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Abstract. We present two ways in which dynamic self-assembly can be used to
perform computation, via stochastic protein networks and self-assembling
software. We describe our protein-emulating agent-based simulation infra-
structure, which is used for both types of computations, and the few agent
properties sufficient for dynamic self-assembly. Examples of protein-network-
based computation and self-assembling software are presented. We describe
some novel capabilities that are enabled by the inherently dynamic nature of the
self-assembling executable code.

1 Introduction

Dynamic self-assembly (consisting of the energy-dissipating processes of building up,
tearing down, and dynamically modifying structures or patterns) is a ubiquitous proc-
ess in non-equilibrium physical and biological systems. [1] Protein networks carry
out much of the molecular-scale directed transport, assembly, communication, and
decision-making activity within and across cells, and do so via dynamic self-
assembly. It has been suggested that protein networks play a computational role in
single cells analogous to that of neural networks in multi-cellular organisms. [2]
Biomolecular systems provide models for guiding the development of molecular-
based computing and self-assembly technologies. For example, chemical systems [3-
5] and DNA-based systems for computing [6,7] have been discussed. In this paper,
we explore how dynamic self-assembly, such as is carried out by protein networks,
can be used to perform computation, and ask: Can any arbitrary Turing machine be
implemented? If so, what are the key properties required of the proteins? How reli-
able would such Turing machinery be, and how would errors be corrected?

A major motivation for exploring computation via protein networks is that biologi-
cal systems are robust, dynamic, adaptable, and self-healing—all properties that are
highly desirable for information technologies. By abstracting the key properties that
allow protein networks to implement computation via dynamic self-assembly, we
hope to achieve a new ‘“self-assembling software” approach that provides robust,
dynamic, adaptable, self-healing software.
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We have identified a few crucial properties of proteins and their interactions that
are sufficient to enable the processes of dynamic self-assembly and computation. (1)
Proteins have tremendous selectivity of their binding sites, operating much like a lock
and key. (2) Binding or unbinding a ligand at one of these sites can result in a con-
formational change of another part of the protein. This conformational change can
perform some sort of actuation, such as moving (e.g., in motor proteins) or catalyzing
an assembly or disassembly reaction (e.g., in enzymes). (3) A conformational change
can also expose (or hide) additional binding sites, which in turn can bind and cause a
conformational change resulting in actuation, or exposing or hiding yet another
binding site.

We abstract these important self-assembly and computational properties of pro-
teins into an “agent,” the fundamental building block of our self-assembling software.
An agent can store data, perform some simple or complex computation, or both.
Each agent has one or more binding sites (each labeled with a numeric key) that can
bind only to complementary sites (property (1)). Sites are said to be complementary
when they have keys with the same absolute value but opposite sign. Once bound,
property (2) enables the agent to actuate (perform its computation). Property (3)
enables it to then bind to another agent, to trigger it to execute next.

A specific execution sequence or biological signaling pathway can be “wired” to-
gether by including a set of agents with binding sites that drive them to execute se-
quentially. For example, suppose each agent has a “trigger” site that activates it
(causes it to execute some code) and a “done” site that is exposed when its task is
complete. Suppose agent A’s done site is complementary to agent B’s trigger site,
agent B’s done site is complementary to agent C’s trigger site, and agent C’s done site
is complementary with agent D’s trigger site. Once A is triggered, then B will exe-
cute, followed by C, followed by D.

It is important to note that such an execution sequence or pathway is not hard-
coded, but self-assembled. That is, the agents are just “dumped” into the simulation
environment, and the execution order occurs as a natural consequence of the order in
which binding and unbinding events occur. As a result, the self-assembling executa-
ble code is inherently dynamic in nature. The structure of the executing code is as-
sembling and disassembling all the while it is executing, with execution pathways that
are driven dynamically by matching keys between agents. All that is required to
change the execution pathway—"re-wire” what the code does, or turn code on or
off—is a change of keys.

This feature leads to innovative and powerful capabilities in software developed by
this approach. For example, changes to existing self-assembled code (due to chang-
ing user requirements, or to reuse an existing self-assembled software package for
another application) can also be self-assembled, without having to modify the original
source code or shut down the running program. This is achieved by adding new
agents with keys such that they rewire the existing code, even while it is running.
Another example is “situation detection,” a mechanism for “sensing” whenever cer-
tain conditions or events occur by providing passive agents with empty binding sites.
These binding sites correspond to the conditions of interest, and when all sites are
bound, the sensing agent is activated to report or trigger a desired response. Situation
detection is asynchronous. It is also passive, in that no repeated active polling by the
agent itself is required to detect the events. This capability can also be used to inter-
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rogate or monitor the code itself during runtime. For example, if a program is using
up a tremendous amount of CPU without producing any output, a query (a special
case of situation detection) can be constructed to determine what the program (which
was perhaps written by another programmer) is doing right now. These and other
unusual capabilities are a consequence of the protein-network-emulating approach of
self-assembling software. Although we are very early in the development of this self-
assembling software technology, we have already demonstrated that the approach is
dynamic and adaptable. Current and future work will focus on the issues of robust-
ness, evolutionary (autonomous) adaptability, and self-healing.

2 Simulation Infrastructure

Stochastic simulations are an effective tool for modeling the dynamics of small pro-
tein networks, and have been used, for example, to understand protein network prop-
erties responsible for the robust adaptivity of chemotaxis. [§] Because the properties
of the proteins and our self-assembling software agents are, by design, so similar, we
have built a common agent-based simulation infrastructure for use both in the sto-
chastic simulations of protein networks and for the self-assembling software. In the
protein network simulations, an agent represents a single protein or protein complex.
In the self-assembling software, an agent stores data and/or performs an atomic com-
putational operation (such as adding two numbers, solving an equation, or writing
some output to a file).

An agent is constructed from a sequence of parts. These parts are roughly analo-
gous to protein domains, except that only those domains with binding sites are in-
cluded. The detailed physics and chemistry of conformational changes is not mod-
eled. Instead, we directly model the properties of the agent that matter for self-
assembly and computation—the actuation and exposing/hiding of other binding sites.
Each part has a binding site that can be bound to at most one other site at any time.
Each site has a numeric key that can either be invalid (hiding the site, preventing it
from binding), or that only allows binding with complementary sites. Thus, this
binding is a selective process as in biological systems (property (1) of the Introduc-
tion). Matching binding sites can be thought of as having a virtual attraction, since
binding will readily occur between them when they become available (by becoming
exposed or unbound from an existing ligand).

Each binding site can have two types of events, binding and unbinding, and has an
“event handler” associated with each event type. These event handlers are executable
code, and implement properties (2) and/or (3) of the Introduction. For example, in a
self-assembling software system, a binding event at site A could trigger the summa-
tion of two numbers (property (2)) and also expose site B for binding (property (3)).
A comparable example from the protein network simulations would be a kinase that,
when bound to a substrate, phosphorylates the substrate, releases it, and then hides its
own substrate-binding site until the kinase is activated again. All of the “action” of
the agent, then, is coded in the event handlers. In other words, the stochastic binding
or unbinding of these sites triggers the deterministic execution of code, whether that
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code represents a physical process (for protein network simulations) or an informa-
tion process (for self-assembling software).

Initially, a population of agents is included in the simulation environment. The
simulation infrastructure locates any exposed sites with complementary keys, and
schedules binding events for these sites on an event queue, ordered by the scheduled
event time. Any unmatched sites are placed on a free-site list to wait passively until a
complementary site becomes available. The simulation proceeds by pulling the first
event from the event queue, binding the designated sites to each other (essentially,
setting the two sites’ pointers pointing to each other), and executes the two sites’
binding event handlers. During the execution of the event handlers, a number of
things could happen. (a) Some physical actuation or a calculation could be per-
formed. (b) A binding site could be exposed. If a site with a complementary key is
found on the free-site list, a binding event is scheduled. If no complement is found,
the site is placed on the free-site list. (c) A site could be hidden. If that site is associ-
ated with a scheduled event, that event is canceled. If the site was on the free-site list,
it is removed. (d) The key of a site could be changed. Corrections are made to a
scheduled event, and/or a correction is made to the free-site list to reflect the new key.
(e) An unbinding event could be scheduled.

The simulation proceeds by pulling the next event from the queue, binding or un-
binding the designated sites, according to the event type, and then executing the event
handlers. (The same possibilities (a)-(e) could occur during the execution of an un-
binding event handler.) This process continues until there are no more events on the
event queue, or the maximum desired time is reached. The implementation details
have been described elsewhere. [9]

A specific execution sequence or biological signaling pathway can be “wired” to-
gether by including a set of agents with keys that drive them to execute sequentially.
The A - B — C — D pathway described in the Introduction was wired together by
assigning complementary keys to the done site of one agent and the trigger site of the
next. We reemphasize here that such an execution sequence or pathway is not hard-
coded, but self-assembled. The agents are just “dumped” into the simulation envi-
ronment, and the execution order occurs as a natural consequence of the binding and
unbinding events that are pulled from the event queue.

A natural property of this approach is the self-assembly of concurrent non-
deterministic execution pathways in parallel, or multi-threading execution paths. For
example, the A - B — C — D pathway can be executed in parallel with a com-
pletely different pathway Q - R — S — T, as long as the keys from one pathway do
not match those of the other. To synchronize multiple threads (for example, if agent
U can execute only after both D and T have completed execution), no special syn-
chronizing code is required. The synchronizing agent (U) simply waits passively
with its keys on the free-site list until triggered (when D’s and T’s done sites bind to
U).

“Encapsulants” effectively create local environments in which collections of free
binding sites can interact. Encapsulants in our approach are meant to resemble bio-
logical cell membranes that isolate their internal contents from interactions with ex-
ternal structures. Thus, identical A - B — C — D pathways could be executing in
parallel in different encapsulants, without any interference, even though they have
matching keys. Encapsulants can contain agents as well as other encapsulants (for
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hierarchical organization). They also contain “surface” agents that act as signals or
receptors for interaction with other encapsulants, or gates to move agents and other
encapsulants into and out of the encapsulant. These surface agents, analogous to
transmembrane proteins in biological cells, manage all external interactions of the
encapsulant, and allow it to act as an “agent” building block for structures and execu-
tion pathways at another (higher) hierarchy level.

3 Computing with Protein Networks

3.1 RAM Machine Computing with Proteins

We wish to examine how the self-assembly processes of protein networks can be
harnessed to perform computation. Instead of dealing with Turing machines directly,
we will discuss RAM machines. [10] A RAM machine is more directly realizable
using proteins. Turing and RAM machines are equivalent, i.e., any Turing machine
can be assembled from a suitable set of RAM machines, and vice-versa. [10] RAM
machine computing requires an ordered sequence of operations that are carried out on
a small set of idealized integer registers (each of unlimited capacity). Any computa-
tion can be programmed using only two types of operations: those that increment a
particular register by 1 ([+]reg); and those that either decrement a particular register
by 1 (if the register is nonzero) or else jump to some other part of the program se-
quence ([-]reg/jump). Thus, to construct a RAM machine from the protein-emulating
agents described in Section 2, we need agents that represent registers, agents that
perform the increment operation on each register, and agents that perform the decre-
ment/jump operation on each register.

A unary representation [10] for integers allows the size of any clone population of
assembled molecules to serve as a register. The register molecules can be free-
floating or can be assembled into polymers. We use the phosphorylated state (pA’) of
a model protein (pA) as an individual count of a register (called A). To be more con-
crete, if five of the pA proteins are phosphorylated, then the value of register A is
five. A kinase that can phosphorylate protein pA can act as the increment agent [+]A,
if it can be activated and can signal as described below. Similarly, a phosphatase that
can dephosphorylate pA’ can decrement register A if it is nonzero. Different registers
are made from different types of proteins.

Ordered sequences of [+]reg and [-]reg/jump are dynamically self-assembled by
switching on the appropriate agent at the appropriate step in the computation se-
quence. The system produces an ordered sequence of computational operations by
temporal activation, rather than through spatial wiring. To implement this, we con-
sider protein complexes that must be triggered by another selective signaling protein
to become active. Similarly, these protein complexes must release another signaling
protein to activate the next protein agent. Allosteric proteins with unique binding site
selectivity and switchable binding site dynamics are ideal for creating the unique
sequences of protein activity needed for computation. Signal cascades can also be
implemented, so that parallel execution pathways can be triggered. The timings of the
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sequence depend on bonding rates that in turn depend on molecular arrival time sta-
tistics. Thus, the computation execution times are stochastic.

Decisions/branchings are carried out by the exit pathways of the [-]reg/jump
agents. This means that these agents must be able to release two alternate signaling
molecules—one if a dephosphorylation actually occurred, and a different jump signal
molecule after a “waiting” time in which no register protein binds to this agent. The
“jump” molecule clearly must be released with a rate that is, on average, slow com-
pared to the arrival time of a register protein (when one is present). Also, the arrival
of the register protein must prevent the jump molecule from being released. These
properties are designed into the event handlers of the agent’s binding sites, and are of
similar complexity to those of a conventional kinesin protein that “walks” along a
microtubule in a eucaryotic cell. [11] The hydrolysis of ATP drives cyclic irreversible
behavior.

Fig. 1 illustrates the interactions of the [-]reg/jump agent with the signaling pro-
teins, register proteins, and ATP. Agents are represented by polygon shapes. The
binding sites and key values are shown as tabs at the perimeter of the agent. When the
sites of two agents are bound, they are shown as touching. The [-]reg/jump agent is
labeled, as are the ATP agents. The two collections of agents to the right represent a
single register. The phosphorylated version of the register protein is shown in a
lighter gray. Initially, in panel (a), the value of the register is five, and the [-]reg/jump
agent has a single “trigger” binding site exposed, with a key of 1. It also has four
other sites that are hidden (they have an invalid key, 0). In panel (b), when a signal-
ing agent with a complementary key of -1 binds with the trigger site of the
[-Ireg/jump agent, two additional sites are exposed, with key values of 2 and 3. When
the trigger site unbinding event is handled, if both the ATP and register proteins are
bound to these two sites (as in panel (b)), then in panel (c), the hydrolysis of ATP
drives the [-]reg/jump agent to dephosphorylate the register protein (note that in panel
(c), there are only four phosphorylated register proteins, and an additional unphos-
phorylated version), release it and the “spent” ATP, and expose the “done” site with a
key of 5. A signaling protein with a key of -5 binds to the done site. When released,
it will trigger the next operation in the execution sequence.

If there had been no register protein bound when the trigger site unbinding event
was handled, then the “jump” site (lower right site of the [-]reg/jump agent in Fig. 1)
would have been exposed with a key of 6, rather than the done site with a key of 5.
As a result, a different signaling protein would become bound to the jump site, and a
different execution path would follow. Certainly, if there are no phosphorylated
versions of the register protein (i.e., the register value is zero), then the jump pathway
will be taken. However, due to the stochastic nature of the “race” between the binding
event of the register site and the unbinding event of the trigger site, the stochastic
jump process will produce incorrect jumps (when the register is nonzero) with some
probability that depends on the relative rates involved.

The increment agent, [+]reg, is similar to, but slightly simpler than, the decrement
agent. The binding of the trigger site exposes the ATP- and register-protein-binding
sites. The ATP key is the same, 2, but in this case the register-protein-binding site’s
key is 4, to bind to the unphosphorylated version of the register protein. To incre-
ment the register, it phosphorylates the register protein (i.e., changes its key to -3),
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then exposes a done site with a key of 8. There is no “jump” associated with the
increment operation.

“Trigger” site

(a)

(b)

()

Fig. 1. Illustration of the decrement operation. (a) The [-]Jreg/jump and ATP agents are la-
beled. The two collections of agents to the right represent a single register with a value of 5
(phosphorylated proteins are lighter gray). (b) When the [-]reg/jump agent is triggered, it binds
to an ATP and a phosphorylated register protein. (c) Then it dephosphorylates the register
protein, thereby decrementing the register, releases the ATP and register protein, and signals
success

We have implemented simulated protein networks for elementary operations such
as zeroing a register, register copying, adding contents of one register to another,
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using a register to control the number of loops through a repeated sequence of agent
operations, multiplying two register contents into a third register, and computing a
modulus of a register value. Stochastic versions of any deterministic Turing machine
can in principle be obtained using dynamic self-assembly of proteins that exhibit
commonly available properties.

To illustrate how this simple set of agents can accomplish such computations, Fig.
2 shows a schematic diagram of the network of proteins required to multiply two
registers, A and B, into a third register G. Only the increment and decrement agents
are shown. Each of these agents in the actual simulation interacts with the register
proteins and ATP, as shown in Fig. 1, but these are omitted from Fig. 2 for clearer
viewing of the execution sequence itself. A solid arrow represents a pathway that a
signaling protein makes from the done site of one agent (tail of the arrow) to the trig-
ger site of the next agent (head of the arrow). A dashed arrow represents a signaling
protein’s pathway from the jump site of one agent to the trigger site of the next agent.

restore B

add B into G (and H)

Fig. 2. Schematic diagram of protein network to multiply registers A and B into register G (see
text for discussion)

The order in which the signals are propagated is indicated by a number in paren-
theses along the signaling pathway. We will describe the sequence using an example
in which registers A and B are initially set to 2 and 3, respectively, and G and H are
both 0. A start signal (1) triggers the decrement of register A, so that we now have A
= 1. We then (2) enter a loop contained in a box in the figure. In this loop, B is
decremented, (3) G is incremented, and (4) H is incremented. (It will become appar-
ent shortly why we must increment H.) The loop is repeated (5), beginning with the
decrement of B. After three passes through the loop, B =0, and G = H = 3. This loop
has the effect of adding the value of B into registers G and H. The next attempt to
decrement B will find a zero-valued B register and therefore jump (6) to the next loop
to restore B from H. In this loop, (7) and (8), H is decremented and B incremented
until H = 0 and B = 3. When we attempt to decrement H again, it jumps (9) to
decrementing A (A = 0), and then the entire outer loop, (2) — (9) is repeated, so that G



Dynamic Self-Assembly and Computation 103

=6 (= 2 * 3, the original values of A * B). On the next attempt to decrement A, it
jumps (10) to whatever the next operation might be in a more extensive calculation.

For this illustration, we have described the ideal, “correct” behavior of the net-
work. However, any time a decrement occurs, it could jump even though the register
is nonzero, due to the stochastic nature of this agent. So, in fact, there are numerous
opportunities for errors in even this simple computation.

3.2 Stochastic Computing, Errors, and Entropy

We present results of stochastic simulations of encapsulants computing
(A*B)+(C*D)+(E*F), where A, B, C, D, E, and F are initial register values. We
simulate a small population of encapsulants with identical internal component popu-
lations and examine the error rates and configurational entropy (Sconfig) Of this system
as a function of time. For this analysis, we consider two encapsulants to be in the
same configuration if all of the [+]reg and [-]reg/jump agents and signaling proteins
are in the same binding state and all of the register populations have the same associ-
ated integer value. S .5, Of these small populations can be zero when all encapsulants
are in the same configuration, so that these encapsulants are far from equilibrium. The
stochastic nature of the jump operations means that such a set of identically config-
ured encapsulants with S ,,5,=0 will not remain so, and S5, Will tend to increase
with time (but not monotonically, as we show below). The maximum S, condition
is for each encapsulant to be in a unique state.

The simulation begins with a population of ten duplicate encapsulants, but with
randomly selected initial register values. The first phase of the simulation is to copy
all register values from a single “starter” encapsulant to the other nine encapsulants,
so that they all begin the calculation with the same values in registers A through F.
This process occurs with some “yield,” i.e., there is a nonzero probability that one or
more register copy operations will produce an incorrect register value. When the
copying is completed, a synchronizing encapsulant is used to trigger the calculation.
The calculation process then proceeds to completion, also with some “yield” of cor-
rect register values. The averaged yields of final results were obtained from 220
simulations. Fig. 3 (left panel) shows the average yield for the computation as a func-
tion of ATP concentration. These results make clear that the dynamic, non-
equilibrium behavior of these encapsulated protein networks is driven by the free
energy of the ATP population. If the system does not have sufficient energy (ATP), it
cannot perform the computation correctly. Fig. 3 (right panel) shows a scatter plot of
final normalized entropy (Sconfig divided by its maximum) as a function of errors in
the final answers. These results show that ending in a more highly ordered state (low
entropy) is clearly correlated with high yields of correct computational results (low
errors), so that maintaining far-from-equilibrium configurations is the desired out-
come for these protein networks. The entropy captures all configurational differences,
including those that do not disrupt the final register values, and this produces the
scatter in the plot.
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Fig. 4. Normalized entropy as a function of time for a single computation where all of the
encapsulants are correctly copied, and all but one of the computations achieved the correct
result

The Sconsig as a function of time for a single computational run is shown in Fig. 4.
We have chosen a case where all of the encapsulants are correctly copied, and all but
one of the encapsulants achieved the correct result. Sconp, begins at a large value due
to the initial randomized values of the registers in each encapsulant. The register-
copying phase is completed at t ~ 5000, in a totally ordered configuration of encap-
sulants (Sconsig = 0). The calculation is initiated at t ~ 22000, and while each encap-
sulant is performing its calculation independent of the others, their configurations
again diverge (Sconrig = 1). Finally, all of the encapsulants reach a finished state, with
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all but one encapsulant reaching the same final state (low, but nonzero S.nsg). Thus,
this non-equilibrium process is cyclic in the Sconsig-

The tendency of these stochastic computational processes to increase their Sconfig
after a computational cycle is simply the slow equilibration of the configurational
degrees of freedom. This clearly prevents arbitrarily long computations from being
performed in the simple manner described above. The imperfect yield in the compu-
tational processes described above has some similarities to the classic problem of
communicating through a noisy channel. [12] Here we have a more general process
of noisy computing processes (state transitions) in addition to noisy information
transfer. Correct computing in general requires a mechanism for restoring Sconfig to
zero periodically, with each restoration occurring before the distribution equilibrates
too far. We are currently developing simulations of a hierarchical algorithm (i.e., in
which the encapsulants act as agents) to restore low entropy in order to correct com-
putational errors.

4 Self-Assembling Software

4.1 From Protein Networks to Self-Assembling Software

Our goal is to abstract the relevant properties of the proteins and their networks to
devise a novel self-assembling software technology. The work on protein networks
has provided valuable intuition about the important protein properties, agent design,
interactions, etc. that enable self-assembly of physical structures and execution se-
quences. It has also provided insight as to what properties of real physical systems
should be omitted for efficient software technology.

The issues of stochastics, equilibration, and error-correction discussed in the previ-
ous section are real issues for any molecular computing with protein networks that
might be attempted experimentally. However, to develop self-assembling software,
we conveniently side-step these issues by choosing not to model the non-equilibrium,
dissipative aspects of the protein interactions, and by using deterministic binding and
unbinding event times. In addition, although it is instructive to demonstrate that a
RAM machine can be constructed and a computation carried out using protein ma-
chinery, building software with the fundamental increment and decrement operations
would be inefficient and wasteful. Instead, each agent in the self-assembling software
is designed to do anything from an arithmetic operation like adding two numbers, to
reading or writing to a file, to implementing an entire algorithm.

4.2 Example: Bank Transaction

We have described the essential properties of our fundamental building blocks
(agents) and infrastructure (Section 2), and we have described how protein networks
can self-assemble a computation using those agents and infrastructure (Section 3).
We now present an example of self-assembling software, chosen for its simplicity, to
demonstrate how the protein-emulating agents can self-assemble to handle savings
account withdrawals.

Initially (Fig. 5), three agents are present, the Balance, the Withdrawal Process,
and the Primer. The Balance stores the current balance for the account ($100.00).
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The Withdrawal Process has the task of subtracting the withdrawal amount from the
current balance and updating the balance. The Primer acts as the “head” of a “poly-
mer” of completed transactions, which can be walked later by a Monthly Account
Report agent. Their binding sites are posted on the free-site list.

When a Withdrawal occurs, binding events are scheduled between its free sites and
the complementary sites of the Withdrawal Process. When the binding event handlers
are executed, the Withdrawal Process exposes a site with a key of —102. This results
in a binding event with the 102 site of the Balance (Fig. 6). When the Withdrawal
Process is bound to both the Withdrawal and the Balance simultaneously, it subtracts
the withdrawal amount (stored in the Withdrawal agent) from the current balance
(stored in the Balance agent), and saves the result back to the Balance agent. The
Withdrawal Process then changes the keys of the Withdrawal (Fig. 7), so that (1) it
will not bind again to the Withdrawal Process (which would result in subtracting the
same withdrawal again) and (2) it will bind to the Primer and leave a 103 site avail-
able for the next Withdrawal to bind to. Lastly, the Withdrawal Process hides its own
—102 site and resets to its original state. Now it is ready for another Withdrawal (Fig.
7). Note that the Withdrawal Process exposes a site to bind to the Balance only tem-
porarily. This leaves the Balance free to bind to other agents (such as a Deposit Proc-
ess or Interest Compounder) when needed.

This very simple example illustrates all of the properties of the agent described in
the Introduction. The agents have selective binding sites. When binding occurs, they
actuate and/or expose, hide, or change the keys of other sites. This results in the self-
assembly of an execution sequence (the withdrawal of funds from a bank account)
and of a data structure (in this case, a linked list of completed withdrawals).

Finally, when the Savings Account software module is completed, it is encapsu-
lated (recall that, as discussed in Section 2, an encapsulant is analogous to a cell’s
plasma membrane, isolating its contents from the external environment). Other
banking modules, such as Auto Loans and Credit Cards, are also encapsulated. Each
encapsulant has a Gate agent embedded in its surface, which selectively allows agents
to enter, based on matching keys. In the overall banking system, when a Withdrawal
occurs, its key matches only the Gate of the Savings Account module, so it enters and
undergoes the same process described above. Similarly, credit card payments enter
and undergo processing in the Credit Card encapsulant, etc. In our computational
experiments, we have implemented all of the behaviors described here. In addition
we have implemented agent and encapsulant transport into and out of encapsulants
executing concurrently with the above example.

4.3 Novel Capabilities of Self-Assembling Software

External Override. The fact that an execution sequence is self-assembled, rather
than hard-coded, leads to innovative and powerful capabilities in software developed
by this approach. One example is the “external override.” This self-assembling soft-
ware construct overrides the behavior of the existing code, and it is imposed exter-
nally. l.e., the original source code “inside” the executable is not modified; instead,
additional agents are added from the outside to effect the override. Although there
are many similarities between our agent-based approach and object-oriented methods,
the external override provides functionality that is distinct from object-oriented in-
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heritance, as it allows removal of unwanted functionality (corresponding to part of a
method) from the “outside” of the existing (compiled) software structure during run-
time. This additional flexibility may be useful for enhancing software reuse.

Fig. 5. Initially, the Balance, Withdrawal Process, and Primer agents are available for binding.
When a withdrawal occurs, the Withdrawal agent promptly binds to the matching sites of the
Withdrawal Process

Balance

Fig. 6. When the Withdrawal binds to the Withdrawal Process, the Withdrawal Process
changes one of its keys from 0 to —102. The Balance then binds with the Withdrawal Process.
The Withdrawal Process subtracts the withdrawal amount from the balance, and updates the
balance

Balance

:

01 -¥

Fig. 7. After completing the withdrawal transaction, the Withdrawal Process changes the keys
of the Withdrawal, so that (1) it will not bind again to the Withdrawal Process and (2) it binds
with the Primer, exposing a site with a key of 103 for binding later to other completed With-
drawals. Then the Withdrawal Process is ready to handle a new Withdrawal
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As an example, suppose that, after executing the withdrawal code described in the
previous section, we “realize” that a requirement was omitted: the system shall pre-
vent the withdrawal of an amount exceeding the current balance. To accommodate
this requirement, we implement an external override (not shown in the figures). We
add a Change Keys machine into the simulation, which binds to the —101 key of the
Withdrawal Process and modifies it to —106. In addition, a Verify Balance agent is
added, with keys of —101, —104, and —105. Now, when a Withdrawal (which has a
101 key) occurs, it binds with the Verify Balance agent instead of the Withdrawal
Process. The Verify Balance agent compares the withdrawal amount to the account
balance. If there are sufficient funds for the withdrawal, the Verify Balance agent
changes the 101 key of the Withdrawal to 106 and releases it, enabling binding with
the Withdrawal Process, and the transaction proceeds as before (Figs. 5-7). If there
are insufficient funds, the Verify Balance agent changes the keys of the Withdrawal
to some other values, resulting in binding with an Insufficient Funds agent instead.

Note that with our dynamic self-assembly approach, this new function was inserted
into the existing program without (a) rewriting the original source code, (b) compiling
an entire new program, or (c) shutting down the already running software.

Internal “Re-wiring” and Optimization. The external override just described illus-
trates the inherently dynamic nature of the self-assembling executable code. The
structure of the executing code is assembling and disassembling all the while it is
executing, with execution pathways that are driven dynamically by matching keys
between agents. All that is required to change the execution pathway—‘re-wire”
what the code does, or turn code on or off—is a change of keys.

Not only can the executable be re-wired from the outside with an external override,
it can also re-wire itself from the inside, both what it does and when it does it. The
code itself could be designed to detect its own properties, such as memory usage,
speed, etc., and modify its own code and/or data structures in order to optimize in a
particular way, such as using more memory in order to speed up a large calculation.
Similarly, runtime priority can be modified for multiple concurrent self-assembly
processes. Processor allocation is often implemented at the operating system level. It
is easy to allocate different amounts of processing time to concurrent processes here
by varying the future (virtual) event times associated with each process. Those with
short times will repeatedly activate more frequently.

Situation Detection. Another aspect of the dynamic nature of the executable code is
the fact that the execution sequences are self-assembled whenever binding sites “find”
each other. An agent can wait passively with its available sites on the free-site list
until complementary sites are available. They could become available immediately,
or they might not become available until a million events have been handled. We
harness this “uncertainty” to implement a self-assembling software construct called a
“situation.” Situations provide a mechanism for “sensing” whenever certain condi-
tions or events occur by providing passive agents with empty binding sites. These
binding sites correspond to the conditions of interest, and when all sites are bound,
the sensing agent is activated to report or trigger a desired response. Situation detec-
tion is asynchronous. It is also passive, in that no repeated active polling by the agent
itself is required to detect the events. It simply waits with its sites on the free-site list.
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Situations can be added at runtime to compiled code to monitor the code structure
itself. For example, the activity of other agents, their status (number of bound and
unbound sites, active or dormant), their functionality, and the numbers and types of
agents present in an encapsulant can all be determined automatically. Our agent
binding events have some similarities to asynchronous message passing between
concurrent servers, e.g., as in the JOULE language. In contrast to message passing,
our events provide bi-directional communication in which both agents “know” that
they both have been triggered, and both execute code based on this knowledge.
“Monitoring” and “querying” are special cases of the override and situation proc-
esses, and are used to inspect the code or the status of its agents. They are like the
external override in that they are implemented by inserting agents into the execution
pathway during runtime. They are like the situation in that they can sense sought-
after conditions of the running code and report on activity or on the data that are be-
ing manipulated. The functionality of the agents being monitored is not affected dur-
ing monitoring. Monitoring and querying only differ in their usage. Monitoring is
used to “keep an eye on” some aspect of the code. For example, a goal such as “re-
port every time this credit card is used in two different cities on the same day” would
be implemented as a monitor. Once the monitoring agent has detected the situation
and reported it, it passively waits for the situation to arise again. In contrast, a query
is used to determine something immediate, and then self-destructs and is removed
from the simulation. For example, if a program is using up a tremendous amount of
CPU without producing any output, a query can be constructed to determine what the
program (which was perhaps written by another programmer) is doing right now.

S Summary

In this paper, we have shown two ways in which dynamic self-assembly can be used
to perform computation, via stochastic protein networks and self-assembling soft-
ware. We described our protein-emulating agent-based simulation infrastructure,
which is used for both types of computations. The agents have a few properties suffi-
cient for dynamic self-assembly: they have selective binding sites, and when binding
occurs, they actuate and/or expose, hide, or change the keys of other sites. Examples
of protein-network-based computation and self-assembling software were presented.
We described some novel programming constructs that are enabled by the inherently
dynamic nature of the self-assembling executable code: the ‘“‘situation”, the “external
override” for software reuse, and the ability to monitor or query preexisting code as it
executes. These novel capabilities demonstrate that the self-assembling software
approach is dynamic and adaptable. Current and future work will focus on the issues
of robustness, evolutionary (autonomous) adaptability, and self-healing, as well as
code generation from user-specified goals.

We thank Gerry Hays, Wil Gauster, and Julie Phillips for their support of this re-
search effort. Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s National
Nuclear Security Administration under Contract DE-AC04-94AL85000.
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