information in service oriented

environment. SOAP (located in the second layer of SOA) is an

important standard in SOA and used to describe message which

interchange with a service at execution time to call it. The

SOAP message comprises an XML document in which

operations that must be carried out and parameters sent to a

service are described. Often, a SOAP message might include

other information for stating how a message must be processed

by a receiver.

WSDL (located in the third layer of SOA), is the language

used for description of services, these descriptions are placed in

UDDI. The information content of this description is: (1)

description of different parts of a service, (2) network address in

which the service is placed and (3) how to call the service or in

other word, formatting of the messages that must be exchanged

for service execution.

UDDI (located in the third layer of SOA), is a service

registry, in which service providers place their and their services

information. When requester, needs a service, UDDI is searched

and using existing information about the service provider,

requester bind to the provider and the service would be offered.

Searching for services in UDDI is based on name and identifier

of services and name of groups that they are belong to.

The fourth layer of SOA shows some standards that are

stated for quality of service in SOA. The fifth layer of SOA

shows kinds of services according to their structure. A service

can be atomic (base) or composite. Every composite service is

made of several atomic ones, which interact with each other to

implement a process. Management of this communication is by

one of orchestration or choreography methods. According to the

first method, a central coordinator controls the base services

execution. In the second one, base services inhabit according to

a plan that they all compromise on it in advance, and therefore

they are coordinated. Compositions that we propose in this

paper are according to the latter method.

The sixth layer of SOA shows possible ways that via them

users can use services. Users can call a service directly via

browser. Consequently, the result would be shown to them via

it. Also they can propose their request via user interface of an

application. Consequently, the application would call the

service and get the result and deliver it to the user.

4 Petri-Nets

Petri-Net [14,15,16] is a graphical and mathematical tool,

used for specification and study of concurrent ,asynchronous

and/or distributed information processing systems. Since service

oriented systems can have these features, Using Petri-Nets for

specification of these systems is appropriate.

A Petri-Net shown in Figure 1 is a directed and connected

graph and has three components: (1) nodes indicate either a

place or a transition. In Figure 1, nodes p1 and p2 are places and

nodes t1 and t2 are transitions. (2) Arcs indicate connection

between a place and a transition and vice versa such as that one

connects place p1 to the transition t1. An arc can not directly

connect two places or two transitions. (3) Tokens which are

placed in places. If there is at least one token in every input

place of a transition, the transition is called "enabled" such as

the transition t1 in Figure 1. When a transition is fired a token

will be removed from each its input place and a token will be

placed in each its output.

"The use of visual modeling techniques such as Petri-Nets in

the design of complex Web services is justified by many

reasons. For example, visual representations providing a high-

level yet precise language allows to express and reason about

concepts at their natural level of abstraction. A Web service

behavior is basically a partially ordered set of operations.

Therefore, it is straight-forward to map it into a Petri-Net.

Operations are modeled by transitions and the state of the

service is modeled by places. The arrows between places and

transitions are used to specify causal relations." [8] Thus, firing

of a transition that causes moving tokens from some places to

others, models an operation that changes the state of a system.

Timed Petri-Net (TPN), is a Petri-Net in which timed places

or timed transitions exist. In this paper, Timed Transition Petri-

Nets (TTPN) is used. A timed transition with a timed label d is

a transition which fires after the time delay d of enabling time.

The Petri-Net shown in Figure 1 is a TTPN in which t1 and

t2 are timed transitions. This TTPN models behavior of a person

that sometimes does a job and sometimes rests. When the token

is placed in p1, the person is doing its job. After the elapsed

time d1, rest time arrives (transition t1) and the person state

changes to rest state (residing of the token in p2). After the

elapsed time d2, from beginning of the rest, rest time terminates

(transition t2) and the person begins doing its job again

(residing of the token in p1).

4.1 Formal definitions

Definition 1. "A Petri-Net is a 5-tuple,

PN = (P,T,F,W,M0) where:

• P = {p1,p2, ….,pm} is a finite set of places,

• T = {t1,t2,….,tm} is a finite set of transitions,

• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),

• W: F → {1,2,3,…} is a weight function,

• M0: P → {0,1,2,3,…} is the initial marking,

• P ∩ T = ∅ and P ∪ T ≠ ∅." [16]

Any number n≥1, as a number of weight function, written on

an arc, if the arc connects a place to a transition will mean the

necessary requirement for enabling the transition is existence of

n tokens on the place and if the arc connects a transition to a

place will mean that by firing of the transition, n tokens will be

placed on the place. In our presented models we assume that all

number of weight function are 1, and hence we do not mention

weight function for our definition of models.

Input place is a place including no input arc and when a

token is placed on that place, it will mean the service has

received the necessary information from environment for its

operation and is in the ready state. Output place is a place that

dose not have output arc and when a token is placed on that

place, it will mean that the service has returned the results of its

operation to environment and is in the complete state. In this

paper, we assume that Petri-Net which describes a service or a

composition of services has only one input place and one output

place. Also, it is necessary to mention that in the above

definition, initial marking, M0, is number of tokens in places of

t1 t2

Working

p1 p2

d1 d2

Begin to rest Begin to work

Figure 1. A TTPN

Rest

Petri-Net at beginning. We assume that at beginning, the

number of tokens in input place of the models are 1 and in other

places are 0, and therefore in our definitions we do not mention

M0.

According to definition 1, a formal definition for a TTPN can

be stated as:

Definition 2. A Petri-Net is a 6-tuple, TTPN = PN ∪ LT where:

• PN is a Petri-Net, and

• LT: T → D is latency time function of transitions. D,

set of transitions latency numbers, is a set of numbers

that each of them is the latency time number of a

transition. This number shows that how many units of

times after enabling, the transition will fire.

In this paper, for each transition which latency time number

is larger than 0, the related number is showed by a constant d,

that is put beside transition. For transitions that this constant

does not appear beside it, this number is zero.

5 Base services

Each service can implement a specific operation that it is

developed for it. However, to reply to a majority of

requirements, a process must be done that for implementing it,

several base services must be composed. For implementing

different processes, base services communicate and coordinate

with each other in different shapes, each shape appropriate for

the process being implemented. Hence for implementing a

process, a composite service will be developed by composing

base services.

Elaborate requirements are those that a couple of services

should be executed and therefore a composition of base services

should be developed. In the section 6, we will suggest a couple

of service compositions for madding reply to common kinds of

elaborate requirements of users in service oriented systems. We

assume that necessary base services for the compositions are

ready; so, we should only concentrate on how to compose them.

The base services, S1,…,S5 are shown in Figure 2. As shown in

Figure 5, a base service is represented by a rectangle and only

those nodes that play a role in communication between services.

Different shapes considered for these services are to distinguish

between them in a composition and is in some cases because of

their different roles which must be played in compositions.

Sets of transitions considered for services S1,…,S5 are

T1,…,T5, respectively. Sets of places considered for these

services are P1,…,P5, respectively. Sets of arcs of these are

F1,…,F5, respectively and sets of latency time numbers of their

transitions are D1,…,D5, respectively. Also, statement (x,y)

means an arc which connects node x to node y.

6 Requirements and Suggested Approach
In this section, we propose 4 common kinds of users’

requirements of service oriented systems, and offer appropriate

compositions for replying to them and also our approach to

expressing and specifying them. The property of these

requirements is existence of time constraint in them which

effects in control flow of related compositions. We chose these

4 common kinds to show implementing of our approach upon

them, but these are not all possible kinds. To specify appropriate

compositions for other similar kinds of requirements, the

approach offered here, can be used. For informal specifying

compositions, new operators must be identified. For formal

specifying them using TTPN, every operation must be modeled

as a rectangle representing related service and every time

constraint must be modeled as a timed transition in appropriate

place between these services. Also, for identifying these

compositions formally, the definition offered in this paper for

TTPN, can be used.

Requirement 1. A service should be executed but after it is

called, the reply should not take more than a specified time

period. If a reply is received within this time period, the service

is finished, otherwise another service, which have the same

functionality must be requested from a different provider. After

this request, any reply received sooner is accepted and other

reply is ignored. This means execution of one of the two

services is enough but if a reply within the specified time period

is not received, this is possible that the service provider can not

respond or/and the response will arrive late. Therefore, the

second service is called to reduce the risk of relying only on one

service provider.

Example. All the cases where the requested service is provided

by different providers can be as an example for this

requirement. Because in these cases, it is possible that the

requester be unsure about the accessibility of the service and

hence if a first provider's reply does not arrive within a specified

time period, requests the same service from another provider.

Of course, it is also possible that two services be called

simultaneously, so that they execute in parallel. For carrying out

the job in shortest time, without considering limitations,

parallelism is the best method but in cases where reduction in

costs of a service delivery is important, the mentioned way is

the best way because if both service providers execute the

service in parallel, more resources on network is used and also,

the requester must pay both providers.

As another example, the protocol "At least once semantics"

[7], in distributed systems, can be mentioned where a request

such as reading from database must be executed at least once,

and if be done more than this, there is no problem and have no

value.

S1 ⊕⊕⊕⊕T S2. This expression shows a composition of two services

S1 and S2, (section 5), appropriate for response to requirement

1. For expressing control flow between two services, we

identify operator ⊕T. Function of the operator shown in Figure

3, using a model based on TTPN. According to the figure, firing

of transition t1, causes the service S1 to begin and at the same

time a token is placed in p2. If S1 finish its execution before

expiring the time period d, execution of composite service will

finish. Otherwise, with respect to the presence of a token in

place o1 and an "Inhibitor Arc" [17] between place o1 and

transition t2, this transition fires and causes service S2 to start.

Inhibitor arc is distinguishable from other arcs by a small circle

at the end of it, at transaction side. Its difference in functionality

is that necessary requirement for enabling of its connected

transition is nonexistence of token in its connected place. With

the start of the service S2, it is probable that any of the two

services finishes sooner. With termination of any of the two, the

S1 S4 S5

Figure 2. Base services

γ

S2 S3

α

β
δ

composite service will finish and continuation of the other

service will be unimportant.

Definition 3. TTPN related to composite service S1 ⊕T S2

(Figure 3), is a 6-tuple, TTPN = (P,T,F,W,M0,LT), where in it:

• P = P1 ∪ P2 ∪ {p1,p2,p3},

• T = T1 ∪ T2 ∪ {t1,t2,t3,t4},

• F = F1 ∪ F2 ∪ {(p1,t1),(t1,i1),(t1,p2),(p2,t2),

(t2,i2),(o1,t3),(t3,p3),(o2,t4), (t4,p3)},

• (o1,t2) is an Inhibitor arc in it, and

• LT: T → D1 ∪ D2 ∪ {0, d, 0, 0}.

Figure 4 shows a TTPN, for the same composite service, that

its definition is like definition 3, with this difference that

inhibitor arc (o, t2), is not exist in it.

Requirement 2. Two services must be executed and they can

be executed in parallel, if execution of one of them that is called

second one, respect to its execution order, be started when a

specified time period elapses from starting the first one

execution.

Example. In a two part exam, each part is carried out by a

service. According to a plan, the second part must begin, a

specified period of time, after the first one was begun. It is not

necessary for a candidate to finish replying to the first part of

the exam before the start of the second part, but he can

continues replying to the first one concurrently. When the

candidate finalizes his reply to two exam parts, the whole of

exam is finished. Therefore in this example, the first service

starts first and after elapsing specified period of time the second

one begins its execution. It is not necessary that the first service

can be finished at this moment and from this moment two

services can be executed parallel. When the two executions of

services are finished, the composite service will be terminated.

S1 ||||||||T S2. This expression shows a composition of two services

S1 and S2 (section 5), which is appropriate for responding to

requirement 2. For expressing control flow between two

services, we identify operator ||T. Operation of this operator is

shown in Figure 5, using a model based on TTPN. According to

Figure 5, firing transition t1 causes beginning the service S1 and

at the same time a token is placed in p2, which this enables

transition t2. After elapsing time period d, regardless of whether

or not S1 is finished, transition t2 fires and service S2 starts its

execution. Termination of this composite service execution will

be due to the termination of both base services executions.

Definition 4. TTPN related to composite service S1 ||T S2

(Figure 5) is a 6-tuple, TTPN = (P,T,F,W,M0,LT), where in it:

• P = P1 ∪ P2 ∪ {p1,p2,p3},

• T = T1 ∪ T2 ∪ {t1,t2,t3},

• F = F1 ∪ F2 ∪ {(p1,t1),(t1,i1),(t1,p2),(p2,t2),

(t2,i2),(o1,t3),(o2,t3),(t3,p3)},

• LT: T → D1 ∪ D2 ∪ {0,d,0}.

Requirement 3. The execution of a service must repeats in a

specified time period and when the time period finished, the

service execution must be stopped.

Example. Selling a product that is offered via a service, within

a specified period of time is with extra facilities, and the service

can not be called by buyers, after this time period.

µµµµTS1. This expression shows a composition consist of the

service S1, (section 5), appropriate for response to requirement

3. For expressing control flow in this composition, we identify

operator µT. Operation of this operator is shown in Figure 6,

using a model based on TTPN. According to the Figure 6, firing

of transition t1 causes beginning the service S1 and at the same

time a token is placed in p2, which this enables transition t2.

Termination of S1 execution, which causes a token to be placed

d

S1 S2

o1

i1

o2

i2

p2

p1

p3

t4 t3

t2

t1

Figure 4. Another presentation of S1 ⊕T S2

d

o2

i2

p1

S1

o1

i1

t2
S2

t1

p2

t3

t4

p3

Figure 3. A presentation of S1 ⊕T S2

d

p2

t1

t3

p3

t2

S2 Figure 5. S1 ||T

S1

o1

i1
S2

o2

i2

p1

in place o1, it is possible that one of two following states

occurs: (1) if the time period d is not elapsed and as a

consequence, transition t2 is not fired and a token is not placed

in place p3, then with respect to the arc (p3,t3), an inhibitor arc,

the transition t3 fires and the service starts its execution again,

(2) if the time period d, is elapsed and as a consequence, a token

is placed in place p3, then the transition t4 fires and the

composite service will terminate.

Definition 5. TTPN related to composite service µTS1 (Figure

6), is a 6-tuple, TTPN = (P,T,F,W,M0,LT), where in it:

• P = P1 ∪ {p1,p2,p3,p4},

• T = T1 ∪ {t1, t2,t3,t4},

• F = F1 ∪ {(p1,t1),(t1,i1),(t1,p2),(p2,t2),(t2,p3),

(o1,t3),(t3,i1),(o1,t4),(p3,t4), (t4,p4)}

• And (p3,t3) is an inhibitor arc in it, and

• LT: T → D1 ∪ {0,d,0,0}.

Requirement 4. A service in its execution time needs some

operations of another service which is being executed in parallel

and hence that service must be called and the returning response

must not take more than a specified period of time. If the caller

service does not receive a response within that period, another

service that does similar operations must be called. As soon as

one of called services responds, the caller service operation will

continue and the response of the other service will be ignored.

In fact, when an operation of a caller service is terminated the

composite service will be terminated.

Example. Some products are made from several components. A

service which does the providing and selling operations for that

product may request a component for the product from the

service of distributor of that component and the sale service of

the final product in one point of the course of its execution,

must receive the requested component to continue its operation

which might include coordination of the received component

with other ones to produce final product. Therefore, this service

must not wait more than a planned timing period and if the

requested component is not delivered, must request this

component from sale service of another distributor of it. From

this time on, the component of whichever distributor, which be

delivered sooner will be used and the response from the other

distributor will be ignored.

S3 T||||||||δδδδ S4 ||||||||γγγγ S5. This expression shows a composition of three

services S3, S4 and S5, (section 5), appropriate for response to

requirement 4. For expressing control flow between three

services, we identify operator T||δ ||γ, in this expression.

Operation of this operator is showed in Figure 7, using a model

based on TTPN. According to the figure, firing of transition t1,

causes the service S3 to begin. By firing transition α of this

service, transition δ of S4 is enabled and also a token is placed

in both p5 and p4. If δ, be fired before elapsing time period d,

which starting of it is the moment of placing token in p5, a

token is placed in p2 and transition β of S3, is enabled and this

service, which needs result of transition δ to follow its operation

from transition β, can continue its operation. With termination

of this service, the composite service will be terminated, also.

Otherwise, with elapsing the time period d, with respect to the

existence of token in p5 and nonexistence of token in p2, the

transition t2 fires and enables the transition γ, from S5, which

has similar functionality as δ. After which, the quicker response

from either of services S4 or S5, will cause S3, to continue its

operation and the composite service to be terminated and with

considering that firing of β, will cause removing token from p4,

after its firing, whether or not another service respond, will not

have any effect.

Definition 6. TTPN related to composite service S3 T||δ S4 ||γ S5

(Figure 7), is a 6-tuple,

TTPN = (P,T,F,W,M0,LT), where in it:

• P = P3 ∪ P4 ∪ P5 ∪ {p1,p2,p3,p4,p5,p6,p7},

• T = T3 ∪ T4 ∪ T5 ∪{t1, t2,t3},

• F = F3 ∪F4 ∪F5 ∪{(p1,t1),(t1,i3),(t1,i4),(t1,i5),

(α,p4),(p4,β),(α,p3),(p3,δ),(δ,p2),(p2,β),(α,p5),

(p5,t2),(t2,p6),(p6,γ),(γ,p2),(o3,t3),(t3,p7)}

• And (p2,t2) is an inhibitor arc in it, and

• LT: T → D1 ∪ D2 ∪ D3 ∪ {0,d,0}.

7 Conclusion

In this paper, several common kinds of elaborate

requirements in service oriented environments in which time

parameter can have effects were proposed. Then, a composition

of services that can respond to each requirement was suggested

and an approach for expressing and specifying these

compositions was offered. In this approach, firstly, every

composition is expressed informally by introducing an operator

and then is specified formally by using a model based on TTPN

S3

S5

S4

α

βδ

γ

d

i5

i4
i3

o5

o4
o3

t1

t2

t3

p2

p3
p4

p5

p6 p7

Figure 7. : S3 T||δ S4 ||γ S5

p1

t4

p3

d

Figure 6. µTS1

p1

t1

p2

p4

t2

t3

S1

o1

i1

and finally is defied formally. Offered models of compositions

show them visually and clearly for different readers.

In case of a need for repeating resulted composition to

several levels, the yielding compositions in higher levels can be

expressed easily by an expression of proposed operators and

modeled by composing the proposed models.

To precede the time management issue in service oriented

environments, we can extend the represented approach in this

paper. This issue is particularly useful in E-commerce. Also,

discussion of other aspects of quality of service in these

environments can be very useful to continue in future.

References

[1] Newcomer E., Lomow G., 2004, Understanding SOA with

Web Services, Addison Wesley.

[2] Erl T., 2005, SOA; Concepts, Technology & Design,

Prentice Hall.

[3] Josuttis N., 2007, SOA in Practice, O'Reilly.

[4] Weerawarana S., Curbera F., Leymann F., Storey T.

and Ferguson D., 2005, Web Services Platform

Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging, and More, Prentice

Hall.

[5] Apte N., Mehta T., 2002, UDDI: Building Registry-Based

Web Services Solution, Prentice Hall.

[6] Sommerville I., 2007, Software Engineering, 8th Edition,

Addison Wesley.

[7] Tanenbaum A., Van Steen M., 2007, Distributed Systems;

Principles and Paradigms, Prentice Hall.

[8] Hamadi R., Benatallah B., 2003, A Petri Net-based Model

for Web Service Composition, Proceedings of the 14th

Australasian database Conference (ADC’03).

[9] Aalst W., 1997, Verification of Workflow Nets, Azema P.,

Balbo G. Editors, Proceedings of 18th International

Conference on Application and Theory of Petri Nets

(ICATPN'97), Toulouse, France, pp. 407-426.

[10] Aalst W., 1998, The Application of Petri Nets to Workflow

Management, Journal of Circuits, Systems and Computers

8(1), pp. 21-66.

[11] Aalst W., Hee K., 2002, Workflow Management: Models,

methods and systems, MIT Press.

[12] Aalst W., Weske M., 2001, The P2P Approach to

Interorganizational Workflows, Proceedings of the 13th

International Conference on Advanced Information

Systems Engineering (CAISE'01).

[13] Aalst W., Pesic M., 2007, Baresi L., Nitto E. Editors, Test

and Analysis of Web Services, Springer, Chapter 2, pp. 11-

55.

[14] Peterson J., 1981, Petri Net Theory and the Modeling of

Systems, Prentice Hall.

[15] Reisig W., 1985, Petri Nets: An Introduction, Springer.

[16] Murata T., 1989, Petri Nets: Properties, Analysis and

Applications, Proceedings of the IEEE, April 1989, Vol.

77(4).

[17] René D., Hassane A., 2005, Discrete, Continuous, and

Hybrid Petri Nets, Springer.

