
Scalable Trajectory Methods for On-Demand Analog
Macromodel Extraction

Saurabh K Tiwary
Carnegie Mellon University

Pittsburgh,PA USA

stiwary@ece.cmu.edu

Rob A Rutenbar
Carnegie Mellon University

Pittsburgh,PA USA

rutenbar@ece.cmu.edu

ABSTRACT
Trajectory methods sample the state trajectory of a circuit as it
simulates in the time domain, and build macromodels by reduc-
ing and interpolating among the linearizations created at a suitably
spaced subset of the time points visited during training simulations.
Unfortunately, moving from simple to industrial circuits requires
more extensive training, which creates models too large to interpo-
late efficiently. To make trajectory methods practical, we describe
a scalable interpolation architecture, and the first implementation
of a complete trajectory “infrastructure” inside a full SPICE en-
gine. The approach supports arbitrarily large training runs, auto-
matically prunes redundant trajectory samples, supports limited hi-
erarchy, enables incremental macromodel updates, and gives 3-10X
speedups for larger circuits.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development

General Terms
Algorithms, Design

Keywords
Circuit, trajectory method, analog, macromodel, SPICE

1. INTRODUCTION
In the digital world, a hierarchy of established modeling abstrac-

tions allows us to move with relative ease from RTL to logic to
circuit, and back up for verification. The situation in the analog
world is much less satisfactory. Today, we design and verify at sys-
tem level using simple functional models [1] [2], and can employ
recent synthesis tools to render completed analog circuits for each
block [3]. But we cannot reassemble and simulate the entire sys-
tem at the device level to verify it: these problems are much too
large. Nevertheless, some form of detailed system verification is
essential: we cannot predict how subtle analog non-idealities may
conspire to create problems until all blocks are assembled.

The standard solution is to use analog macromodels. Macromod-
els are simplified circuits which capture just the essential behaviors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

of some target circuit, and are fast enough to support full system
simulation. Today, the tools we have to create such macromodels
are extremely ad hoc. The most common strategy parameterizes a
simple circuit template via curve-fitting to match relevant behaviors
of the target circuit. Unfortunately, just as analog circuits them-
selves are most often created by experts, so too are their macro-
models. Indeed, the larger problem is that for any given circuit–and
especially custom circuits–we often lack a suitable template, fitting
recipe, or modeling expert. In an ideal world, we should be able to
extract macromodels on demand, as needed.

The increasing number of mixed-signal designs only magnifies
this problem. The essential difficulty is that we seek reduced mod-
els of nonlinear behaviors. We have today a rigorous foundation for
reduced order linear modeling [4] [5]. However, we lack any uni-
fied theory for the general nonlinear case, although there is promis-
ing work for important sub-problems, e.g., Volterra models of weakly
nonlinear behavior [6] [7] [8].

In this paper, we focus on a class of macromodels called trajec-
tory methods [9] [10] [11] [12] [13]. Trajectory methods sample
the state trajectory of a circuit as it is simulated in the time domain,
and build a macromodel by reducing the linearizations created at an
appropriately chosen subset of the time points visited during train-
ing simulations, and then interpolating among them. Interpolation
combines these reduced linearizations to predict the dynamic be-
havior of the circuit at any new point in the state space not visited
during prior training. Trajectory methods can build macromodels
on demand: both the “template” and the “fitting” come directly
from training runs. Results to date have been extremely promis-
ing. However, there are several significant obstacles to practical
application. First, existing methods scale poorly, as we move from
simple to industrial circuits. Larger circuits require more training,
and can visit trajectories requiring 100X more linearizations, over-
whelming the existing interpolation algorithms. Second, no prior
methods have been demonstrated inside a complete SPICE engine,
with full support for modern device models. Analog methodologies
rely heavily upon carefully qualified device models and simulators;
to be regarded as trustworthy, we must demonstrate that trajectory
models can be integrated in the same simulators.

In this paper, we describe a novel, scalable trajectory method
for analog macromodeling, its implementation in a full SPICE en-
gine (Berkeley SPICE3f5 [14]), and the essential numerical issues
involved. Sec.2 gives some basic background on trajectory meth-
ods, and the features missing in prior efforts. Sec.3 describes the
elements of our scalable formulation: fast nearest neighbor (NN)
based interpolation, automatic trajectory sample pruning, low-overhead
incremental model updating, and hierarchical invocation of trajec-
tory models. Sec.4 shows experimental results for a range of cir-
cuits. Finally, Sec.5 offers concluding remarks.

25.3

403

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357248459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. BACKGROUND

2.1 Trajectory-Based Models
Circuit simulators represent a circuit as a set of nonlinear differ-

ential equations. In state-space form, these can be written as:

dg(x)

dt
= f(x) + B(x)u; y = CT x (1)

where x = x(t) ∈ RN is a time-varying state vector representing
node voltages and branch currents; g : RN → RN and f : RN →
RN represent nonlinear charge/flux and current elements, respec-
tively; B = B(x) is a state-dependent N × M input matrix (but
often taken as constant, independent of system state); u ∈ RM is
a time-varying vector of inputs to the system; and C is an N × K
matrix mapping internal state to the time-varying output vector
y ∈ RK . We simulate the circuit by solving this differential equa-
tion, for a given input signal u = u(t), on a specified time interval
t ∈ [0, T], for a given initial state x0, thereby computing y(t).

The twin difficulties of simulating complex circuits are: (a) the
order (N) of the resulting equations is large, and (b) the nonlinear-
ities associated with each transistor require many expensive model
evaluations as the circuit moves through its state-space. Together,
these make large circuits with complex models slow to simulate.
We can use trajectory methods to attack these problems in two
ways.

First, we reduce the dimensionality of the overall system of equa-
tions. We approximate the real N -dimensional state-vector x with
a much smaller vector z of order q << N . The idea is to approxi-
mate the original system by carefully selecting a reduced subspace
wherein most of the dynamics of the system occur. This can be
done via projection methods, by constructing a suitable reduction
matrix V of size N × q whose columns define a basis in the re-
duced state-space. So, we approximate states x from the original
state space by reduced states z: x � x̂ = V z. Reduction tech-
niques combining Krylov [15] and TBR [9] methods can be em-
ployed here.

Second, we replace expensive nonlinear model evaluations with
simpler lookups and interpolation. Since evaluating f(.) and g(.)
is expensive, we approximate these as a simple first-order Taylor
series, expanded around some state x0, for example:

f(x) � f(x0) + A0(x − x0); g(x) � g(x0) + G0(x − x0) (2)

where A0, G0 are the Jacobians of f and g respectively at x0. (One
can also choose a second-order expansion, at additional complex-
ity; see [11].) Expressing Equation (1) now in terms of the reduced
state vector z, and this Taylor expansion, the final reduced system
becomes:

G0r

dz
dt

= V T f(x0) + A0r(z − z0) + B0ru
y = CT

r z
(3)

where A0r = V T A0V ;G0r = V T G0V ;B0r = V T B(x0);Cr =
V T C. Figure 1 illustrates how the interpolation mechanism works.
When a nonlinear system is excited by an input signal u(t), it
moves along a path in its state-space called a trajectory. The sys-
tem is sampled at different points lying on its trajectory, thereby
generating local linearizations (i.e., Jacobians) that are easily ob-
tained during simulation. These capture the dynamics of the system
around each sampled state-space point.

If we linearize at appropriately spaced points on the trajectory,
and then reduce the order of these linearizations, we can approxi-
mate the dynamics at any new point in the space by interpolating
among these saved linearized reduced order equations. Figure 1
shows a 3-dimensional state-space (N = 3); the spheres are the

1

2 3 4

5

6 7

8

9

s1

2 3 4

5

6 7

8

9

s

Full state-space

x

Trajectory

Sampled Models
on the trajectory

Reduced state-space

Model generated at new
point through interpolation

Figure 1: Models generated at sampled points on the trajec-
tory of a system in its state-space. State-space equation at a
new point in state-space is generate through interpolation of
the reduced order sampled models.

regions in which (we hope) the sampled linearizations are effective
in capturing the dynamics of the circuit; we reduce each of these
to order two (q = 2). As the system moves through the reduced
state space, we re-evaluate (interpolate) the state-space equation
and solve it to evolve the system to a new point in the state-space.

Suppose, reduced linearizations have been generated at s points
on the trajectory. Interpolation builds a single effective lineariza-
tion for the new point x in state space as a weighted sum of these s
stored linearizations.

wi(z) =
(exp(zi − z)2)−k

sX
i=1

(exp(zi − z)2)−k

for i=1,2,..,s (4)

where, wi(z) is the weight contribution of the ith linearization on
the trajectory, for the point z’s state-space matrix in the reduced
order state-space. We used a value of k = 10 in our implementa-
tion. The weighting function [10][16] (Equation 4) is based on the
heuristic that the state-space equations for the points lying inside
the spheres in Figure 1 are similar to the equation for the linearized
point at the center of the respective spheres. Interpolation lets us
approximate the overall state-space equation as

8>>>>>><
>>>>>>:

d
dt

((
sX

i=1

wi(z)Gir)z +
sX

i=1

V T (g(xi) − Gixi)wi(z))

= (
sX

i=1

wi(z)Air)z +
sX

i=1

V T (f(xi) − Aixi)wi(z) + Bu

y = CT
r z

(5)

where,

Gir = V T GiV , Air = V T AiV , Cr = CT V and
sX

i=1

wi(z) = 1.

This formulation has been referred to as piecewise linear trajectory-
based model order reduction [10]. The “piecewise linear” derives
from the first-order Taylor expansion and the weighted linear com-
bination form for the interpolation. The strategy works well when
we have enough training trajectories to create a sufficient density of
“overlapping” linearizations, as represented by the spheres in Fig-
ure 1, and when the dynamics of the circuit can be approximated
with much reduced versions of these linearizations. In several ex-
periments to date, these seem to be viable assumptions.

404

2.2 Challenges for Trajectory Methods
We have implemented some of these methods, and in the course

of applying them to several circuits, we discovered a variety of
practical shortcomings:

• Fragility: Using a simplistic training strategy to generate tra-
jectory macromodels can create very fragile models. For example,
most prior efforts train with at most a handful of simple waveforms.
It is not difficult to find a test-case where such generated macro-
models break. Figure 2 shows an example where the output of the
macromodel differs significantly from that of the circuit for a test
input waveform which was different from the training waveform.

(a)

(b)

Figure 2: (a)Non-linear transmission line circuit schematic. (b)
Waveform comparing the model and the circuit’s response for
a test input of 100A. The model was trained for an input of 1A.

• Scalability: The obvious answer to the above problem is to
use a more rigorous training scheme. We find this works well, but
the problem with a richer training set is that it can create a much
larger set of linearized trajectory points. It is easily possible to
generate 104 such points, i.e., 100x more than previous training
methods. Earlier approaches that interpolate using all the sampled
linearizations are easily overwhelmed. We need an interpolation
scheme that has complexity much lower than O(N).

• Hierarchy: We macromodel so that circuit-level models can
be inserted in system-level contexts and simulated. Previous ap-
proaches demonstrated the feasibility of building trajectory models
for an individual circuit, but not of inserting such models back into
the simulator in a system context. We need an approach to handle
such hierarchy.

We address all these problems in the following section.

3. SCALABLE TRAJECTORY MODELING
We have implemented a scalable trajectory modeling framework

inside Berkeley-SPICE3f5 (“SPICE3”) with full BSIM3 support.
A simulateable circuit netlist is all that is required from the user to
generate the macromodel for a given circuit. The generated macro-
model can be used in another SPICE netlist as a new SPICE ele-
ment ready to be simulated along with other circuit elements. We
describe the essential pieces of this formulation in this section. Al-
gorithm 1 shows the pseudo-code for the overall macromodeling
flow.

3.1 Data Extraction from Simulator
Our first problem is mainly one of bookkeeping: we need a clas-

sical state-space formulation in order to build the reduction matri-
ces we need. Most SPICE engines, including SPICE3, do not create
the necessary matrices directly. We must remedy this.

As listed in lines 3-5 of Algorithm 1, we extract the conduc-
tance(G) and capacitance(C) matrix for the circuit at each Newton-
Raphson converged time-point during the transient simulation. SPICE3
does not use the state-space formulation to solve the circuit equa-
tion; it uses Modified Nodal Analysis (MNA) instead. Thus, ca-
pacitors and inductors are represented using their Thevenin/Norton

Algorithm 1 Pseudo-code for macromodel generation
1: for all input training waveforms do
2: perform transient simulation in SPICE3f5
3: for all Newton-Raphson converged time-steps do
4: extract G and C matrix and I vector for ckt
5: end for
6: end for
7: create reduction matrix(V)
8: for all sampled state-space point do
9: reduce order of state-space equation using V

10: end for
11: prune the number of models
12: create database for efficient nearest-neighbor look-up

equivalent companion models for trapezoidal integration approxi-
mation [17]. To extract the linearized G and C matrices, we visit
the model evaluation files for all the circuit elements (e.g., resistor,
capacitor, transistor model (BSIM3) etc.) before they are stamped
into a Y v = J format. The mechanics are straightforward; roughly
speaking, we visit each element in a circuit netlist at the successful
convergence of a time-step during transient analysis and stamp the
values of capacitance and conductance for that particular element
into separate G and C matrices. We also stamp the current flowing
at each node in the circuit into a vector. Figure 3 shows the im-
plementation differences between a SPICE-like MNA matrix setup
and the state-space based version we need.

(d)

Vin

G1

G3

G21 2 3 1 2 3

(
C1 0
0 C2

)
d

dt

(
v2
v3

)
= −

(
G1 + G2 −G2
−G2 G2 + G3

) (
v2
v3

)
+

(
G1
0

)
vin

G1 −G1 0 1
−G1 (G1 + G2 + Geq1) −G1 0

0 −G2 (G2 + G3 + Geq2) 0
1 0 0 0

v1
v2
v3
Iin

 =

0
Ieq1
Ieq2
V in

where,

Ieqk = i(t) +
2Ck
∆t

vCk (t) Geqk =
2Ck
∆t

(a) (b)

(c)

G3Vin

G1 G2

C2C1 Ieq 1 Geq 2Geq 1 Ieq 2

Figure 3: (a)An R-C network. (b)Its equivalent circuit with
companion models for capacitors used for stamping of the
MNA matrix. (c)State-space equation for the R-C network.
The states are the voltage values at the nodes of the capacitor.
(d) MNA matrix corresponding to (b).

After extracting the models, we generate the reduction matrix(V)
using Krylov and TBR based methods [9] (line 7 of Algorithm 1).
and generate the reduced order models (lines 8-10).

3.2 Model Pruning After Training
At this point, we have reduced linearizations for each of the sam-

pled trajectory points from training. Our problem is that we may
have too many such points for efficient interpolation. Earlier efforts
typically show results with a few tens of such points; we routinely
generate 10,000 such points with more rigorous training. Thus, as a
next step, we propose to prune these linearizations, removing those
we are less likely to find useful.

After the generation of the reduced linearizations (Steps 8-10
of Algorithm 1), we look for similar linearizations in our training
database. We define two linearizations (i.e., two reduced matri-
ces) to be similar if (a) the trajectory points about which they were

405

generated are sufficiently close, and (b) the normalized distance be-
tween their state-space matrices (L2 norm) is less than some value
ε. More precisely, linearizations matrices Gir , Air and Gjr , Ajr

corresponding to two sample points xi and xj are said to be similar
if

||xr
i − xr

j ||
||xr

i ||
≤ ε and (6)

||Gir − Gjr ||
||Gir||

≤ δ1,
||Air − Ajr ||

||Air||
≤ δ2 for ε, δ1, δ2 > 0 (7)

where || · || is the standard L2 vector/matrix norm, i.e. the com-
ponentwise sum of squared element values. Even when we train
a large set of systematically generated waveforms, there are in-
evitably many instances when the circuit moves through an already
visited region of the state space. Hence, sample-points in such
regions provide no new information about the circuit dynamics.
Model pruning is intended to reduce this redundant information. To
prune, we look for similar linearizations in the trajectory database.
Given a well-defined similarity metric, this is just a standard clus-
tering/classification problem, solvable via a variety of data mining
techniques. The result of the clustering step is a medium sized set
of clusters (eg. for 10,000 points, 20-30 large clusters.) This is
done via Gaussian Mixture Models based on Bayes classifiers and
expectation maximization [18]. Roughly speaking, Gaussian mix-
ture models (GMMs) optimize the likelihood that any given collec-
tion of data points are generated by a mixture of Gaussian distri-
butions located appropriately in the state space. We choose how
many mixtures we want to use; the algorithm places/orients/shapes
the Gaussians so that the natural clusters in the data are each cov-
ered by one Gaussian.

Once the data-points are clustered into chunks of size 300-500,
each of the clusters is reclassified into smaller clusters of size n
where n is usually between 2-10. This is done using agglomer-
ative clustering. It is a method for hierarchical clustering where
we start with single element clusters and then progressively refine
each cluster by merging the closest elements using a distance metric
(Euclidean in our case). The method is similar to the well known
Kruskal’s algorithm for generating a minimum spanning tree by
greedy merging of forests. We use the average linkage form of ag-
glomerative clustering, wherein we represent a cluster having more
than one element by a point which is the centroid of its member ele-
ments. We use this two-step strategy - GMM based clustering into a
few large clusters, followed by fine-grain agglomerative clustering
because the quadratic complexity O(N2) of purely agglomerative
clustering is too inefficient for large sets of trajectory points.

Once we have these smaller clusters, we try replacing all the
points of these small clusters by a new linearization whose sample
point and state-space matrices are the simple, element-wise arith-
metic means of all the linearizations in that particular cluster. We
add this average sample point to our macromodel and check for
similarity criteria between this new point and all the members of
its corresponding cluster. If the similarity criteria is met, we throw
away the member sample-point, otherwise, we keep it as a part of
our macromodel.

3.3 Efficient Interpolation
Even after the model pruning step, the number of linearizations

in our macromodel is large. Hence, it is computationally inef-
ficient to use Equation 5 in its direct form for simulation of the
macromodel. Computing w′

is would take O(N) time which means
that the model evaluation time would grow linearly with respect to
the number of linearized models. Another point worth noting in
Equation 4 is that the final weights are very skewed towards the
points very close to z0. In fact, during simulations it was observed

that only the first 5-10 closest points had any observable numerical
weights associated with them. The rest all have their w′

is set to 0
due to the highly centered kernel weighting function (Equation 4).

Therefore, it is much more efficient to compute the weights and
generate the state-space equations using a few nearest neighbors,
rather that using all of the s linearized models. In other words, since
the distance weighting using Equation 4 already “zeroes” most of
the trajectory linearizations that are sufficiently far away from new
state-space point x, we propose, for efficiency, that we should in-
stead only interpolate from a suitably chosen set of, say, k-nearest
neighbors. High-dimensional nearest neighbor (NN) lookup is a
well studied area. Indeed, the most obvious solution is to employ a
k-d tree [19] to reduce the interpolation complexity from linear to
logarithmic. However, we can go further, and reduce the practical
complexity even more by employing approximate nearest neigh-
bor (ANN) lookup strategies. ANN schemes trade-off determin-
ism for speed: quickly returns all nearest neighbors within distance
d if we allow some “tolerance” on the value of d. To be precise,
given a set of n points P = {p1, ..., pn} in d-dimensional space,
any Minkowski distance metric d(p, q) denoting the distance be-
tween two points and any real ε > 0; p ∈ P is defined as an
ε-approximate nearest neighbor of the query point q if

d(p, q) ≤ (1 + ε)d(p′, q) ∀p′ ∈ P (8)

It has been shown [20] that the ε-approximate k-nearest neigh-
bors of q can be computed in O(klogn) for k ≥ 1 but the hidden
costs in this complexity analysis are much smaller.

In our case, since, only the k (∼ 5-10) nearest neighbors have
non-zero weights associated with them. Thus, if we query ANN
for k′(∼ 20) > k nearest neighbors, the result of this conservative
query will include the k nearest neighbors as well, with very high
probability. We can thus use Equation 4 with s set to k′ to compute
the weights and then to finally generate the state-space equation at
z0 using Equation 5. During implementation, this approach turned
out to be very efficient. For a 10-fold increase in the number of
linearized models, the search time for k-nearest neighbor increased
by less than a factor of 2.

3.4 Incremental Model Update
An attractive, and somewhat surprising side-benefit of the trajec-

tory based methodology is the ability to support incremental model
updates at negligible cost. That is, if the macromodel’s output fails
to produce the same waveform as that of the target circuit for a
particular input waveform due to insufficient training, we can sim-
ply add the linearization points for the problematic input waveform
to our model. This will update the macromodel to handle the rel-
evant non-visited regions of the circuit’s state-space during inade-
quate prior training. We do not have to retrain and rebuild the entire
macromodel from scratch.

3.5 Handling Hierarchy
Our implementation of the macromodeling methodology into SPICE3

also allows for hierarchical simulation. Once a macromodel for a
particular circuit has been extracted, it can be inserted back into a
new system-level SPICE netlist as a replacement to the transistor
level circuit. For this, a new SPICE element similar to resistor, ca-
pacitor etc. has been created for the macromodel. The macromodel
element is treated like a Voltage Controlled Voltage Source (VCVS)
by the primary SPICE engine during stamping of the MNA ma-
trix [16]. Figure 4 shows the block-diagram for the macromodel’s
model evaluation function. The primary SPICE engine passes the
input voltage and present time to the model evaluation function.
The macromodel stores its position in the state-space at the pre-

406

vious successful time-point. With the help of Approximate Near-
est Neighbor queries and Equation 5, it computes the interpolated
state-space equation. Then, using the time-step information from
the primary SPICE engine, it solves the differential equation based
on trapezoidal integration using a custom dense matrix solver. The
solution pushes the current state-vector to a new point in the state-
space and produces an output. Also, since Equation 5 is a function
of the current position in the state-space as well, thus, we need to
iterate to converge to a solution for a particular time-point t. Once,
convergence is achieved, the output voltage value is passed back to
the SPICE engine to be stamped in its MNA matrix. In case of non-
convergence, a flag is set which forces the primary SPICE engine
to reduce its time step. [16]

Vcontrol
+
- Vout = F(Vcontrol)

Gr Cr

Info from SPICE time-step
integrator – told, ∆t

New stamps for this model
back into SPICE matrix

Trajectory samples
and lookup engine

Reduced linearized
interpolation matrices

VCVS

SPICE MNA
matrix

Custom (Dense)
Matrix Solver

Interpolator
(time step integ)

Figure 4: Block diagram showing how a generated macromodel
gets simulated as a circuit element inside SPICE.

The present implementation of the model for system-level sim-
ulation does have one notable gap: we do not support models for
input/output loading for the re-inserted VCVS element. Our current
work focuses on efficient lookup/interpolation schemes for Zin and
Zout as a function of the circuit’s location in its state-space.

4. EXPERIMENTAL RESULTS
The complete macromodeling methodology as has been discussed

in the previous sections has been implemented into SPICE3. To
the best of our knowledge, this is the first SPICE-level implemen-
tation of trajectory methods with full BSIM3 support. Also, this
is the first time where the user can re-insert the generated trajec-
tory macromodel into a SPICE netlist for using the macromodel
for faster system-level simulations in the same SPICE engine.

We present three trajectory macromodel results in this section:
a complex opamp, a hierarchical circuit in which the opamp is re-
placed by its macromodel and a small example of easy incremental
model update. First, however, we return to the still open problem
of how to train these models in a more systematic way. We need a
rigorous training scheme to create a robust macromodel. For this,
we use a series of input waveforms with different shapes (viz. sinu-
soids, square-waves and chirps), frequencies and amplitudes. The
amplitudes and frequencies for training are selected by predicting
the range of waveforms that the circuit would encounter in practice.
For example, an opamp designed for a 2.5V power supply would
be trained across a range of input waveforms from 1µV to 1.25V
(assuming it is biased at the mid-point). Prior knowledge of more
restrictive input waveform would result in fewer sampled points
in state-space (linearized models) and hence better speed-efficient
macromodels.

The circuit under test (Figure 5) is a differential folded-cascode
opamp with common-mode feedback stage (CMFB). Figure 6 com-
pares the output of the circuit and the macromodel under the pres-
ence of power supply noise. The trained macromodel had ∼10000
linearization points which were reduced to ∼5000 through model

Vout+

Vss

Vdd

Vout−Vin+ Vin−

Figure 5: Circuit schematic of the folded-cascode opamp.

pruning. The model generation and model pruning took around 2
hours on a 1.6GHz machine with 256MB of RAM. The input to the
circuit is a 0.02V, 100kHz saw-tooth test-waveform. To stress the
model, we add power supply noise as a 40mV sinusoid at 10MHz.
As can be seen from the zoomed-in picture (Figure 6), the output
waveform produced by the macromodel matches that of the original
transistor level circuit almost perfectly. We observed a speedup of
∼9.4X. The transistor circuit used 11.3% of the machine’s 256MB
RAM. The maximum memory usage by the macromodel with the
complete set of (∼10K) linearization points was 55.0%.

0 0.5 1 1.5

x 10
−5

0

0.5

1

1.5

2

2.5

7 7.2 7.4 7.6 7.8 8

x 10
−6

2.29

2.3

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39
Vout

Time

Figure 6: Plot comparing the output waveforms for the folded-
cascode opamp of Figure 5 and its macromodel in the presence
of power-supply noise. The zoomed in plot on the right shows
good match between the two waveforms.

Table 1 highlights the importance of a scalable interpolation scheme.
We show the inner loop time (in milliseconds (ms)) taken to inter-
polate the dynamics for one time point in the previous opamp cir-
cuit for three differently sized trajectory databases. The raw train-
ing data produces ∼ 10k points, we can use our pruning to reduce
this to ∼ 5k points. A different, much more abbreviated training
run is used to generate the model with ∼ 1k points. As we can
see, the approximate nearest neighbor strategy is about one order
of magnitude faster than the conventional k-d tree and three orders
of magnitude faster than the linear lookup proposed in the original
development of the trajectory method.

Table 1: CPU-time comparisons for the interpolation schemes.
Number of Linear k-d Tree ANN

Points Interpolation (ms) (ms) (ms)
975 28.67 1.31 0.23
4833 142.79 2.89 0.25
9653 272.28 4.86 0.30

As the second experiment, we now show that a macromodel can
be used as a replacement for the transistor-level circuit in a system
level context. The circuit which is used is a sample-and-hold circuit
from a pipelined analog to digital converter. It uses the CMFB
opamp (Figure 5) as one of its constituent blocks. Two simulations
are performed. One with transistors in all the blocks and the other
with all circuit elements kept the same except for the opamp which
is replaced by our trajectory macromodel. The waveforms at the
output of the sample-and-hold block have been plotted in Figure

407

7. As can be seen, there is very close agreement between the two
simulation outputs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
7

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5
model
circuit

Vout

Time

’ 1 φ 1’

φ 2

φ 2

φ 2’

φ 2’
φ 2

φ 2

φ 2’

Vin+

Vin-

Vout+

Vout-

Vcm

φ 1

φ 1

φ 1

φ

8.5 8.52 8.54 8.56 8.58 8.6 8.62 8.64

x 10
8

0.19

0.18

0.17

0.16

0.15

0.14

Figure 7: Waveform comparisons for the sample and hold out-
put with the opamp replaced by its macromodel in one of the
circuits. The waveforms are almost indistinguishable.

Due to the presence of other circuit elements along with both
the circuit and transistor level opamp in this system-level simula-
tion example, smaller speed-up gains (∼ 3.8X) were observed.
The simulation speed-up numbers are expected to increase with the
increase in the size of the circuit being macromodelled. Also, im-
provements in our dense matrix solver should result in better sim-
ulation run-times. Presently, around 80% of the simulation time is
spent in model interpolation and matrix solve.

For our final experiment, we trained a macromodel for a simple
two-stage opamp circuit (Figure 8(a)) with input waveforms with
frequencies upto 100kHz. However, during testing, we used an in-
put sinusoid of frequency 10MHz. As can be seen from Figure
8(b), the output waveforms differ for the circuit and the macro-
model. This was because the high frequency test waveform excited
the circuit to regions of its state-space where the macromodel had
no representative linearization points. In the second pass, we added
the linearization points corresponding to the failing high frequency
input waveform to our macromodel and then simulated both the cir-
cuit and the macromodel. From Figure 8(c), we can observe that
the two waveforms are indistinguishable.

5. CONCLUSIONS
We have presented a scalable trajectory-based modeling method-

ology for generating on-demand macromodels for analog circuits,
and the first implementation of a complete trajectory “infrastruc-
ture” inside a SPICE engine with full BSIM3 support. The ap-
proach supports arbitrarily large training runs, automatically prunes
redundant trajectory samples, supports limited hierarchy, enables
incremental macromodel updates, and gives 3-10X speedups for
larger circuits. Our ongoing work focuses on both algorithmic and
engineering implementation improvements to our core trajectory
engine. We believe, this work will be an excellent platform from
which to propagate trajectory models into more widespread use.

6. ACKNOWLEDGMENTS
We would like to thank Jacob White and Dmitry Vasilyev (MIT)

and Paolo Nenzi (University of Rome) for the fruitful discussions
that have helped shape this work to its present form.

Vbias

Vin

Vdd

Vss

Vout
0 1 2

x 10
−7

0

0.05

0.1

circuit
model

0 1 2

x 10
−7

0

0.05

0.1

Time

Vout

Vout

(c)(a)

(b)

Figure 8: (a) Simple two-stage opamp circuit schematic (b) Cir-
cuit and macromodel’s output waveform for incomplete train-
ing (c) Circuit and macromodel’s output waveform after incre-
mental model update.

7. REFERENCES
[1] M.Takahashi, K.Ogawa, and K.Kundert. VCO jitter simulation and

its comparision with measurements. In ASP-DAC, 1999.
[2] S.K.Tiwary, S.Velu, R.A.Rutenbar, and T.Mukherjee. Pareto optimal

modeling for efficient PLL optimization. In Modeling and Simulation
of Microsystems, Nanotech, pages 195–198, 2004.

[3] G.G.E.Gielen and R.A.Rutenbar. Computer-aided design of analog
and mixed-signal integrated circuits. In Proc. of IEEE, Vol:88
Issue:12, pages 1825–1854, 2000.

[4] L.T.Pillage and R.A.Rohrer. Asymptotic waveform evaluation. In
TCAD, pages 352–366, 1990.

[5] A. Odabasioglu, M. Celik, and L.T. Pileggi. PRIMA: Passive
reduced-order interconnect macromodeling algorithm. In TCAD, Vol
17, No 8, pages 645–654, 1998.

[6] P.Wambacq, G.Gielen, and W.Sansen. Interactive symbolic distortion
analysis of analogue integrated circuits. EDAC, pages 484–488, 1991.

[7] Joel Phillips. Projection frameworks for model reduction of weakly
nonlinear systems. In DAC, pages 184–189. ACM Press, 2000.

[8] Peng Li and L.T.Pileggi. NORM: compact model order reduction of
weakly nonlinear systems. In DAC, pages 472–477, 2003.

[9] D.Vasilyev, M.Rewienski, and J.White. A TBR-based trajectory
piecewise-linear algorithm for generating accurate low-order models
for non-linear analog circuits and mems. DAC, pages 490–495, 2003.

[10] Michal Rewienski and Jacob White. A trajectory piecewise-linear
approach to model order reduction and fast simulation of nonlinear
circuits and micromachined devices. In TCAD, pages 155–170, 2003.

[11] Ning Dong and J.Roychowdhury. Automated extraction of broadly
applicable nonlinear analog macromodels from SPICE-level
descriptions. In CICC, 2004.

[12] Ning Dong and J.Roychowdhury. Piecewise polynomial nonlinear
model reduction. In DAC, pages 484–489, 2003.

[13] M.Rewienski and J.White. A trajectory piecewise linear approach to
model order reduction and fast simulation of non-linear circuits and
micromachined devices. TCAD, pages 155–170, 2003.

[14] T.Quarles. The SPICE3 implementation guide. In UCB/ERL M89/44,
April 1989.

[15] R.W.Freund. Krylov-subspace methods for reduced order modeling
in circuit simulation. Journal of Computational and Applied
Mathematics, 2000.

[16] S.K.Tiwary. Scalable trajectory methods for on-demand analog
macromodel extraction. In Phd Thesis (in preparation), CMU, 2005.

[17] Pillage, Rohrer, and Visweswariah. Electronic circuit and system
simulation methods. McGraw-Hill, 1995.

[18] A.P.Dempster, N.Laird, and D.Rubin. Maximum-likelihood from
incomplete data via the EM algorithm. In J. of Royal Statistics
Society, B39, 1977.

[19] J.H.Friedman, J.L.Bentley, and R.A.Finkel. An algorithm for finding
best matches in logarithmic expected time. In ACM Trans. on
Mathematical Software 3(3), pages 209–226, 1977.

[20] S.Arya, D.M.Mount, N.S.Netanyahu, R.Silverman, and A.Wu. An
optimal algorithm for approximate nearest neighbor searching. In
ACM-SIAM Symp. on Discrete algorithms, pages 573–582, 1994.

408

