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Abstract 

Increasing availability of multi-scale physiological 

data opens new horizons for quantitative modeling in 

biomedical applications. However, practical 

limitations of existing approaches include both the low 

accuracy of the simplified analytical models and 

empirical expert-defined rules and the insufficient 

interpretability and stability of the pure data-driven 

models. Recently it was shown that generic boosting-

based frameworks can be successfully used to address 

these challenges of quantitative modeling in financial 

applications. Boosting and similar ensemble learning 

techniques are capable of discovering robust multi-

component meta-models from a collection of existing 

and well-understood base models. Accuracy and 

stability of such interpretable ensembles of 

complementary models are often significantly higher 

than those of the single models. Here we establish the 

plausibility that this ensemble learning approach can 

overcome such challenges also in biomedical 

applications.      

 

1. Introduction 

The ongoing digital revolution has provided a 

relatively inexpensive means to collect and store 

multi-scale and multi-channel physiological data. 

Modern hospitals and research centers are well 

equipped with high-resolution monitoring, diagnostic 

and other data collection devices. Moreover, many 

portable systems for real-time collection and display 
of physiological data have become affordable for 

individual use outside of specialized medical facilities. 

These include Holter monitor and similar devices for 

electrocardiogram (ECG) and heart rate recording and 

specialized systems for electroencephalogram (EEG), 

electromyogram (EMG), respiration, and temperature. 

Such increasing availability of data opens new 

horizons for quantitative modeling in biomedical 

applications.  

Practical quantitative modeling of most adaptive 

complex systems with many interacting components 
presents serious challenges [1]. Insufficient accuracy 

of both the simplified analytical and other low-

complexity models and the empirical expert-defined 

rules is a typical limitation of existing approaches. 

Potentially more accurate and flexible data-driven 

models based on various statistical and machine 

learning algorithms are often unstable due to training 

data incompleteness, intrinsic nonstationarity of the 

system, and low signal-to-noise ratios. Crucially 

important in biomedical applications is model 

interpretability, which is often lacking in existing 

models.  
Challenges of quantitative modeling both in 

applied finance and econometrics and in biomedical 

applications are very similar. Time series may be very 

noisy and non-stationary, which is particularly 

common in finance. Weakly deterministic regimes can 

be intermittent with predominantly stochastic 



dynamics. Codependency relations between different 

time series are also often unstable. Availability of 

detailed multi-scale market and fundamental data does 

not guarantee a straightforward solution to all existing 

problems. This became especially clear after recent 

events in global financial markets when many 
quantitative portfolio strategies and state-of-art risk 

management systems became practically useless.    

Recently, generic boosting-based frameworks 

have been successfully used to address many 

challenges of quantitative modeling in financial 

applications [1-3]. Boosting and similar ensemble 

learning techniques [1-6] are capable of discovering 

robust multi-component meta-models or strategies 

from a collection of existing well-understood base 

models. The accuracy of such interpretable ensembles 

of complimentary models is often significantly higher 

than those of the individual components. Such model 
portfolios can demonstrate stable performance over a 

wide range of market regimes. 

Here we argue that a similar generic approach 

could be very promising in biomedical and other 

scientific, engineering, and technological applications. 

Several specific frameworks for the discovery of 

multi-component models for express diagnostics and 

efficient quantitative representation of psycho-

physiological states are outlined.  

 

2. Challenges of quantitative modeling in 
biomedical applications 

Even before high-resolution biomedical data 
become available, artificial intelligence (AI) and 

statistical techniques have been successfully applied in 

medicine. However, earlier systems mostly rely on 

highly-averaged low-resolution data, semi-quantitative 

categorical information and on empirical expert-

defined rules applied to such data. Therefore, models 

took the form of rule-based systems capable to assist 

in diagnostic and treatment suggestions such as well-

known MYCIN expert system (ES) [7]. Rules are 

extracted from the knowledge of experts. However, 

often experts may not know, or may not be able to 

formulate, what knowledge they actually use in 
solving their problem.  

Increasing availability of physiological and 

clinical data justified application of various statistical 

and machine learning techniques that add learning or 

automated knowledge discovery to ES. Examples of 

this kind of systems range from intelligent processing 

of ECG data to computer-based interpretation of 

medical images, e.g., for early detection of cancer [8]. 

At the same time, revolutionary advances in the 

human genome project and other achievements in 

molecular biology have lead to the explosive growth 
of the high-dimensional genomic and other micro-

biological data. This opens perspectives for 

computational solutions of many important 

bioinformatics problems and in-silico drug discovery 

using advanced machine learning and statistical 

techniques [9,10]. 

However, typical problems of complex system 
modeling, such as “curse” of dimensionality and non-

stationarity, lead to serious challenges in biomedical 

applications. For example, direct machine learning 

models in bioinformatics have very high-dimensional 

inputs causing training data incompleteness even with 

apparent abundance of the microbiological data. 

Indeed, training data should include sufficient part of 

all possible input combinations which scales as 

~M1M2…MN, where N is total number of inputs (basic 

features) and Mi is typical number of different 

ranges/regimes for i-th feature. Similar problems are 

also typical for medical image classification models 
based on high-dimensional features as well as models 

based on multi-channel and multi-scale physiological 

data. Non-stationarity is another challenge in modeling 

physiological dynamics. It is usually impractical to 

find and calibrate a single global multi-dimensional 

model that reasonably covers all different dynamical 

regimes. 

The described problems are even more 

pronounced in the emerging field of personalized 

medicine [11,12]. Direct optimization of personal 

treatment based on genotype is not effective for 
abnormalities related simultaneously to multiple genes 

and influenced by history of non-genomic factors. 

Even more challenging is to personalize alternative 

therapies such as biofeedback [13] which have been 

shown to be effective not only in clinical settings but 

also in achieving optimal psycho-physiological states 

in professional sport [14] and other areas. It is difficult 

to choose an optimal protocol since noticeable effects 

are hard to detect in early stages without robust 

quantitative indicators that are sensitive to small 

changes of psycho-physiological states. In general, 

early detection of subtle positive or negative changes 
caused by a particular treatment is a very important 

and challenging task in personalization and 

optimization of any medical treatment strategy. 

Low-complexity models based on existing 

knowledge and heuristics of the considered domain 

require much less data for calibration and demonstrate 

significantly more stability than pure data-driven 

models. For example, for several consecutive years, 

one of the top performers at the competition for the 

protein structure prediction was not the most 

computationally intensive data mining algorithm but 
much less complex model based on biological 

heuristics [10]. Many other low-complexity 

quantitative models inspired by existing knowledge of 

physiological processes and brain dynamics have been 

developed [15,16]. However, the drawback of such 



models is that they can be significantly biased due to 

the underlying simplified assumptions and/or can be 

applicable only in certain dynamical regimes or 

physiological parameter ranges. 

Limitations of such simplified base models can be 

compensated by model combination via different 
ensemble learning techniques [6]. However, typical 

applications of these techniques in biomedical and 

many other fields still rely on pure data-driven base 

models [1,17]. Such an approach could require even 

more training data and would result in much less 

interpretable solutions than single data-driven model. 

However, recently we have proposed to use boosting 

and similar ensemble learning techniques to combine 

existing low-complexity models to produce stable and 

interpretable meta-models [1]. Such generic 

frameworks have proven to be effective in several 

challenging financial and econometric applications [1-
3]. This modeling approach is outlined in the next 

section. 

 

3. Ensemble learning frameworks for the 
discovery of multi-component models 
from existing incomplete knowledge    

One of the machine learning approaches to 

compensate for deficiency of the individual simplified 

models is to combine several models to form a 

committee [6]. One of the most flexible frameworks of 

this type is the mixture-of-experts (ME) model [6]. 

The probabilistic form of ME model can be written as 
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Mixing coefficients πt(x) are known as gating 
functions and the component densities pt(y|x) are 

called experts. These components can model the 

distribution in different regions of input space: they 

are “experts” in these regions. Gating functions 

determine which components are dominant in which 

region. Extension to multilevel gating functions gives 

hierarchical mixture of experts (HME) [6].  

To increase accuracy and flexibility, complex 

machine learning models (e.g., NNs) can be used as 

components in both ME and HME frameworks [6]. 
However, increasing complexity of the models often 

leads to practical problems in the training of such a 

multi-component system, to poor out-of-sample 

performance and instability. Thus, it is highly 

desirable to have a committee of the well-understood 

and low-complexity expert models that consistently 

demonstrate acceptable combined performance [1].   

Adaptive boosting and similar ensemble learning 

algorithms combine many desirable features [1,4-6]. 

The majority of ensemble learning algorithms, 

including “random sample” techniques such as 

bagging, can reduce only the variance part of the 

model prediction error, i.e. they make a combined 

model more stable. Boosting, on the other hand, can 

reduce both bias and variance parts of the model error, 

i.e. it makes the model more accurate and more stable. 

It means that one can start with simple model (“rule of 
thumb”) with low accuracy slightly above the random 

guess and discover a committee of complimentary 

models with much higher accuracy. Therefore, 

boosting can be applied to the pool of the well-

understood low-complexity models to produce 

interpretable, but qualitatively different, combined 

model with significantly higher accuracy and stability 

as discussed in [1]. Moreover, boosting tries to 

maximize margin to ensure good out-of-sample 

performance, i.e. it is a large-margin classifier [4-6]. 

A typical boosting algorithm such as AdaBoost 

[4-6] for the two-class classification problem (+1 or -
1) consists of the following steps: 
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Here N is the number of training data points, xn is a 

model input value of the n-th data point and yn is class 

label, T is the number of iterations, I(z) = 0 (z<0), 

I(z)=1 (z>0), wn
t is the weight of the n-th data point at 

t-th iteration, Zt is normalization constant, ht(xn) is the 

best model at t-th iteration, ρ is a regularization 

constant, and H(x) is the final combined model (meta-

model). 
Boosting starts with equal and normalized weights 

for all training data (step 1). Base classifiers ht(x) are 

trained using weighted error function εt (step 2). The 
best ht(x) is chosen at the current iteration. The data 

weights for the next iteration are computed in steps 

(3)-(5). At each iteration, data points misclassified by 

the current best model (i.e., yn ht(xn) < 0) are penalized 
by the weight increase for the next iteration. AdaBoost 

constructs progressively more difficult learning 

problems that are focused on hard-to-classify patterns 

defined by the weighted error function (step 2).  Steps 

(2)-(5) are repeated at each iteration until stop criteria 



occur. The final meta-model (Eq.6) classifies the 

unknown sample as class +1 when H(x) > 0 and as -1 

otherwise.  

In our previous works we have demonstrated 

boosting effectiveness for a combination of low-

complexity econometric models [1] and proposed a 
boosting-based optimization framework for the 

discovery of portfolios of trading strategies from the 

low-complexity base strategies [2,3]. It was shown 

that such frameworks are capable to discover 

interpretable multi-component portfolio strategies with 

stable performance across a wide range of market 

regimes and robust generalization ability [2,3].  

However, success of the described boosting-based 

frameworks still relies on the availability of sufficient 

historical time series data. Potentially interesting 

strategies that directly exploit rare events or emerging 

regimes cannot be obtained in this way due to the lack 
of training data. A promising approach to learn 

novel/rare classes or patterns could be single-example 

learning frameworks developed mostly for computer 

vision applications. One of them is single-example 

learning using representation by similarity [18,19]. In 

this framework, a novel class is characterized by its 

similarity to several previously learned classes. If a 

system is already trained to classify several classes 

using sufficient amount of training data it can be 

extended to classify an additional novel class using 

just one or several examples of this class. 
Assume that n well-learned classes Ci exist, Fi is a 

classifier for the i-th class, C(p) is the class to which a 

pattern p belongs, and Fi(p) is the output of Fi on 

pattern p (i.e., probability-like number that p belongs 

to Ci). Fi(p) can be interpreted as the similarity of 

pattern p to the class Ci. To learn a novel class C from 

a single example E, the similarity of E to the familiar 

classes is recorded in a feature vector:  
T
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Other instances of class C are expected to have 

similarity/feature vectors (Eq.7) resembling that of E. 

Therefore, nearest-neighbor classification can be used. 

New patterns p are classified as belonging to class C 

when the distance between their similarity vectors and 
that of E is below a chosen threshold. 

Boosting-based and single-example learning 

frameworks can be naturally used together. For the 

classification problems with a sufficient amount of 

training data, boosting can be used to discover robust   

multi-component models (Eq.6). When several stable 

meta-models are available, they can be used as 

classifiers Fi to represent novel classes via the feature 

vector (Eq.7). Moreover, since each Fi is a weighted 

collection of base models, even one meta-model can 

provide a detailed feature vector with components 

representing the state of each base-model scaled by its 
weight. In a financial context, novel class could 

represent new emerging market regime. The presented 

approach is generic and can be used in many different 

fields. Potential biomedical applications of these 

frameworks are outlined in the next section. 

 

4. Multi-component quantitative models 
in biomedical applications 

The proposed approach provides practical tools 

for the optimal combination of existing low-
complexity models and could be applied to different 

problems discussed in section 2. However, because of 

our current research interests, we would like to focus 

only on models for express diagnostics and 

quantitative representation of psycho-physiological 

states based on easy-to-collect physiological data. On-

site and remote express diagnostics with real-time 

capabilities are important in intensive care medicine, 

professional sport rehabilitation and performance 

enhancement, military training, and many other 

applications. Collection of diagnostic models can also 

be used as sensitive indicators of personal psycho-
physiological state dynamics. Such indicators could 

play a key role in rapid discovery of personalized 

treatment strategies and in achieving optimal psycho-

physiological states in sport and other applications.  

One of the most easily collectable physiological 

data offering rich and informative dynamics is ECG 

time series. Complex physiological signals including 

ECG are typically non-stationary, but not statistically 

random [15,20]. This necessitates quantifying the 

complexity of physiological dynamics with the help of 

different indices. Methods from nonlinear dynamics 
(NLD) have shown new insights into heart rate 

variability (HRV) changes under various physiological 

and pathological conditions, providing additional 

prognostic information and complementing traditional 

time- and frequency-domain analyses [15,20]. 

Many types of such measures inspired by NLD 

have been proposed [20]. These include fractal 

measures such as power-law scaling exponent, indices 

from detrended fluctuation analysis, and multiple 

scaling exponents from multifractal analysis. A 

different set of measures consists of entropy measures: 

approximate/sample entropy, multiscale entropy, and 
compression entropy. Different symbolic dynamic 

measures (entropies and probabilities) represent one 

more family of measures. Other practical types of 

HRV signal complexity measures have also been 

proposed [15,20].  

Any such measure is potentially useful for 

classifying between normal and pathological cases 

[15,20]. The obvious limitation of a single measure is 

insufficient accuracy (bias). More importantly, most of 

such measures require long-enough periods of data to 

provide stable results, thus limiting their practical 
value for the express diagnostics and real-time low-



noise indicator of psycho-physiological state 

dynamics. It is clear that an intelligent model/measure 

combination using discussed frameworks could 

significantly improve accuracy and stability as well as 

drastically reduce requirements for the data-

acquisition duration.   
  In addition to direct classification for 

diagnostics, the probability-like output of the multi-

component model (Eq.6) could also be used as a 

sensitive indicator for early detection of treatment 

effects, thus allowing optimizing of a treatment 

strategy for a particular patient. Existing collections of 

multi-component models (Eq.6) could also be very 

effective in the context of single example learning. 

This would allow even faster discovery of an optimal 

treatment strategy for a particular patient associated 

with a model state (Eq.7) that resembles that of the 

patient that was successfully treated in the past.  
The concept of individual zones of optimal 

functioning introduced in sport psychology revealed 

multi-featured (multi-dimensional) nature of personal 

psycho-physiological states associated with the best 

performance [21].  However, it is difficult to quantify 

such optimal zones. Therefore, in the most cases, these 

zones are just roughly estimated from subjective 

questionnaires [21]. On the other hand, optimal zones 

based on objective physiological measures such as 

heart rate (HR) have been identified in several 

different sports [14]. Output from the collections of 
multi-component physiological models (Eq.6), 

expressed as feature vector (Eq.7), could be an 

objective multi-dimensional indicator of psycho-

physiological states in sport and similar applications. 

Current feature vector (Eq.7) could be compared to the 

feature vectors associated with previous optimal 

performances and used as sensitive indicator of 

progress for personalized tuning of different methods 

for achieving such optimal states (psychological 

training, biofeedback, etc.). 

 

5. Application example 

In this section potential applications of the 
proposed framework are discussed in the context of 

using beat-to-beat heart rate (RR) time series for 

diagnostics and psycho-physiological state 

characterization. The RR-interval signal can be 

extracted with high accuracy from even noisy ECG 

time series (e.g. those collected by portable devices 

outside medical facilities) while extraction of other 

ECG features could often be seriously affected by 

noise. Thus, RR time series can be used in many real-

life applications where consistent usage of full ECG 

and other more complex data such as EEG is not yet 
technologically feasible.  

Many original and current applications of 

statistical physics and nonlinear dynamics methods in 

physiological modeling successfully use RR time 

series [15,20]. Majority of such models are formulated 

to discriminate (classify) between normal and various 

abnormal states of cardiovascular system based on 
different complexity measures of RR time series 

[15,20]. However, HR and HRV sensitivity to 

emotions and other complex psycho-physiological 

states [22-24] significantly expands potential 

application areas of models based on RR data.    

Majority of publications on linear and NLD-

inspired analyses of RR time series focus on 

illustrating the discriminative power of a chosen single 

complexity measure, β. This majority includes 
discrimination between normal and pathological cases 

[15,20] as well as between different psycho-

physiological states [22]. However, although many 

indicators have been shown to provide statistically 
significant differentiation between classes of interest, 

the considerable overlapping of regions prohibits 

practical usage of such indicators in many important 

applications. More importantly, majority of such 

indicators require long periods of data (~ several 

hours) for adequate calculations. This could drastically 

limit practical usability of these indicators in many 

applications, including express diagnostics, real-time 

monitoring for operator alertness [22], early detection 

of subtle directional changes during personalization of 

medical treatment or psychological training, and 

intensive-care medicine.  
For illustration of these problems and their 

potential resolution using our framework, we will 

consider just one well-known indicator, based on 

detrended fluctuation analysis (DFA), that was 

successfully applied to RR data analysis in the past 

[15,20]. DFA was proven to be useful in revealing the 

extent of long-range correlations in time series. First, 

the investigated time series with N samples is 

integrated. Next, the integrated time series is divided 

into n boxes of equal length. In each box, a least-

square line is fit to the data with y coordinate denoted 
by yn(k). Finally, the integrated time series, y(k), is 

detrended as follows:  
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A linear relationship on the plot of log F(n) vs. log n 

indicates power law (fractal) scaling characterized by 

a scaling exponent β (slope of the fitted straight line). 
Peng et al. found that F(n) computed from RR 

times series is characterized by two scaling exponents 

β1 and β2 (cross-over phenomena) computed over a 
small (4<n<16) and a larger (16<n<64) intervals, 

respectively [15]. Here we reproduced these results 

using up to 24 hours of RR data from 8 subjects with 

normal sinus rhythm and 8 subjects with congestive 



heart failure (http://www.physionet.org/physiobank). 

The two scaling exponents are computed over 

approximately 2-hour segments (8192 beats) and 

presented in figure 1. It is clear that the two scaling 

exponents (complexity measures) provide distinctive 

clustering of the normal and pathological RR 

segments. For example, β1 for healthy subjects is 

usually larger than that of subjects with abnormality. 
However, it is also clear that direct practical usage of 

(β1,β2)-based indicator can lead to ambiguous  
interpretation because of significant overlapping of 

normal and pathological classes in (β1,β2) space.   
More problems become evident when RR data-

acquisition duration is reduced below several hours as 

naturally required by many potential applications. The 

ambiguity problem is clearly illustrated in figure 2 

where averaged β1 for all healthy subjects (solid line) 

and β1 range for one of the subjects with congestive 
heart failure (dotted lines) is plotted as a function of 

RR segment length. While for large RR segments one 

can clearly differentiate this subject with abnormality 

from the average healthy subject for all RR segments, 

for small-length segments the noise level (or 

instability) cannot be tolerated by any practical 

application (jumping from good separation to very 
significant overlapping). 

To increase overall accuracy and to improve 

stability for short RR segments, one can use 

classification models based on linear and nonlinear 

combinations of several β values instead of direct 
usage of these values as indicators. In general, such a 

classification model takes the form of the nonlinear 

mapping: 

),...,( 1 K
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where F is defined implicitly in most cases. For 

example, linear and nonlinear measures (including 

DFA scaling exponents) extracted from RR data and 
used as inputs to  neural networks, support vector 

machines, and other machine learning algorithms have 

been proven to be successful in producing accurate 

classifiers for cardiac arrhythmias [25,26]. Although 

not studied directly, one can assume that these 

classifiers could also be noticeably more stable for 

short RR segments compared to β values themselves. 
The probability-like real-value output of such 

classifier (y) could also be used as a single-number 

composite measure for early detection of the positive 

or negative changes during treatment optimization as 

well as change of psycho-physiological state in 

general.  
However, there are several serious limitations of 

such complex “black-box” classifiers. Even when 

inputs are based on well-understood measures, the 

final nonlinear classifier still lacks interpretability and 

clear understanding of stability ranges. Compensating 

or eliminating these shortcomings is very important 

for biomedical applications. Such an approach also 

lacks the scalability to include all existing partial 

knowledge in the form of many different complexity 

measures and other simple models. Indeed, a direct 

increase of number of inputs corresponding to 

different complexity measures βi, will lead to a 
complexity increase of NN or similar algorithm and 

finally will make it impossible to train such a classifier 
on any data set of practical size (which is always 

incomplete) without overfitting. Usage of 

dimensionality reduction preprocessing, such as PCA 

or its nonlinear extensions [27], is often of limited 

value since class membership information (for 

classification models) is not taken into account. Also, 

the possible diversity of measures β(p) due to 
parameter vector p variations are not fully used (only 

best-on-average parameters are employed).  

The limitations of the individual indicators βi and  
the drawbacks of “black-box” classifiers (Eq.9) can be 

self-consistently resolved by boosting-like ensemble 

learning frameworks. One can employ low-complexity 

base classifiers that depend on just a few different 

measures β. For example, it is clear from figure 1 that 

even a two-level classification tree which uses simple 

thresholding on β1 and β2 at the 1-st and 2-nd level 
respectively (or vice versa) could be promising as a 

base model. In the general case of many potentially 

useful measures, β1…βK, classifiers based on any two 
measures take the form: 

 ),,],[],[( 321 γγγββ jjii pphy = ,             (10) 

where γi are threshold levels used at 1-st and 2-nd 
levels of this classification tree. Next, applying 

boosting steps (1)-(6) to the base classifier (Eq.10) 

with all possible (i,j) combinations and optimizing 

over (pi, pj, γ1, γ2, γ3) at each boosting iteration, we 
obtain multi-component meta-classifier (Eq.6). Since, 

at each iteration, low-complexity models are 

optimized one by one, we can use any number of 

measures β (i.e., all existing incomplete knowledge) 
relevant to the considered problem without direct 

threat of overfitting contrary to (Eq.9). Note, however, 

that boosting often finds compact meta-classifier by 

including only a small part of the complementary 

measures in the final model (Eq.6). Also, unlike direct 

approach (Eq.9), optimization over (pi, pj) at each 

boosting iteration will be able to find not only a single 
parameter set optimal on-average but also much less 

obvious complementary measures which could 

significantly contribute to the final meta-classifier. 

Finally, the obtained ensemble of models is 

interpretable and each of the constituents is simple 

enough for further analysis that may lead to discovery 

of other types of low-complexity base models.  

Applying boosting steps (1)-(6) with base 

classifier (Eq.10) that includes just DFA scaling 

exponents β1 and β2, it is quite easy to achieve out-of-



sample classification hit rate of more than 80% on the 

considered data set (i.e., ratio of correctly classified 

RR segments to the total number of segments). Unlike 

the significantly volatile β1 value of the patient with 
congestive heart failure in figure 2, the classification 

hit rate of the obtained meta-classifier remains stable 

at the level of ~95% for all segment lengths 

considered in figure 2. Also, compared to a single 
classifier that uses fixed suggested best-on-average n-

values (4<n<16 and 16<n<64), the boosted meta-

classifier classifier with optimized n-values at each 

iteration is capable of increasing the out-of-sample 

classification hit rate by 10-20%. Obviously, by 

including other existing measures besides DFA scaling 

exponents into base models (Eq.10), we obtain further 

impressive improvements in meta-classifier 

performance. Additional detailed examples will be 

presented elsewhere. 

 

 
Figure 1: DFA scaling exponents for the healthy 
subjects (triangles) and subjects with congestive heart 

failure (squares) for RR sample size = 8192 beats.    

 

 
Figure 2: DFA scaling exponent vs RR sample size: 

(1) triangles (solid line) – average for all considered 

healthy subjects, (2) squares (dotted lines) – average, 
max, and min for one of the subjects with congestive 

heart failure.  

 

6. Conclusions 

Ensemble learning frameworks for the discovery 
of multi-component biomedical models from the 

existing incomplete knowledge have been outlined. 

Possible applications of such models include express 

diagnostics from limited data as well as representation 

of personal psycho-physiological states for automated 

monitoring and for discovery of personalized 

treatment strategies. The same approach could be also 

effective in quantification of optimal psycho-

physiological states in professional sports and in 

similar performance-metric endeavors.  
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