
A Zoned Architecture for Large-Scale Evolution
Ray Welland

Department of Computing Science
University of Glasgow

Glasgow, G12 8QQ, UK
+44 141 330 4968

ray@dcs.gla.ac.uk

Malcolm Atkinson
Department of Computing Science

University of Glasgow
Glasgow, G12 8QQ, UK

+44 141 330 4359

mpa@dcs.gla.ac.uk

ABSTRACT
This position paper describes our notion
of zones to support the incremental
evolution of persistent application
systems. We focus on the motivation for
our work and the basic concepts
underlying our zoned architecture
(ZEST).
Keywords
Software architecture, zones, evolution, persistent
application systems.

1 . INTRODUCTION
The focus of our work is the evolution of large-scale and
long-lived application systems which we refer to as
Persistent Application Systems (PAS) [1]. Such systems
are inherently complex and heterogeneous, and in order to
support the incremental evolution of a PAS we introduce
the notion of zones. A zone is a logical subdivision of a
PAS, independent of physical constructs, and will normally
correspond to a partition of the management structure of the
organisation which the PAS supports. We expect zones to
evolve largely autonomously except at the critical
boundaries where they exchange information. We believe
that the identification and description of zones makes the
evolution of a PAS a more tractable problem because of the
focus on a small number of critical features, abstracting
away from much of the implementation detail.

An architecture, ZEST (Zoned Evolvable Software
Technology), is introduced that helps software engineers to
manage and achieve evolutionary maintenance steps in a
PAS. ZEST focuses on the interactions between zones. It
provides mechanisms for describing these interfaces,
generating code for the transmission of data between zones,
and supporting the incremental evolution of these
interfaces. In this paper we will discuss the motivation for
our work, introduce the basic concepts of ZEST, and the
philosophy underpinning it. We will draw our examples
from a health care system that inspired us to propose this
architecture.

1 . 1 Motivation
The dominant activity in the software industry is
maintenance. In very large systems it is impractical for
software engineers to develop a knowledge of the whole
system in order to accomplish changes in a safe and timely
manner, yet it is still essential that new components or
changed components operate correctly in the existing
context. Using ZEST we seek to identify the relevant
logical structure within a PAS and to automate the
insertion of adaptive components that limit the propagation
of the effects of a change.

ZEST focuses attention on a partial description of a PAS.
It is infeasible to describe every aspect of a typical PAS,
but it is realistic to incrementally describe the aspects of the
system that are relevant for a particular evolutionary step.
Cumulatively, that process will describe more and more of
a PAS and hence the context of future changes, but only at
the coarse grain that is the concern of ZEST and only for
the information flows that the system maintainers consider
relevant. We postulate a notional role, PAS architect, who
describes this structure, though in reality it may often be
performed incrementally by the members of teams who
design and implement changes.

We therefore arrive at three requirements for the ZEST
architecture; it should:

• cope with the typical properties of a PAS, namely scale
and heterogeneity;

• be applicable when changes are being made to existing
systems; and

• be definable incrementally while still providing benefits
when it contains only a partial description of a PAS.

1 . 2 Basic concepts
The ZEST architecture is an independent description of a
PAS that is explicitly constructed by software engineers,
i.e. it is not derived automatically from software
components. In order to accommodate heterogeneity, to
support description of planned subsystems and to focus on
critical properties, automatic derivation is precluded.

ZEST describes a partitioning of the PAS into zones and a
definition of the information flow between zones. This
information flow is defined in terms of gateways. A zone
is a logical partition of a system, which should reflect the
managerial structure of the organisation, which the PAS
supports. A zone is independent of physical constructs,
such as particular processors, machines, databases,

Bed Bureau
Ward

Management Pharmacy

Medical
Records

Billing

Pathology

procedure events

drug request

drug ready

expected arrivals

bed state

 test
request

 test
result

procedure

test result

prescription prescription

Figure 1. Some Zones from the HMS

languages, etc. A zone is typically large, i.e. much larger
than software modules, and may contain many programs,
processes, databases, or views of databases. The internal
structure of a zone is not the concern of ZEST.

ZEST describes certain external properties of zones,
particularly their interaction with other zones. Information
that is the concern of ZEST flows from one zone to another
via a gateway. Each gateway defines a unidirectional
contract, which determines the information the source zone
is committed to supply to the receiver. Similarly, it
constrains the information flow to only the data that
complies with this contract. It is these constraints that
prevent the described structure of the PAS from decaying.
Each gateway is unidirectional because the information that
may flow from zone A to zone B is frequently different
from that permitted in the inverse direction, B to A.

2 Motivational Example
The authors observed the evolution of a health care
management system over the period of five years as
members of its design team. The basic concepts of ZEST
were considered significant during this work, but without an
articulated and supported architecture they were
unsustainable.

2 . 1 The HMS experience
The Healthcare Management System (HMS) was intended
to provide integrated support for all activities in a health
district’s hospitals, their ancillary services and the
surrounding medical practices. It is the goal of integration
over such a broad enterprise that necessitates new
architectures. Previously, the support for: a pathology lab,
the pharmacy, the ward, the operating theatre, medical
records, etc., were each quite separate. These units were
accustomed to autonomy, in particular to choosing and
tailoring their own IT systems which were large but
tractable. This independence, however, had obvious
drawbacks, such as a growing number of terminals and
systems for staff to cope with, and consistency and labour
costs incurred as information is manually transferred
between systems.

Faced with the need to integrate many systems, and to cope
with the required diversity and autonomy, an implicit

architecture was proposed. We will describe it in terms of
ZEST nomenclature, although that has developed more
recently.

The intention was that the whole system would be
comprised of largely independent zones. These zones would
correspond to well-defined activities within the healthcare
system and would have limited communication via a
number of distributed relational databases. The zones would
each have a schema defining their data, which might cohabit
on various databases with the schema of other zones.
Communication was to be restricted by requiring that data
was moved from one zone to another by pre-packaged
queries. These parametric retrievals and updates were
intended to be the only knowledge one zone had of another.
The schemas were intended to remain independent.

Zones were progressively commissioned (i.e. the clients
committed to their construction), developed and introduced.
The partitioning however was not sustained. Under the
pressure of concurrent development of the operational zones
and new work, the software team progressively interlaced
the zones via direct and unplanned (or even erroneous) use
of other zone’s information. This led to a rapid growth in
complexity that undermined the potential of the project.
Hence the idea of ZEST was born.

2 . 2 Example Health Care System
As a running example we will consider a few zones of a
simplified HMS, shown in fig. 1. This is only a small
sample of the 20 to 30 zones. For example,
Outpatients generates a structure similar to Ward
Management and Bed Bureau . All of these zones
inter-work with X - r a y , P h y s i o t h e r a p y ,
Dieticians, Clinicians , etc. There are zones for
C l i n i c a l M a n a g e m e n t and N u r s i n g
Management , which interact with Payroll .

These zones hold large volumes of data and many programs
(50 relations, 100 programs and 130 screen definitions, in
the case of Ward Management , for example.), only a
small proportion of which is of concern to other zones.
Although there are potentially n2 gateways (where n is the
number of zones) allowing information flow between
zones, the actual connectivity is a sparse subset of this.

The important information recorded in a ZEST architecture
identifies and delimits these “small proportions of data in a
zone that are of external interest” and “this sparse subset of
permitted and useful data flows”. Although they may be
relatively small, the total structure of a PAS that is of
interest at the ZEST level is so large and complex that it
needs organising, is normally constructed incrementally,
and must be exploited systematically. This organisation,
incremental construction and systematic use is the essential
role of ZEST that was missing in the HMS project.

3 PHILOSOPHY and PRINCIPLES
3 . 1 Separability of Roles and

Responsibilities
Examination of human organisations, e.g. industrial and
commercial enterprises, governmental organisations,
educational and health care establishments, etc. shows that
it is managerially essential to partition their activities. We
observe that this means that there are commitments about
communication between these divisions that are relatively
stable, e.g. Estates and Buildings must tell Bed
Bureau and Nursing Management which wards are in
service and what beds they contain. The organisational
structure would be unworkable if this inter-departmental
communication were not relatively stable and a small part
of each department’s work.

Every PAS serves a human organisation, and its structure
should reflect and support this partitioning of an
organisation. Once this happened naturally as individual
decisions were made about commissioning and changing IT
systems. With the advent of enterprise-wide integration
this sympathetic structure must be identified and utilised
deliberately. We believe that it will prove relatively stable
(departments resist changes to their roles and working
practices) and beneficial if it is communicated by the PAS
architects to the PAS maintainers. If zones comply with
this logical structure most change occurs within a zone and
the ZEST definitions ensure that commitments to other
zones are sustained. When changes in commitments are
required the gateway definitions provide the foundation for
negotiating a new contract. The revised transport and
translation software is then generated automatically.

3 . 2 Heterogeneity & Legacy Systems
Each zone may be developed using a variety of
technologies. These technologies will vary because
different technologies may be appropriate for different
applications or because the software and databases in a
given zone were commissioned when different technologies
were popular. In consequence, the descriptions in ZEST
should be independent of the technologies used in a zone,
but must describe a mapping to them. To do this for every
aspect of a zone and for every technology would be
hopelessly uneconomical. However, as ZEST only
concerns itself with the external interactions of a zone and
the relatively few data structures that are transmitted
through gateways this is tractable.

The externally visible structures of each zone, the data flow
through gateways and data translations are defined in terms
of a high-level type system. Currently this is based on the

Collection Programming Language (CPL) [2]. We believe
that such a high-level notation, properly supported by
tools, will be comprehensible to software engineers, will
support inter-working over a wide variety of
communication protocols between all of the programming
languages and databases that may be encountered. There is
good evidence that such notations will encompass inter-
working with virtually all legacy systems.

ZEST’s strategy for legacy systems is to describe just those
parts of the legacy system that interact with other zones of
interest. The primitive communication operations required
by ZEST involve intermediary software that emulates a
zone with the specified gateways while operating the legacy
system’s proprietary interfaces.

Organisations change their choice of supporting
technologies from time to time. By explicitly describing
the mapping to these technologies, ZEST is able to
generate new software while maintaining the APIs, for
example when moving between RMI (the Java inter-process
communication protocol) and versions of CORBA.

3 . 3 Incremental Evolution &
Construction

PAS are rarely built in a “green field site”. The nearest
approximation to this comes when a new subsystem is
commissioned. The largest unit commissioned will be as
much as the organisation can afford to install in one event.
It is straightforward to describe the new zone. What is
more challenging is to describe and circumscribe its
interaction with existing surrounding systems. In the HMS
system described above each of the zones was
commissioned separately.

Just as organisations commission new systems in units,
which are small enough to manage, they also commission
changes with affordable cost and limited disruption.
Changes occur at two levels: minor-maintenance in which a
subdivision of the organisation commissions a change that
it perceives as solely its concern, and major maintenance
where the change requires co-operative agreements from a
group of interacting subdivisions. As an example of a
minor change, Ward Management would re-use beds
while patients were in theatre or intensive care. To do this
they allocated additional lockers for the extra patients.
Tracking whose belongings were in which locker and where
the locker was, was an entirely parochial issue. When
Ward Management started to record “responsible
person” details, as well as “next of kin”, this affected
Medical Records as well as Bed Bureau and the
information sent on a Patient Admission event. It
was therefore major maintenance.

3 . 4 Control and Autonomy in Evolution
It is essential that a software architecture deliver its benefits
strongly in the context of change. The thrust of ZEST is
to allow PAS architects to specify information flow in such
a way that the benefits for change management are
significant. The effects are different under the two forms of
change described above. For minor maintenance, we
anticipate that the change will take place within one zone.
The description of this zone’s gateway commitments will

then allow the required internal changes to be made, but
insist that translations are introduced if necessary to restore
the commitments. Normally most of the translations are
generated automatically.

When a major maintenance change is underway, it may be
decomposed into several minor maintenance operations and
some which require new forms of information flow. The
ZEST descriptions then identify which commitments need
to be renegotiated and re-specified and encourages the
specification of any totally new commitments. The overall
goal is to localise as much change as possible, so that
software engineers can perform local changes autonomously
while relying on a stable environment, despite the
contemporaneous changes being developed by others
elsewhere in the PAS. Only where it is necessary is this
autonomy restricted by commitments to other zones that
the PAS architects have chosen to specify.

3 . 5 Incrementally Taming Chaos
It is assumed that introduction of the ZEST approach would
normally take place in the context of a system that is
already operational. That is, there would be a large
collection of programs, databases, communication
protocols, etc. already operational. These would involve a
whole variety of technologies: languages, databases,
middleware, scripting systems, etc. It would be quite
infeasible to attempt to describe the whole of such a system
before beginning maintenance with the assistance of ZEST.
Accordingly, we imagine that only the parts of the existing
system that are of immediate interest will be named and
described.

As successive increments and changes occur, further
structure will be described, so that gradually more of the
maintenance activity can be supported. It is therefore
essential that ZEST does not assume that it has a total
model. There will be “covert channels” and unknown parts.

A structural model will exist in the mind of anyone
planning a change for that part of a PAS involved in the
change. As this change is planned and moves through
implementation and commissioning, we would expect the
description of this understood structure to be captured. It is
then available to manage this change and all subsequent
evolution of the system that interacts with the described
parts. Progressively more of the system is thereby
described.

4 CONCLUSIONS and FURTHER
WORK

An architecture has been proposed that describes a carefully
selected high-level structure commonly apparent in the large
scale software applications that service the needs of an
enterprise. It is believed that this structure is particularly

helpful in supporting an application system’s evolution.
The essence of the architecture is the division of the system
into coherent logical zones that correspond to organisational
roles and the specification of the limited information flow
between these zones. The pay-off is the partially automated
maintenance and constraint of those information flows.

4 . 1 ZEST: the Story So Far
A preliminary version of ZEST has been built and small-
scale evaluation has been undertaken [3]. Currently, the
part of a zone that is visible to ZEST must be coded in
either C++ or Java and the communication must be via
CORBA or RMI. We have automatically generated the
gateway code when different communication technologies
are installed and when different languages are used at each
side of the gateway. Similarly we have shown how to
automatically restore commitments when the exportable
types supplied or expected by a zone are changed. A study
with only three zones was inconclusive, but we believe that
the promise of ZEST would be fulfilled in a larger-scale
evaluation.

4 . 2 Evaluation on Realistic Projects
The next step should be a realistic evaluation. This is
difficult to organise because of the labour involved in
experimenting with a large PAS, because of the
commitment and access that is required from the owners of
a PAS and because the effects that must be observed would
only manifest during an experiment of reasonable duration.
Extensions in the technologies supported and the tool set
would probably be necessary. In particular communication
via databases, as in HMS, would need to be supported and
tools which helped with the generation of mappings to
common technologies, or at least their validation would be
extremely helpful.

5 . ACKNOWLEDGEMENTS
This research was supported by EPSRC Research Grant
GR/K79598. The experimental version of ZEST was
implemented by Cathy Waite and David Jack. We would
like to thank Graham Technology Ltd for their co-operation
in the field trial.

6 . REFERENCES
[1] Atkinson, M.P. and Morrison, M. Orthogonally

Persistent Object Stores, VLDB Journal, 4, 3, 1995.

[2] Buneman, O.P., Libkin, L., Suciu, D., Tannen, V. and
Wong, L., Comprehension Syntax, ACM SIGMOD
Record, 23, 1, 1996.

[3] Waite, C., Welland, R.C. and Atkinson, M.P.,
Supporting Software Evolution in ZEST, Technical
Report TR-1997-29. Department of Computing
Science, University of Glasgow, 1997.

