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Abstract

The paper shows that any σ-transitive preference can be extended to
a complete preference preserving σ-transitivity. The result has poten-
tial applications to the theory of choice and specifically to revealed
preference theory.
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1 Introduction

In his classical contribution Szpilrajn (1930) shows that any quasi-ordering

(a reflexive and transitive binary relation) can be extended to an ordering

(a complete quasi-ordering).1 The purpose of this paper is to provide an

analogous extension result for non-transitive preferences. The case of quasi-

transitivity (transitivity of the strict preference) is trivial since it suffices

to ‘complete’ the original preference by putting indifference for all pairs of

alternatives that are non-comparable. The focus of our analysis is a different

∗Dipartimento di Economia Politica, Università di Modena e Reggio Emilia, viale
Berengario 51, 41100 Modena, Italy.

1Strictly speaking Szpilrajn prooved a slightly different result.
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notion of non-transitivity called σ-transitivity and put forward by Sen (1970).

Our main result is an extension theorem which shows that any σ-transitive

preference can be extended to a complete preference preserving σ-transitivity.

We also provide the dual result in terms of a strict preference approach.

Finally, we show an application to the theory of choice by providing a new

characterization of the Weak Axiom of Revealed Preference.

2 Definitions and notation

Let X be an arbitrary set of alternatives. By S we denote a binary relation

in X, i.e. S ⊆ X2; we say that x ∈ X is related to y ∈ X and write (x, y) ∈ S

or, equivalently, xSy. Some of the most frequently used properties of binary

relations are stated below. A binary relation S in X is

Reflexive if xSx for all x ∈ X.

Irreflexive if ¬xSx for all x ∈ X.

Symmetric if xSy implies ySx.

Asymmetric if xSy implies ¬ySx.

Complete if for all x, y ∈ X either xSy or ySx or both.

Transitive if, for all x, y, z ∈ X, xSy and ySz imply xSz.

An irreflexive binary relation in X is called a strict preference and is

denoted by Q ⊆ X2. A strict preference can be seen as the union of two

disjoint components. By Qα ⊆ X2 we denote the asymmetric component of

Q, i.e. xQαy iff xQy and ¬yQx. The symmetric component of Q is denoted

by E ⊆ X2, thus xEy iff xQy and yQx. Clearly, Q = Qα∪E and Qα∩E = ∅.
When the strict preference Q is asymmetric the component E is empty.

From Q we derive the non-comparability relation N ⊆ X2 which is defined

by xNy iff ¬xQy and ¬yQx. Therefore, N is symmetric and non empty, since

by irreflexivity it contains the set ∆ := {(x, x) | x ∈ X}.
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By Q(x) we denote the upper contour set of Q, thus the set of strictly

preferred alternatives, i.e. Q(x) = {z ∈ X | zQx}. On the other hand,

Q−1(x) = {z ∈ X | xQz} is the lower contour set of Q, i.e. the set of

alternatives ‘dominated’ by x.

Let us introduce a few mild properties of transitivity.

Definition 1. Let Q be a strict preference.

Q is Superiorly Regular (SR) if, for all x, y ∈ X, xNy implies Q(x) = Q(y)

or, equivalently, if, for all x, y, z ∈ X, zQx and xNy imply zQy.

Q is Inferiorly Regular (IR) if, for all x, y ∈ X, xNy implies Q−1(x) =

Q−1(y) or, equivalently, if, for all x, y, z ∈ X, zNx and xQy imply

zQy.

We notice that either SR or IR imply transitivity of the non comparability

relation N , i.e. if xNy and yNz then xNz. However, SR and IR do not imply

transitivity of Q.

A non irreflexive binary relation in X is a weak preference or, simply,

a preference, and will be denoted by R ⊆ X2. The asymmetric and the

symmetric components of a preference R are respectively denoted by Rα

and Rσ, i.e. xRαy iff xRy and ¬yRx, and xRσy iff xRy and yRx. Clearly,

R = Rα∪Rσ and Rα∩Rσ = ∅. The following definitions have been introduced

by Sen (1970)

Definition 2. The preference R is

i) ασ-transitive if zRαx and xRσy imply zRαy

ii) σα-transitive if zRσx and xRαy imply zRαy

iii) σσ-transitive if zRσx and xRσy imply zRσy

iv) σ-transitive if (i), (ii) and (iii) hold.

Notice that σ-transitivity does not imply transitivity of R.
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In this paper we use both the strict and the weak preference approach. As

it is well known,2 they are intimately related by the following relationship. A

given strict preference Q generates the weak preference R as follows: xRy iff

¬yQx. Equivalently, R can be defined by R = X2 − Q−1 where Q−1 :=

{(x, y) ∈ X2 | (y, x) ∈ Q} is the inverse relation of Q. Starting from

a reflexive weak preference R, we can generate in a similar way a strict

preference Q. We say that R and Q are conjugate preferences.

A subrelation of a given strict preference S is a strict preference Q satis-

fying Q ⊆ S and Sα ⊆ Qα. Similarly, an extension of a given preference S is

a preference R satisfying Sα ⊆ Rα and Sσ ⊆ Rσ.

3 A preliminary result

Given a SR strict preference Q we propose a general method for constructing

a subrelation P ⊆ Q which is asymmetric and preserves the SR property. As

we will see, this result also applies to the case of weak preferences and allows

us to obtain a complete σ-transitive extension.

The construction of the desired subrelation P may seem a trivial mat-

ter. In fact, if we select ‘one half’ of the symmetric component E, i.e. an

asymmetric set E∗ such that E∗ ∪ E∗−1 = E, we immediately obtain the

asymmetric subrelation P = Qα ∪E∗. However, P need not preserve the SR

property. Take the following simple example.

Example. Let X = {x, y, z} and Q = {(x, z), (z, x), (y, z), (z, y)}. Then

Qα = ∅, E = Q and N = {(x, y), (y, x)} ∪ ∆. Clearly, Q has the SR

property and is not asymmetric. Let us consider the asymmetric relation

E∗ = {(x, z), (z, y)}. Then E∗ ∪ E∗−1 = E and the subrelation P = E∗ is

asymmetric. However, P has not the SR property since xNy, z ∈ P (y) but

z 6∈ P (x). In this trivial example it is easy to find a subrelation P which

fulfills the desired requirements; take, for instance, E∗ = {(z, x), (z, y)}. In

general, however, things are not so simple especially when the number of

alternatives is not finite.

2See Section 6 in Kim and Richter (1986).
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All over the present section, we assume that Q = Qα ∪ E is a strict

preference satisfying the SR property. The aim of the present paper is to

devise a general method for splitting the symmetric component E of the

strict preference by preserving the SR property. A few useful facts deriving

from SR and concerning the symmetric component of the strict preference

are stated below.

Fact 1. (z, y) ∈ E if and only if there exists (x,w) ∈ X2 such that (z, y)

and (x,w) satisfy the following conditions:

zQx, xNy

yQw, wNz
(1)

Indeed, (1) and SR imply (z, y) ∈ E. Conversely, (1) trivially holds for x = y

and w = z.

The relationships between x and w satisfying (1) are characterized by the

following fact.

Fact 2. If (z, y) ∈ E and (x,w) ∈ X2 satisfy (1) there are only three possible

mutually exclusive cases:

i) wQαx iff zQαx

ii) xQαw iff yQαw

iii) wEx.

Proof. Obviously, the three cases are mutually exclusive. To prove that they

exhaust all the possibilities we must show that xNw is excluded. Indeed,

by transitivity of N , wNz would imply xNz which is impossible since zQx.

Next, let us consider the equivalence in (i) and suppose that xQz. Then

from zNw and SR we have xQw which contradicts wQαx, thus zQαx. The

converse and the equivalence in (ii) are proved in a similar way. �

As we mentioned before, the construction of an asymmetric subrelation

of Q requires a careful analysis of the set E. In particular, we are looking for

an asymmetric subset of E. The first step is given by the following definition.
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Definition 3. The set E∗
1 ⊆ X2 is defined as follows: (z, y) ∈ E∗

1 if (z, y) ∈ E

and for some (x,w) ∈ X2 satisfying (1) it holds zQαx.

As required the relation E∗
1 is asymmetric. To check this claim let us

suppose that both (z, y) ∈ E∗
1 and (y, z) ∈ E∗

1 , then there exist (x,w),

(x′, w′) ∈ X2 such that (i) (z, y) and (x,w) satisfy (1) with zQαx and (ii)

(z, y) and (x′, w′) satisfy (1) with yQαw′. But, since then (z, y) and (x,w′)

would satisfy (1), by Fact 2, zQαx and yQαw′ cannot hold together and this

contradiction establish our claim.

Other potential elements of the symmetric component E are collected in

the set E2 ⊆ X2 defined as follows:

(z, y) ∈ E2 if (z, y) ∈ E and for all (x,w) ∈ X2 satisfying (1) it holds xEw.

Clearly E2 is symmetric and its intersection with E∗
1 is empty. The next

step in the construction of the desired subrelation consists in selecting an

appropriate subset of E2. To this aim we introduce a new family of subsets

of E2:

Let (z, y) ∈ E2; The set G(z, y) consists of all (x,w) ∈ X2 satisfying (1).

It is easily verified that (y, z) ∈ G(z, y) so that the sets G(z, y) are not empty.

Other useful properties are stated below.

Lemma 1. The set G(z, y) has the following properties:

i) G(z, y) ⊆ E2.

ii) G(z, y) is asymmetric.

iii) G(y, z) = G(z, y)−1 := {(w, x) ∈ X2 | (x,w) ∈ G(z, y)}.

iv) If (x,w) ∈ G(z, y) then G(z, y) = G(z, x).

The proof is the Appendix.

The sets G(z, y) allow us to obtain a partition of E2.

Definition 4. The binary relation R in E2 is defined as follows: for all (z, y)

and (z′, y′) in E2,

(z, y)R(z′, y′) iff G(z, y) = G(z′, y′)
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It is easily seen that R is an equivalence relation, i.e. it is reflexive,

symmetric and transitive, therefore E2 can be partitioned into equivalence

classes. We denote by C the family of equivalence classes and by C a generic

element of C, thus E2 = ∪C∈CC and C ∩ C ′ = ∅ for all C 6= C ′.

Lemma 2. The set E2 is partitioned into equivalence classes by the binary

relation R. Any equivalence class C ∈ C has the following properties: (i) C is

an asymmetric subset of E2 and (ii) the set C−1 = {(z, y) ∈ E2 | (y, z) ∈ C}
is an equivalence class in E2, i.e. if C ∈ C then C−1 ∈ C.

The proof is in the Appendix.

The above construction allows us to split in a suitable way the set E2.

Indeed, according to Lemma 2, C can be partitioned by the family of sets

{C,C−1}. By the Axiom of Choice, then there exists a subset D ⊆ C with

the following property: if C ∈ C then either C ∈ D or C−1 ∈ D, but not

both.

Lemma 3. Let E∗
2 := ∪C∈DC. The set E∗

2 is an asymmetric subset of E2.

The proof of Lemma 3 follows easily from the definition of D and Lemma

2.

We are ready for the final step of our construction.

Proposition 1. Let E ⊆ X2 be the symmetric component of a strict pref-

erence Q satisfying the SR property and let

E∗ := E∗
1 ∪ E∗

2 (2)

where E∗
1 is as in Definition 3 and E∗

2 as in Lemma 3. The set E∗ is asym-

metric and satisfies the condition E∗ ∪ E∗−1 = E.

The proof is in the Appendix.

It may be useful to illustrate our construction by means of the example

discussed at the beginning of this section.

Example (continued). Since Qα = ∅, by Definition 3, also E∗
1 is empty.

On the other hand, it is easy to check that (z, y) and (z, x) are in E2, so that
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by symmetry of E2 we have E2 = E = Q. With the help of Lemma 1 we can

also compute the sets G.

G(z, y) = {(x, z), (y, z)} G(y, z) = {(z, x), (z, y)}
G(z, x) = {(x, z), (y, z)} G(x, z) = {(z, x), (z, y)}

Thus, we have (z, y)R(z, x) and (y, z)R(x, z), and the equivalence classes are

C = {C,C ′} where

C = {(z, x), (z, y)} and C ′ = {(x, z), (y, z)}

We can set D = {C}, therefore, E∗
2 = C and, finally, E∗ = E∗

1∪E∗
2 = ∅∪C =

{(z, x), (z, y)}, which is the solution proposed in the example.

We notice that the construction proposed in Proposition 1 works when

the set of alternative X is finite as well as when it is infinite. However, only

in the latter case we are forced to resort to the Axiom of Choice.

4 The main result

In this section we show that the set E∗ actually serves the purpose of finding

the desired asymmetric subrelation of Q.

Theorem 1. Let Q be a strict preference satisfying the SR property. Then

there exists a strict preference P with the following properties:

i) P is an asymmetric subrelation of Q, i.e. P ∩ P−1 = ∅, P ⊆ Q and

Qα ⊆ P .

ii) P has the SR and IR properties.

Proof. Set P = Qα ∪ E∗ where E∗ is given by (2). Then (i) follows trivially

from Proposition 1.

As for (ii), let us suppose that P does not satisfy the SR property, i.e.

there exist x, y and z such that xNy, z ∈ P (x) and z 6∈ P (y). Since P ⊆ Q

and z ∈ P (x) we have (z, x) ∈ Q and by SR of Q it must be (z, y) ∈ Q.
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Thus, since (z, y) 6∈ P it must be (z, y) ∈ E and specifically (z, y) ∈ E∗−1 or

equivalently (y, z) ∈ E∗. We will show that this leads to a contradiction.

Let us suppose that (y, z) ∈ E∗
1, so that there exists w ∈ X such that

yQαw and wNz. Thus, we can write

yQαw, wNz

zQx, xNy

By Fact 2(ii) we have xQαw and it is easily seen that (x, z) ∈ E∗
1 . Thus

x ∈ P (z), which is impossible since z ∈ P (x) and P is asymmetric. Therefore,

we conclude that (y, z) 6∈ E∗
1 .

Next, let us suppose that (y, z) ∈ E∗
2 so that (y, z) belongs to an equiva-

lence class, i.e. (y, z) ∈ C for some C ∈ C. Moreover, since (y, z) ∈ E2 and

(z, x) satisfy (1), by Lemma A (in the Appendix), we also have (x, z) ∈ E2.

We show that (x, z) ∈ C, i.e. G(y, z) = G(x, z).

By symmetry of E2, (y, z) ∈ E2 implies (z, y) ∈ E2, thus there exists

w ∈ X such that (x,w) ∈ G(z, y). Then by Lemma 1(iv), G(z, y) = G(z, x),

so that G(z, y)−1 = G(z, x)−1 and by Lemma 1(iii) G(y, z) = G(x, z). Since

(y, z) and (x, z) belong to the same equivalence class C and (y, z) ∈ E∗
2, we

also have (x, z) ∈ E∗
2. But that means x ∈ P (z), which is impossible since

P is asymmetric and z ∈ P (x) by assumption. Hence (y, z) 6∈ E∗
2 and we

conclude that P has the SR property.

To complete point (ii) we show that an asymmetric and SR preference

is also IR. Indeed, let us suppose that IR is violated, i.e. there exist xNy,

xPz and ¬yPz. We have two cases: (a) zPy, then SR yields zPx which is

impossible since P is asymmetric. (b) ¬zPy, so that zNy and since xPz,

SR yields xPy which is impossible since xNy. Thus we conclude that P is

also IR.

�

The Extension Theorem is the dual of Theorem 1.

Theorem 2.(Extension Theorem) Let S be a reflexive and σ-transitive

binary relation. Then there exists a reflexive preference R with the following

properties:

i) R is complete, i.e. R ∪ R−1 = X2.
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ii) R is an extension of S, i.e. Sα ⊆ Rα and Sσ ⊆ Rσ.

ii) R is σ-transitive.

Proof. Let us set Q = X2 − S−1 or equivalently define Q by xQy iff x 6= y

and ¬ySx. By reflexivity of S, the relation Q is irreflexive. Let us suppose

that Q is not SR, i.e. there exist x, y and z such that xNy, zQx and ¬zQy.

By definition of Q and by z 6= y we have yRz. In addition, xNy means xRσy

so that by σ-transitivity we have xRz which contradicts zQx. Hence Q is

SR.

By Theorem 1 there exists an asymmetric SR subrelation P = Qα∪E∗ =

Sα ∪ E∗. Taking the complement of P−1 we obtain the reflexive preference

R = X2 − P−1, equivalently defined by xRy iff ¬yPx. By asymmetry of

P the preference R is complete. Moreover, Rα = P = Sα ∪ E∗ ⊇ Sα and

Rσ = Sσ. Thus R is an extension of S. It is not difficult to check that

R has the desired property of σ-transitivity. For instance, let us consider

σα-transitivity and suppose xRσy, yRαz but ¬xRαz. In terms of the strict

preference P we have xNy, yPz and ¬xPz, which violate IR of P .

�

Theorem 1 and 2 do not place any requirement on the algebric or topolog-

ical structure of the set of alternatives, therefore they provide quite abstract

and general results. An interesting application is discussed in the next sec-

tion.

5 An application

In this final section of the paper we illustrate our result with an application

to the theory of choice and specifically to revealed preference theory. To

begin with, let us introduce some more notation.

Let A be the set of all the subsets of X and B any nonempty subset of

A which does not contain the empty set. A function Φ: B → A is a choice

if Φ(B) ⊆ B for all B ∈ B. Φ is single-valued if Φ(B) is a singleton for all
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B ∈ B. Following Richter (1966), a preference R is said to rationalize the

choice function Φ if for all B ∈ B

Φ(B) = {x ∈ B | xRy for all y ∈ B}.

A choice function Φ is rational if there exists some preference R satisfying

the above condition. A strict preference Q motivates the choice function Φ

if for all B ∈ B
Φ(B) = {x ∈ B | Q(x) ∩ B = ∅}.

Φ is motivated if there exists some strict preference Q satisfying the above

condition.

A choice function Φ generates a revealed preference relation, that is a

binary relation V ⊆ X2, which is defined by xV y iff there exists B ∈ B
such that x ∈ Φ(B) and y ∈ B, in words, x is revealed preferred to y if y is

available when x is chosen. The revealed strict preference V ∗ is defined by

xV ∗y iff there exists B ∈ B such that x ∈ Φ(B) and y ∈ [B−Φ(B)] (i.e. y is

rejected when x is chosen). Samuelson (1938) introduced the Weak Axiom

of Revealed Preference (WARP) as a criterion of consistency of choice.

The choice function Φ: B → A satisfies WARP iff xV ∗y implies ¬yV x.

As an application of our Extension Theorem we obtain a new characterization

of WARP.

Proposition 2. Let Φ be a single-valued choice. The following statements

are equivalent:

i) Φ satisfies the WA

ii) Φ is rationalized by a reflexive and σ-transitive preference S

iii) Φ is motivated by a SR and IR strict preference Q

iv) Φ is motivated by an asymmetric SR and IR strict preference P

v) Φ is rationalized by a complete, σ-transitive preference R

Proof. (i) to (ii). It is well known that a choice satisfying the WARP is

rationalized by the revealed preference V . Moreover, since Φ is single-valued
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V is antisymmetric, i.e. xV y and yV x imply x = y. Thus V σ ⊆ ∆ =

{(x, y) ∈ X2 | x = y} and V is trivially σ-transitive. Hence S = V ∪ ∆ is

reflexive, σ-transitive and rationalizes Φ.

(ii) to (iii). Set Q = X2−S−1, i.e. xQy iff x 6= y and ¬ySx. Clearly, Q is

irreflexive and using a similar argument as that used in the proof of Theorem

1.(ii) one easily shows that Q is also SR and IR.

Next, we show that Q motivates Φ. It is easily seen that Φ(B) ⊆ Ψ(B) =

{x ∈ B | Q(x) ∩ B = ∅} for all B ∈ B. To show the converse let us suppose

that x ∈ Ψ(B) and x 6∈ Φ(B) for some B. By definition of Ψ we have ¬yQx

for all y ∈ B and, for y 6= x we have xSy. Since x 6∈ Φ(B) it must be ¬xSx,

which contradicts reflexivity of S.

(iii) to (iv). By Theorem 1 the desired strict preference P can be obtained

from Q. Next we show that P motivates Φ. Let Ψ(B) = {x ∈ B ; P (x)∩B =

∅}. Since Φ is motivated by Q and P (x) ⊆ Q(x), it is easily seen that

Φ(B) ⊆ Ψ(B). To show the converse let x ∈ Ψ(B) so that P (x) ∩ B = ∅.
Arguing by contradiction, let us suppose that x 6∈ Φ(B), which means that

there exists z such that z ∈ Q(x)∩B. Since Φ(B) is not empty, there exists

y 6= x such that y ∈ Φ(B), thus y ∈ Ψ(B) since P (x) ⊆ Q(x). Clearly, x and

y are non comparable under P and, by (ii), also under Q, i.e. xNy. However,

since Q has the SR property and zQx, it must be zQy so that z ∈ Q(y)∩B

and y cannot be in Φ(B). Therefore, we conclude that P motivates Φ.

(iv) to (v). By the same argument used in the proof of the Extension

Theorem we obtain the required preference R. Moreover, since R is the

conjugate preference of P it rationalizes the same choice function motivated

by P (see Kim and Richter (1986), Lemma 5).

(v) to (i). Let us suppose that Φ violates WARP, i.e. there exist x and y

such that xV ∗y and yV x. From xV ∗y, there exists B such that x ∈ Φ(B) and

y ∈ B−Φ(B). Since R rationalizes Φ we must have xRy and for some z ∈ B,

zRαy. Moreover, from yV x we have yRx, so that yRσx. By σ-transistivity

of R we have zRαx, but then R cannot rationalize Φ.

�

The characterization of WARP by (ii) and (iii) are respectively due to

Clark (1988) and Scapparone (2000). The last two characterizations, (iv)
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and (v), are new and are obtained as applications of the extension results.

Appendix

Lemma A. If (z, y) ∈ E2 and (x,w) satisfies (1) then (x,w), (z, x) and

(y,w) are in E2.

Proof. Let us first show that (z, x) ∈ E2. By (1) we have zQx and by

(z, y) ∈ E2 we have xEw. Thus, by SR, xQw and wNz yield xQz. Thus

(z, x) is in E.

Let (z, x) and (x′, w′) ∈ X2 satisfy conditions (1), i.e.

zQx′, x′Nx

xQw′, w′Nz

If w′Qαx′ then, by Fact 2, zQαx′. Noting that, by SR, x′Nx and xNy yield

x′Ny we see that (z, y) and (x′, w) satisfy (1) so that (z, y) ∈ E∗
1 which

contradicts (z, y) ∈ E2.

Next, let us suppose that x′Qαw′. Then, by Fact 2, xQαw′ and it is

easily seen that (x, z) and (w′, y) satisfy (1). By Fact 2 and xQαw′ we then

have yQαw′, therefore (y, z) and (w′, x) satisfy (1) and (y, z) ∈ E∗
1 . But this

contradicts (z, y) ∈ E2 since E2 is symmetric and E∗
1 and E2 are disjoint.

Thus, by Fact 2, we conclude that for all (x′, w′) it must be x′Ew′ so that

(z.x) ∈ E2.

The remaining two cases are shown similarly. For example, notice that

(x, z) ∈ E2 and (w, y) satisfy (1) so that, as shown above, (x,w) ∈ E2. �

Proof of Lemma 1.

(i) (x,w) ∈ G(z, y) implies, by Lemma A, that (x,w) ∈ E2.

(ii) Let (x,w) ∈ G(z, y) then, by Definition 5, wNz. If (w, x) is in G(z, y)

then zQw which contradicts wNz.

(iii) We have to show that (x,w) ∈ G(z, y) iff (w, x) ∈ G(y, z). This

follows trivially from (1).

(iv) By Lemma A, (z, x) ∈ E2 thus G(z, x) is well defined. First, we show

that G(z, y) ⊆ G(z, x).
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Let (x′, w′) ∈ G(z, y), i.e. (z, y) and (x′, w′) satisfy conditions (1) so that

we have zQx′. Moreover, x′Nx follows from SR, x′Ny and yNx. Next, it is

easily seen that (z, y) and (x,w′) satisfy (1), therefore we have w′Nz and, by

Lemma A, xQw′. Hence (z, x) and (x′, w′) satisfy (1) and we conclude that

(x′, w′) ∈ G(z, x).

The inclusion G(z, x) ⊆ G(z, y) is shown in a similar way. �

Proof of Lemma 2.

(i) If (z, y) and (y, z) are in the same equivalence class we have G(z, y) =

G(y, z). Then, by Lemma 1(iii), G(z, y) = G(z, y)−1, which is impossible

since G(z, y) is asymmetric and non empty.

(ii) Let (z, y) ∈ C. By (i), C is asymmetric thus (y, z) 6∈ C. Therefore

(y, z) ∈ C ′ for some C ′ ∈ C with C ′ 6= C. We have to show that C ′ = C−1.

Now, let (y′, z′) ∈ C ′. Thus G(y, z) = G(y′, z′) so that G(y, z)−1 = G(y′, z′)−1

and, by Lemma 1(iii), G(z, y) = G(z′, y′). Hence (z′, y′) ∈ C and (y′, z′) ∈
C−1. Therefore, we have shown that C ′ ⊆ C−1. The converse is also true

and is proved similarly. �

Proof of Proposition 1.

Let (z, y) ∈ E∗ and (y, z) ∈ E∗. As we know, E∗
1 and E∗

2 are asymmetric

thus (z, y) ∈ E∗
1 and (y, z) ∈ E∗

2 (or vice versa). Since (y, z) ∈ E∗
2 we also

have (z, y) ∈ E2, which is impossible since E∗
1 and E2 are disjoint.

Next, we show that E ⊆ E∗ ∪ E∗−1. Let (z, y) ∈ E, then by Fact 1 and

2 we have the following cases:

(a) For some (x,w) ∈ X2 satisfying (1) it holds xQαw. Then, by Defini-

tion 4, (z, y) ∈ E∗
1 ⊆ E∗ ∪ E∗−1.

(b) For some (x,w) ∈ X2 satisfying (1) it holds wQαx. Then, by Defini-

tion 4, (y, z) ∈ E∗
1 thus (z, y) ∈ E∗−1

1 ⊆ E∗ ∪ E∗−1.

(c) Finally, for all (x,w) ∈ X2 satisfying (1) it holds xEw. Then, by

Definition 4, (z, y) ∈ E2 and, by Remark 3, E2 ⊆ E∗ ∪ E∗−1.

This completes the proof, since the inclusion E∗ ∪ E∗−1 ⊆ E trivially

holds.

�
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