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Abstract. Let A be any n × n array on the symbols [n], with at
most m symbols in each cell. An n × n Latin square L avoids A if
no entry in L is present in the corresponding cell in A. If m = 1 and
A is split into two arrays B and C in a special way, there are Latin
squares LB and LC avoiding B and C respectively. In other words,
the intricacy of avoiding arrays is 2, the number of arrays into which
A has to be split. We also investigate the case m > 1, derive some
upper and lower bounds, and propose a conjecture on the exact value
of the intricacy for the general case.

1. Introduction

The concept of intricacy (for completing partial Latin squares) was intro-
duced by Daykin and Häggkvist in [5], and a sample of applications to
other problems can be found in [9].
The general concept of intricacy deals with combinatorial construction

problems. Given a set of partial structures and a set of goal structures,
we ask first which partial structures are extensible to some goal structure.
If there are no partial structures that are not extensible, the problem is
dubbed simple, and we say that the intricacy is 1. If at least all minimal
(with respect to some measure) partial structures are extensible, we say
that the problem at hand is fair. For unfair problems we do not define
the intricacy.
The intricacy for a general combinatorial construction problem is the

minimum k ∈ N such that any partial structure can be partitioned into k
or fewer extensible partial structures.
An array A is avoidable iff there is a Latin square L that differs from A

in every cell. For the problem of finding this Latin square, the intricacy
then is the natural number that answers the following question: “If we
want to split an array into avoidable arrays, what is the maximum number
of arrays we need to use?” In [3] it is proven that this number is at most
3.
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The combinatorial construction problem of creating an n × n Latin
square that avoids an array with at most m entries in each cell is certainly
fair for n > m, if we say that a minimal array is an array with at most m
entries in at most one cell.
If m = n, the problem is not fair, so in what follows we investigate n×n

arrays, with at most m < n entries in each cell. We set I(m,n) = the
intricacy of avoiding n × n Latin squares with at most m entries in each
cell. Evidently, I(m,n) grows monotonely with m.

2. m = 1

The result in this section is from [12]. There are unavoidable arrays, for
example any array containing a whole row or column of just one symbol,
so the intricacy of avoiding arrays with at most one entry in each cell is
not 1. If m = n = 1 the problem is not fair, as observed above, so we
assume that n ≥ 2 to avoid this degenerate case.
Theorem 2.1. The intricacy of avoiding arrays is 2, i.e. I(1, n) = 2.

Proof. Let A be any n×n array on the symbols [n]. Split A into arrays B
and C, so that C is empty. Certainly, there is a latin square LC avoiding
C. For each cell in B, move the entry to array C iff it differs from the
corresponding entry in LC . Then LC will still avoid C, and the entries
left in B form a partial latin square, which is completable (to LC , for
instance). By Theorem 2.1 in [3] B is avoidable, and is avoided by some
latin square LB, which in fact is LC with symbols permuted without fixed
points. �

This gives a positive resolution to Conjecture 3.3 in [3].

3. Upper bounds on I(m,n) for m ≥ 2
When m ≥ 2, we must decide what we mean by a partition of an array.
Do we partition the sets of symbols in each cell, or do we merely partition
the cells?
If we allow ourselves to partition the sets of symbols in each cell, then

for any n > 1 the intricacy of avoiding arrays with m ≤ n entries is two,
by the exact same argument as Theorem 2.1.
If the partition of the array keeps entries in a cell together, the situation

is more difficult. We cannot mimic Theorem 2.1, for any m ≥ 2, for
the cells not moved to the array C may prescribe as many as mn − n
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symbols that a given symbol must not be permuted to. We may even be
so unfortunate that no cell can be moved to C. If we choose to proceed
along the lines of this theorem, it is obvious that more care must be taken
in choosing the Latin square LC .
Given an n × n array A with m entries in each cell, that we wish to

split into avoidable arrays, step one is to find a Latin square avoiding as
many of the entries in A as possible. We proceed as follows. Take any
n×n Latin square L, on the symbols [n]. For each permutation p ∈ Πn of
these symbols, we let p(L) be the Latin square L with symbols permuted
by p. Let (i, j) be a cell in A, and p(L)∩A be the set of cells (i, j) where
p(L) and A are in conflict, i.e. the entry in cell (i, j) of p(L) is one of the
symbols in cell (i, j) of A. A standard double count gives that

∑

p∈Πn

|p(L) ∩A| =
∑

(i,j)∈A

|{p ∈ Πn : (i, j) ∈ p(L) ∩A}| = n2m(n− 1)!

Taking averages, and remembering that |Πn| = n! we see that there
exists a permutation p1 ∈ Π such that p(L) ∩ A ≤ nm. In other words,
given any Latin square L, there is a permutation of its symbols, so that
it conflicts with A in at most nm cells. Note that permuting rows and
columns as well does not improve on these calculations. We fix this per-
mutation, p1, and let L1 = p1(L). We also let B1 = A − (L1 ∩ A) be the
array with the entries from A not conflicting with L1, so that B1 does not
conflict with L1, and no further cells from A may be moved to B1 without
creating a conflict.
For A2 = A − B1, the array with the remaining cells from A, we can

repeat this procedure, and find a permutation p2 such that |p2(L)∩A2| ≤
m2. We then set B2 = A2−(L2∩A2) and A3 = A2−B2. At this stage, we
observe that the at most m2 non-empty cells in A3 can surely be avoided
provided m2m < n, since each of them contains at most m forbidden

symbols. For a proof of this claim, see Proposition 3.5. Thus, if m < n
1

3

we have that I(m,n) ≤ 3.
After constructing k arrays Bi, we get an Ak+1 with at most

mk

nk−2
non-

empty cells. If m times this number is less than n, Ak+1 is avoidable, and
we may take it as our Bk+1. Thus we have the following proposition.

Proposition 3.1. If m < n
k−1

k+1 , then I(m,n) ≤ k + 1.
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We can do slightly better than this by considering pairs of Latin squares
that do not overlap in any cells, and permutations of their symbols by one
and the same permutation.

Proposition 3.2. If m3 −m2 < n− 1, then I(m,n) ≤ 3.
Proof. Given any n × n array A with at most m entries in each cell, we
choose any pair of Latin squares L and L̂ with |L∩ L̂| = 0, the number of
cells where L and L̂ have the same entries. For any permutation p of the
symbols, we also have |p(L)∩ p(L̂)| = 0. We have, using the same double
count as before, the following.

∑

p∈Πn

|p(L) ∩ p(L̂) ∩A| =
∑

(i,j)∈A

|{p ∈ Πn : (i, j) ∈ p(L) ∩ p(L̂) ∩A}|

= n2m(m− 1)(n− 2)!
Taking averages over Πn, we find a permutation p0 with at most (m

2−
m)n/(n−1) bad cells. Ifm times this number is less than n, i.e. m3−m2 <
n− 1, we have I(m,n) ≤ 3. �

The upper bound n2 for I(m,n) is trivial, as the problem is fair, and it
can be shown that I(m,n) is bounded from above by n for any m ≤ n−1.
To do this, we need a result of G. J. Chang, cited (and again proved) in
[8].

Theorem 3.3. (Chang) Let D be an n × n array with entries only on a
generalised diagonal. D is completable iff no symbol occurs exactly n− 1
times.

We will also make use of the positive solution to Evans’ conjecture by
B. Smetaniuk [11].

Theorem 3.4. (Smetaniuk) Any partial n× n Latin square with at most
n− 1 entries is completable.
With this theorem at hand, we may prove the following proposition,

used without proof in propositions 3.1 and 3.2. Note that the proposition
is sharp, for if there are n entries, they can fill a row or column with one
symbol, or one cell with all n symbols, and these are unavoidable arrays.

Proposition 3.5. Let A be an n × n array, where multiple entries in
each cell is allowed. If the total number of entries in A, counted with
multiplicities, is at most n− 1, then A is avoidable.
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Proof. Let a1, a2, . . . , ak be the non-empty cells of A, with symbols Li in
cell ai. We have k ≤ n− 1 and |Li| ≤ n− k for all i. We may assume that
|L1| ≥ |L2| ≥, . . . , |Lk|. Choose a permissible symbol b1 /∈ L1 for cell a1,
and forbid the use of b1 in any cells aj that lie in the same row or column as
a1. Do this for each i with 1 ≤ i ≤ k. At step i, we must choose a symbol
for cell ai, where there are at least n − |Li| − (i − 1) symbols available.
Since |Li| ≤ (n− 1)−

∑i−1
1 |Lj | the number of available symbols in cell ai

is at least n− (n− 1)+∑i−11 |Lj| − (i− 1) =
∑i−1
1 |Lj| − i+2 ≥ 1. When

we are finished, the chosen bi are a partial Latin square with at most n−1
entries, that is completable by Theorem 3.4. The completed Latin square
certainly avoids A. �

If we prescribe that no cell of A may contain more than n− 1 symbols,
we se that there is essentially only one counterexample to the above pro-
position, with at most n entries in A in total, namely one row or column
filled with one and the same symbol.

Proposition 3.6. Let 1 ≤ m ≤ n − 1, and let A be an n × n array with
at most m entries in each cell. If the total number of non-empty cells in
A is at most n−m then A is avoidable.

Proof. There is no one full row of just one symbol, because 1 ≤ m. If we
can avoid the non-empty cells then Theorem 3.4 ensures that the partial
array found in this way can be completed to a full Latin square. Choose,
in arbitrary order, for each non-empty cell a permitted symbol, and forbid
its use in any other non-empty cell in the same row or column. Each non-
empty cell allows at least n−m different symbols, and there are n−m of
them, so the process will not break down. �

With these results, we can also improve on Proposition 3.2.

Theorem 3.7. Let (m2−m)n/(n−1) ≤ n2+1 and n ≥ 4. Then I(m,n) ≤
3.

Proof. Let A be the array, with at most two entries in each cell, that is
to be avoided. By the proof of Proposition 3.2 there are two orthogonal
Latin squares L and L̂ such that they together avoid all but at most
(m2−m)n/(n− 1) cells of A. This is not quite enough to ensure that the
remaining entries may be avoided. An n×n array with (m2−m)n/(n−1) ≤
n
2 + 1 non-empty cells, each containing m symbols, is avoidable. To see

this, observe that for m ≥ 3 it holds that if (m2 −m)n/(n− 1) ≤ n
2 + 1,
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then certainly m ≤ n
2 − 1. The (m2 − m)n/(n − 1) cells are therefore

avoidable by Proposition 3.6.
If m = 1 we have Theorem 2.1, so the remaining case to be treated is

when m = 2. We then have (22 − 2)n/(n − 1) < 3 non-empty cells, for
n ≥ 4, each containing at most 2 symbols. This is obviously avoidable. �

Solving for m in the inequality, we get m ≤ 1
2 +
√

n
2 +

3
4 − 1n , so if m

and n satisfy this condition, we have I(m,n) ≤ 3.
Any array with at most n − 2 entries in each cell may be decomposed

into n diagonals, so that on these diagonals the use of at most n − 2
symbols is forbidden in each cell. Obviously, for each such part we can
construct partial Latin squares (diagonals) that avoid the n − 2 symbols
in the relevant cells, and that do not use one symbol exactly n− 1 times.
By Theorem 3.3, each such array is completable, and thus for m ≤ n− 2
we have I(m,n) ≤ n.
From now on, we term a generalized diagonal with exactly n−1 identical

sets of n−1 symbols a bad diagonal. If we could decompose an n×n array
A with at most n − 1 symbols in each cell into diagonals, none of which
is bad, we would have established that I(n − 1, n) ≤ n, by Theorem 3.3.
However, it is easy to find examples of arrays where this is not possible.
We must therefore investigate this case more carefully.

Theorem 3.8. I(n− 1, n) ≤ n.
Proof. Partition A into the n diagonals parallel to the diagonal consisting
of entries (i, i) (the main diagonal). Some of the diagonals may be bad. Let
these be d1, . . . , dℓ, and the single cells of differing type in each diagonal
be c1, . . . , cℓ. Also, we call the symbol not prohibited in n − 1 cells of di
Si, and the symbol not prohibited in exactly one cell σi.
If there is a set of diagonals D with Si = Sj for any two di, dj ∈ D, then

σi 6= Sj for all diagonals in D. We switch cells ci to some other part dj .
After this switching, involving all the diagonals, they will all be avoidable.
We may thus assume that all Si are distinct.
If there is a pair of bad diagonals di and dj, such that σi = Sj (and

thus Si 6= Sj), we can move cell ci to part dj, and move from dj to di the
cells from dj that lie in the same row or column as ci (there are exactly 2
of them). Now dj forces a partial Latin square with n−1 entries, which is
completable by Theorem 3.4, so dj is avoidable. The diagonal di forces the
entries Si on almost a full diagonal, and the entries Sj in two cells off this
diagonal. This configuration is obviously completable to a Latin square,
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so di is also avoidable. Thus we can get rid of any set of bad diagonals
with the same symbols σ and S.
Thus we have the situation where σi 6= Sj and Si 6= Sj for all i and

j. Now if we move ci to di+1, where indices are taken modulo ℓ, each
resulting di will obviously be avoidable. The only problem, then, is if
ℓ = 1.
We must get rid of the cell c1 from the single bad diagonal d1. We do so

by moving c1 to some other part, dk. This may make dk unavoidable, for
instance if the cells in dk in the same row or column as c1 permit only the
symbol σ1. If this happens, we simply move the offending cells from dk to
d1, making dk avoidable, perhaps by reducing the number of non-empty
cells in dk to n − 1 and applying Theorem 3.4. Also, d1 obviously stays
avoidable. This establishes that I(n− 1, n) ≤ n. �

It turns out that we can use the following result from [9] together with
Galvin’s theorem on the list chromatic index of bipartite graphs [6] to find
some further upper bounds on I(m,n).

Theorem 3.9. (Opencomb) The intricacy of completing a partial Latin
square is less than or equal to 4.

Proposition 3.10. For m ≤ n
2 it holds that I(m,n) ≤ 8, and for n2 ≤

m ≤ n− 1 it holds that I(m,n) ≤ 4⌈ n
n−m
⌉.

Proof. When m ≤ ⌊n2 ⌋, we split the array A we wish to avoid into two
chessboard squares, A1 and A2, where a chessboard square is all cells
(i, j) with i + j odd, or the complement of this array. We observe that
at least ⌈n2 ⌉ symbols are available in each cell. Some are empty, and
allow any symbol, but we disregard these cells for now. Translated into
the language of list-colorings of bipartite graphs, we have to list-color the
edges of a bipartite graph with maximum degree at most ⌊n2 ⌋ and lists of
length at least ⌈n2 ⌉, so by Galvin’s theorem, there are partial Latin squares
L1 and L2 avoiding A1 and A2 respectively. By Theorem 3.9, each of these
can be split into 4 parts, each of which is completable. Thus, the partition
induced on the A:s gives avoidable parts, and thus we have for m ≤ ⌊n2 ⌋
that I(m,n) ≤ 8.
When m ≥ ⌊n2 ⌋ we partition A into parts with no more than n − m

empty cells in each row or column. To do this, we need not split A
into more than ⌈ n

n−m
⌉ parts. Again, by Galvin’s theorem, each of these

allows a partial Latin square, and by applying Theorem 3.9 we see that
I(m,n) ≤ 4⌈ n

n−m
⌉. �
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By using results on the completion of partial latin squares, for instance
[2], specifically Corollary 11.4.2 and Theorem 11.4.11, again together with
Galvin’s theorem, we can improve on Proposition 3.10. In general, results
on the completion of partial Latin squares can be directly exploited in the
same fashion, without much work.

Theorem 3.11. (Corollary 11.4.2 from [2]) Let P be a partial n×n latin
square, all of whose entries lie within an r × s rectangle, with r + s ≤ n.
Then P can be completed to an n× n latin square.
Note that for even n Theorem 3.9 follows directly from this theorem,

which is a corollary of a theorem by Ryser [10]. For odd n some additional
minor work is needed, but the full Theorem 3.9 is essentially a corollary
to this theorem.

Theorem 3.12. (Theorem 11.4.11 from [2]) Let A be a partial 3r × 3r
latin square, all of whose entries lie within two disjoint r×r squares. Then
A can be completed to an n× n latin square.
This theorem can be extended in the following ways (see [13]).

Theorem 3.13. Let n = ar + t where 0 leqt, r ≤ a − 1 and let A be a
partial n × n latin square, all of whose entries lie within the a − 1 first
r × r squares along the main diagonal. Then A can be completed to an
n× n latin square.
Theorem 3.14. Let A be a partial ar + t × ar + t latin square, all of
whose entries lie within ⌈a+12 ⌉ disjoint r × r squares, such that each row
or column only intersects one such square. Then A can be completed to
an n× n latin square.
Theorems 3.11, 3.12 and 3.13 can be applied to prove the following

three theorems.

Theorem 3.15. Let m ≤ n
2 . Then I(m,n) ≤ 4.

Proof. If n is even, split the array of forbidden symbols into the four
quadrants. For each of these quadrants, all non-empty cells can be avoided
by Galvin’s theorem. The partial Latin squares found in this way are
completable, by Theorem 3.11.
If n is odd, split the array into four n−12 × n+1

2 rectangles, properly
rotated, located in the corners of the array to be avoided, such that only
the cell (n+12 ,

n+1
2 ), in the middle of the array is not covered. This cell

is the fifth part. The non-empty cells in all five parts are avoidable, by
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Galvin’s theorem, and the partial Latin squares found in this way are
completable, by Theorem 3.11.
In fact, if we look a bit closer at for example [1] or the proof of Ryser’s

theorem [10] on the completability of partial Latin rectangles due to Hilton
and Johnson [7] found in [2], we see that the single cell (n+12 ,

n+1
2 ) may

in fact be put in any one of the other four parts. Galvin’s theorem again
ensures that this cell may be avoided, and the above references ensure
that the partial Latin square found in this way is completable. �

Proposition 3.16. Let n = 3r and m ≤ 2n
3 . Then I(m,n) ≤ 5.

Proof. Let A be any n×n array with at most m entries in each cell. Since
n = 3r, the array A can be divided into 9 square sectors of equal size,
namely r×r. We group these sectors into 4 pairs, not choosing two sectors
from the same row or column, leaving one single sector, for example the
middle one, and let this be the way we split A. The nonempty cells in
each part are avoidable, by Galvin’s theorem, and by Theorem 3.12, the
partial Latin squares found in this way are completable. �

Theorem 3.17. Let m ≤ n+1−
√
n+ 1. If n

n−m
is an integer, I(m,n) ≤

n
n−m

+ 2. Otherwise I(m,n) ≤ ⌈ n
n−m
⌉+ 3.

Proof. Let A be the n× n array to be avoided. If n
n−m

= a is an integer,

we split A into a2 square sectors, with side length n −m. In the a × a
square grid, consider the a diagonals parallel to the main diagonal. If
we from each of these can remove at least one square, the non-empty
cells in each such diagonal can be avoided, by Galvin’s theorem, and the
partial Latin square found in this way can be completed by Theorem
3.13, since m ≤ n + 1 −

√
n+ 1 ensures that r = n − m ≥ a − 2. To

remove one cell from each diagonal is easily done. Remove squares (1, a),
(2, a − 1),. . . ,(a − 1, 2) and place them in one (avoidable, by the same
argument) part, and squares (1, a − 1), (2, a − 2), . . . ,(a − 1, 1) in one
(avoidable) part. We have partitioned A into n

n−m
+2 avoidable parts, so

I(m,n) ≤ n
n−m

+ 2.
If n
n−m

is not an integer, we may split A into as many squares of side

n − m as possible, leaving a few smaller rectangles (size (n − m) × t
for some suitable t) and one smaller square (size t × t) in the end. Set
a = ⌈ n

n−m
⌉. We group these sectors into diagonals in the (defective)

⌈ n
n−m
⌉ × ⌈ n

n−m
⌉ grid, paralell to the main diagonal as before. Each di-

agonal will thus contain either a rectangle, or the t × t square. Remove
from these diagonals the three parts P1 = {(1, a), (2, a−1), . . . , (a−2, 3)},

9



P2 = {(a − 1, 2), (a, 1), (2, a), (3, a − 1), . . . , (a − 3, 5)} and P3 = {(a −
2, 4), (a − 1, 3), (a, 2), (1, a − 5), (2, a − 4), . . . , (a − 5, 1)}. Here (i, j) sig-
nifies the square in the grid with coordinates (i, j). Each Pi is avoidable,
using Galvin’s theorem and Theorem 3.13, and from each diagonal, we
have removed two squares/rectangles, as can be easily checked, leaving an
avoidable part. Thus I(m,n) ≤ ⌈ n

n−m
⌉+ 3. �

To close the gap between (n+1)−
√
n+ 1 and n, we prove the following.

Theorem 3.18. factor2 Let n ≤ m− 1. Then I(m,n) ≤ 2⌈ n
n−m
⌉.

Proof. Write n as n = a(n −m) + t with t < a. Split the array A into a
square grid of a×a squares, with a×t rectangles along the right and bottom
edges, and a t×t square in the lower left corner. Separate A into avoidable
parts that each consist of half a diagonal in the grid, as in Theorem 3.17.
The non-empty cells in these parts are avoidable by Galvin’s theorem,
and the partial Latin squares thus found are completable, by Theorem
3.14. �

4. Lower bounds on I(m,n) when m ≥ 2
Not much is known about avoidable arrays with multiple entries. The
first result in this vein known to the present author is [4]. It is obvious,
however, that any family of avoidable arrays must place some additional
restraints on the occurences of symbols. The examples given below are
certainly in violation of some reasonable constraints.
To bound the intricacy from below, we need to find some nasty arrays

that are unavoidable, unless partitioned into many parts.

Proposition 4.1. If m > n
2 then I(m,n) ≥ 3.

Proposition 4.2. If m = n− 1, then I(m,n) ≥ n.
The example that proves both propositions is an n × n array A with

entries 1, 2, . . . ,m in each cell in the first column.
If m > n

2 and we partition these cells into two parts, one of the parts is
bound to get at least n2 of the cells, effectively blocking the use of symbols
1, . . .m in a number of cells in the first column, so that these symbols can
only be used in strictly less than m cells, which is impossible. Therefore,
the intricacy is not 2, and hence at least 3.
If m = n − 1, and we partition A into n − 1 parts, the pigeonhole

principle gives that at least one of the parts, say B, contains at least 2 of
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the cells from the first column. Again, this means that m = n−1 symbols
must be used in the at most n − 2 free cells in the first column of B, a
contradiction.
Using the pigeonhole principle, we get a whole range of intermediate

results of these two propositions.

Theorem 4.3. I(m,n) ≥ ⌈ n
n−m
⌉.

The proof consists of the same example as for the above propositions
and application of the pigeonhole principle.

5. Concluding remarks

To sum up, we have that I(1, n) = 2, I(n − 1, n) = n and the following,
where 2 ≤ m and ⌈ n

n−m
⌉ ≤ I(m,n) ≤ n always. In particular, for n = 2, 3

the intricacy is completely characterised.

m I(m,n)

m ≤ 1
2 +
√

n
2 +

3
4 − 1n I(m,n) ≤ 3

m ≤ n
2 I(m,n) ≤ 4

m ≤ 2n
3 , n = 3r I(m,n) ≤ 5

m ≤ n+ 1−
√
n+ 1, n

n−m
∈ N I(m,n) ≤ ⌈ n

n−m
⌉+ 2

m ≤ n+ 1−
√
n+ 1 I(m,n) ≤ ⌈ n

n−m
⌉+ 3

m ≤ n− 1 I(m,n) ≤ 2⌈ n
n−m
⌉

Based on this admittedly scant evidence, it seems reasonable to propose
the following conjecture.

Conjecture 5.1. I(m,n) = ⌈ n
n−m
⌉ for all 1 ≤ m ≤ n− 1.

Another nice way of rewriting this conjecture is the following. If it holds
that m ≤ kn

k+1 , then I(m,n) ≤ k + 1. The specific instance I(2, 4) = 2
should be tractable by computer.
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