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Abstract The Static analysis of laminated piezoelectric cylindrical shells with various boundary conditions is presented
employing Generalized Differential Quadrature (GDQ) method. The first-order shear deformation theory (FSDT) is
considered to model the static response of panel. Different symmetric and asymmetric lamination sequences together with
various combinations of clamped, simply supported and free boundary conditions are considered. Particular interest of this
study regards to asymmetric piezoelectric orthotropic cylindrical panels having free edges and subjected to general
electromechanical loading. Taking into account the effects ofshear deformation and initial curvature, a system of fifteen first
order partial differential equations (PDEs) in terms of unknown displacements, rotations, moments and forces is developed.
Several numerical examples are presented to demonstrate the accuracy and convergence of the proposed method with
relatively small number of grid points. It is also revealed that the present method offers similar order of accuracy for all
variables including displacements and stress resultants. Further results for panels with particular boundary conditions are

provided which can be used as benchmarks in future.
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1. Introduction

Laminated Piezoelectric structures have found wide
applications as key structural elements due to enhanced
electro-mechanical characteristics[1-7]. In particular,
bending, buckling and vibration of laminated piezoelectric
cylindrical panels subjected to various combinations of
loading and boundary conditions have been the main
subject of many investigations[8-15]. It is well-known that
analytical methods are only applicable to particular types of
boundary conditions such as panels with at least two
opposite sides simply supported. In this regard, Chen et
al.[16] presented an exact elasticity solution for an
orthotropic cylindrical shell with piezoelectric layers.
Kapuria et al.[17] demonstrated similar study to obtain an
analytical solution for free vibration of simply supported

piezoelectric laminated circular panels in cylindrical bending.

They employed a layerwise expanding in Fourier series
together with the modified Frobenius method. Daneshmehr
et al.[18] investigated dynamic response of cross-ply
laminated panels with a piezoelectric layer. They found a
three-dimensional elasticity solution for finitely long,
simply-supported shell panels. In this paper the highly
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coupled partial differential equations reduced to ordinary
differential equations with variable coefficients by means of
trigonometric function expansion in circumferential and
longitudinal directions. This method also applied to
functionally graded piezoelectric (FGP) cylindrical shell
panels under pressure and electrostatic excitation, recently
[19]. So, in the range of analytical solutions one can find
similar studies for laminated piezoelectric cylindrical panels
and shell, while they are all limited to special cases of
geometries, simplified theories and boundary conditions.
Thus, numerical techniques, as alternatives to analytical
approaches, have been developed to obtain solutions for
different structural components subjected to various types of
loading and boundary conditions. Among these numerical
studies, one can refer to boundary element[20], dynamic
relaxation[21], extended Kantorovich method[22], various
meshless methods[23], differential quadrature method
(DQ)[24-25], differential cubature method (DC)[26], and
generalized differential quadrature (GDQ)[27].

In this paper, the GDQ method is employed to obtain a
solution for static analysis of laminated cylindrical panel
with piezoelectric layers. General laminate layups and any
combination of various boundary conditions are considered.
Accuracy and rapid convergence ofthe method are examined
with various examples. Of particular interests in this study
are panels with free edges under electromechanical loading,
whereas similar results are not found in the open literature to
the best of authors' knowledge. Predictions of the presented
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method for various stress and displacement components
exhibit a good agreement compared with other solutions.

2. Governing Equations

Consider a piezoelectric laminated cylindrical panel with
length @, mean radius R, total angle « and total thickness % as
shown in Figure 1. The curvilinear coordinate system is
located on the mid-surface of the laminate. The coordinates
in the longitudinal, tangential and radial directions are
designated by x, 6, and z, respectively and are depicted in
Figure 1. According to the first order shear deformation

theory, the displacement field can be written as:
u=uy(x,0)+zp,(x,0),
v =vy(x,0)+z By(x,0) (1)
w =wy(x,0)
where u,, v, and w, denote the displacements of the
middle surface, S, and f, are the rotation of tangents to

the middle surface. Strain-displacement relations for a
cylindrical shell in terms of cylindrical coordinates can be
expressed as:
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Kg=R Bpos N =Poxs Ng=R Prgs M =Wor+bs Hg=R Wog—vo)t+py

Figure 1. Geometry of the panel

. 0 . . .
In the above equations, gxo and &, are the normal strains, yxo and ;/90 are the in-plane shear strains, x, and &,

are the change in the curvature, 7, and 7, denote the tossion, z ” and g,° are the shear strains of the referenced

mid-surface. Subscript comma denotes the differentiation with respect to x or 6.
The stress-strain relations for the ™ layer of the general laminated piezoelectric cylindrical panel in the laminate

coordinate system can be expressed as follows[28-29],
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where (Q,j ) are the trans formed stiffness components ofthe kth layer, €;; arethe transformed piezoelectric moduli, ®
. . k k k k . . ..
is the applied voltage across the kth layerand &, , €,, &,,, &  aredielectric coefficients of the kth layer.

In-plane stress resultants (N,, Ng, Nyg, Ng), couple resultants (M., My, M,9, My,) and transverse shear force resultants
(Ox, Qp) can be determined by integration of the relevant stress components over the entire thickness of the panel as below:

N, o, N, G
N _, Teo N g, Tox
0, t=[" 1o, t+z/R)dz, 10, [=[" 17, ld 5
M . z0, M, zo,
M., 2T M, Z Ty

It is seen that for a cylindrical panel in general case N,y # Ny, and M,g# Mg, unless the termz/R is ignored. This is due to
the difference in the radii of curvature in two perpendicular directions.

Finally, constitutive equations for general laminated cylindrical panels in terms of displacement and rotation components
can be derived as:
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in which Kj is the shear correction factor and all components of the coefficient matrix can be determined using:
hil2 K
— 2) 2 3 _4
(4;,B,,D,,E; ,F;)= I (0,) (bz,2%2%,2%dz 10456 (7a)
—h./2
G - 1 B 1 _ 1
g =4y +EBU" H; =B, +EDU" Jy =Dy +EE1'1’
(Tb)
1 1 1 1 1 1
G,=4,-—B,+—D,, H =B,-—D,+—E;,, J;=D;,-—E, +—
q y R y R y g y R y R iy y y R R

In all presented results 5/6 is considered for the shear correction factor K.

The equations of motion can be obtained using the principle of minimum potential energy whereas for the present case
yields to[30]:

oN, 1 0N, _o, N, 10N, Q_,
& R 06 & R 00 R
0. 100, N, oM, 1M,
 p 220 0o 4(x,6), L =0
> Roo r &0, oty 0 (8)
oM., 1M,
e -0,=0
ox R 00 2

where g(x, 6) is the lateral distributed load.

The five equations of motion together with the ten constitutive equations are the complete set of governing equations for
static analysis of piezoelectric laminated cylindrical panels. The governing equations consist of a set of partial differential
equations in terms of fifteen unknowns, i.e. displace ment, rotation and stress resultant components.

Three different types of boundary conditions, i.e. clamped (C), simply supported (S) and free (F) are considered. These
boundary conditions in terms of panel parameters are:

-Clamped (C):
u =u,=w=p =8,=0 (atx &0 = constant) 9)
-Simply supported (S):
N,=u,=w=M, =p,=0 (at x=constant)
u,=Nyy=w=p8=M,,=0 (at 0=constant) (10)
-Free (F):

N.=N,=0.=M_=M ,=0 (at x=constant)
Ny =Nyy=0,=M, =M,,=0 (at0=constant) (1)
Once mid-surface displacements and rotations are found from governing equations, one may obtain all strain components

through the thickness of the panel using equations (2) and (3). Finally, all stress components within the K layer of the panel
are determined using the stress-strain relations for the same layer and then the stress resultants can be found.
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3. Application of the GDQ

The GDQ method is employed to solve the developed differential equations of the laminated piezoelectric cy lindrical
panels. The essence of the GDQ method is that the partial derivative of a function with respect to a variable is approximated
by a weighted sum of function values at all discrete points in that direction. Considering a function f{x) with n discrete grid
points[31], we have

X :ZCIJ f(xj) i:1,2, ......... N/ (12)

where x; are the discrete points in the variable domain. f{x;) and C,j('") are the function values at these points and the related
weighting coefficients, respectively. In order to determine the weighting coefficients C,-j(m) , the Lagrange interpolation basic
functions[32, 33] are used as the test functions and explicit formulas for computing the GDQ weighting coefficients are
obtained[34],

P(x;)
CO=__ "6 k=12, k%) (13)
Yo (x,—x)P(x))
where,
n
P(xk)=H(xk—xj) k,j=1L2,...n ; k#j (14)
k=1
for first order derivative. For higher order derivatives, one can get iteratively:
(1)
_ - ki . :
C,g)—r C,E; )Clgj)—m 2<r<n—-1;k#j (15a)
ko7
Cl) =— Zcm k=1,2,..,n, 1<r<n-1 (15b)

k;tl
As referred above, the first step to employ the GDQ technique is to discretize the solution domain into z xm grid points. It
means that we assume n grid points in the x direction and m grid points in the 6 direction. A though the simplest procedure for
discretization of the domain is to select equally spaced points, it is shown[34] that one of the best options for obtaining grid
points is zeros of the well-known Chebyshev polynomials*

; =%[l cos( 7r)] i=12,..,n

(16)

a -1

0, =—[1-cos( m)], i=L2,..m
2 n,—1

where a and o are geometric parameters of the panelshown in Figure 1. The next step i to discretize the governing equations

based on the definition given in equation (12). Thus, the discretized form of the governing equations at a sample grid point (i, )

can be written as:

(xl’ej) Gn(xz-)Zn:C,kuo(xk, J) 16 (% )Z kVO(xk’ /)

&
_%{WO(xl,e])é;a,vo(x,,e,)] %[’”Zlamo(xl,el)_H“(xl)iclkﬂx(xkﬁ])
_H16(x,)§;clkﬂ0(xk,9]) Bllezlﬁ}:aﬂﬂg(xl,ﬁl)—%ﬁ;ﬁﬂﬁx(x”@) NP
ng(x,,ﬁj)—G61(x,)§Clku0(xk,9j) Gis (%) 3o (5.

Ao wo(xl,ej)ﬁzm(x,,e,)]_%ga,mo(x,,a,) Halx)3:C kﬁx(xk, 0)
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=
)
Do

xl)ZnLCkuo(xk, ])

k=1
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Z My|x:.

Following the procedure leads to a system of 15(nxm) algebralc equations with the same number of unknowns.
The last step is to apply boundary conditions (10-12) to the obtained algebraic equations. Considering the fact that five of
the fifteen unknown parameters vanish at each boundary node for any type of boundary conditions, the relevant unknowns

should be removed fromthe equations.

4. Results and Discussion

The presented algorithm is employed to solve the
governing equations of static analysis for laminated
orthotropic cylindrical panels integrated with piezoelectric
layers. In this study the effects of different types of boundary
conditions are investigated. Three general types of loadings

are considered: electrical, mechanical and electromechanical.
A plate with SCFS boundary conditions means that sides 1, 2,

3, 4 (see Figure 1) are simply supported, clamped, free and
simply supported, respectively.

10wE,
S*qoh,

Table 1. Nommalized induced transverse displacement ( 35 =

qo=1) of nfinitely long cylindrical panel with one composite layer

S=R/h. (DO =0 (DO =100
Chen et Present Chen et Present
al. [16] work al. /16] work
10 0.1120 0.1160 -0.0340 -0.0345
50 0.0754 0.0764 0.0481 0.0487
100 0.0740 0.0754 0.0604 0.0613

At first, the efficiency and the accuracy of the present
method are demonstrated. The normalized transverse central
deflections for a simply supported infinitely long cylindrical
panel subjected to sinusoidal distributed mechanical and
electrical loading are compared with those of exact elasticity
solution for a shell strip having piezoelectric layers in
Table 1. The variations of deflection with three values of
(S=R/h.) are studied where %, is the composite layer
thickness. To model a long simply supported panel, the
length of the panel is considered to be extremely large and
the boundary conditions are considered to be SFSF.

The piezoelectric layers are assumed to be embedded on
the top and the bottom surfaces of the panel. The top and the
bottom layers are taken as the actuator and the sensor,
respectively. The middle layer is an orthotropic material with
the fiber orientation angle of 90". It should be noted that the
fiber angles of laminates are measured relative to the panel
axis. The thickness ratio of the piezoelectric layer to the

composite layer is /1, / h, =0.01, the panel radius is R=1

and the panel total angle is equal to a=x/3. The
Piezoelectric layers are assumed to be elastically isotropic
and uniaxially polarized with the material properties of:

E =2GPa v=029 e, =0.046(C /m?)

=0.106E —9(F /m) (18)

81 =&y =&, =&y
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The material properties of the graphite/epoxy composite

layers are:
E =172GPa E,=69GPa v, =0v,=025 (19)
G, =34GPa G, =14GPa

The electromechanical loading functions are expressed as:
q=q, sin(ﬂ_e) ,O=0, sin(ﬂ_e) where gy and @, are the
a a

peak value. The voltage is applied to the upper surface of the
actuator, while the voltage of the actuator interface and the
sensor surfaces are assumed to be zero. It is seen that the
predicted normalized transverse displacements are in good
agreement with those reported by Ref[16].

10wE,
S4q0hc

Table 2. Nommalized induced transverse displacement ( p =

s

qo=1) of infinitely long cylindrical panel with three composite layers

S=R/h. D, =0 @, =100
Chen et Present Chen et Present
al.[16] work al.[16] work

10 0.1440 0.1511 -0.0227 -0.0230
50 0.0808 0.0819 0.0518 0.0522
100 0.0785 0.0797 0.0641 0.0650

Similar results are tabulated in Table 2 for a different
layup of the middle composite layers. The middle layers are
made of equal thickness plies with the stacking sequence
0f[90/0/90]. Again good agreements are achieved.

To show the capability of the GDQ method in accurately

predicting stresses, a fully simply supported cylindrical
panel subjected to doubly sinusoidal loading on the upper
surface
(49 =9 xsin(zx"/a)sin(z0/ a), x"'=x +a/2)
is considered. Material properties of the panel are:
E/E,=25G,/E,=G,/E,=05 , G,/E,=02,
v, =0.25 and the geometry parameters are set to be: (a=4,
R=1, a=m4, S=R/h=50). The normalized central deflection
and stresses for both symmetric (90/0/90) and asymmetric
cross ply (0/90) layups are presented in Table 3. In both cases

the layers are of equal thickness. The normalized transverse
deflection and stresses are defined as follows:

w*(0,a/2), oL *=0, *(0,a/2,h/2)
o2 *=0,.*0,a/2,-h/2)

s _
oy, *=0,,*0,a/2,h/2) .
o2 * =0, *(0.a/2,~h/2) 20
a}cy*:axy*(a/Z,O,h/Z)
O'fy*zaxy*(a/Z,O,—hQ)
where:
w :—qOhS3’ %‘Z%Sz 21

Included in the table are also benchmarks results of
three-dimensional elasticity analysis[35], closed form
solution of higher order zigzag theory[36] and finite element
analysis[30]. It is demonstrated that the obtained GDQ
results are in good agreement with the other solutions.

Table 3. Normalized deflection and stress of simply supported cylindrical panel under sinusoidal distributed mechanical loading

* 1* 2%

ES sk * *

Model 1 2 1 2
ode w . O . o w o Oy O xy O x
[90/0/90]
3D 05495 00712 0.0225 3.930 3987 00118 0.0760
Elagticity[35] : e : BE : :
FEM[30] 05458 00711 200214 3.9489 -3.9555 00114 0.0765
Closed 5486 00710 200217 3.9265 -3.9870 00123 0.0764
Form[36]
GDQ 05459 00712 200213 3.9434 -3.9625 00114 0.0765
[0°/907]
3D 2242 02189 161 8937 0.9670 0.0784 03449
Elagticity[35] *" : : : -0 : :
FEM[30] 2258 02211 1.6169 9.0939 09601 0.0767 03501
Closed 22372 02187 1.6051 89543 109615 00784 03444
Form[36]
GDQ 22644 02211 16253 9.1102 09647 0.0769 03502
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To demonstrate the capability of the developed algorithm
to deal with arbitrary boundary conditions and either
electrical or mechanical loadings, an illustrative example is
taken up. A piezoelectric cylindrical panel with a length and
radius of a=R=1m, a total angle of « =1Rad and thickness
of 7=0.1m is considered. The complete set of results can be
used as benchmarks in future studies.

In the following results, the panels are considered to be
composed of PZT-4 and polyvinyledene fluoride (PVDF)
polarized along the radial direction. The laminates layup and
the direction of polarization of the piezoelectric laminates
are shown schematically in Figure 2. The individual layers
are taken to be of equal thickness. The elastic and
piezoelectric properties of piezoelectric material are also
given in Table 4[37]. Three types of uniform loading are
considered for panels as: electrical, mechanical and
electromechanical by setting g=¢y and/or @=@&, which are
applied to the upper surface.

Table 4. Material properties of piezoelectric layers

Property Heyliger, Saravanos[37]
PZT 4 P VDF
E\(GPa) 81.3 237.0
E,(GPa) 81.3 232
E,(GPa) 64.5 10.5
v, 0329 0.154
Vi 0432 0.178
Vo, 0432 0.177
G, (GPa) 25.6 2.15
G;(GPa) 25.6 44
G,(GPa) 30.6 643
e, (C/m?) 52 -0.13
e, (C/m?) -52 -0.14
e, (C/m*) 15.08 -0.28
e, (C/m*) 1272 -0.01
e (C/m?) 1272 -0.01

4.1. Hectrical Loading

In order to show the convergence of the present work, the
non-dimensional deflection of the piezoelectric panel is
presented for different types of boundary conditions in Figs.
3 through 5. The polarization of PVDF layers (see Figure 2)
are reversed and the electrical/mechanical parameters of the
loading are considered to be (@, =100,4, =0) - The

deflections are reported on the central circumferential line of
the panel (#/a =0.5) and are calculated from expression

Static Analysis of Laminated Piezoelectric Cylindrical Panels

W= | 2631

100,
boundary conditions of the panels are FCFF, FCCF and
CCFC in Figs. 3-5, respectively. It is obvious that the free
type boundary conditions exhibit the worst convergence
characteristic than the others. It is found that the use of
seventeen grid points in the x and @ directions respectively
can provide accurate numerical results. This guarantees
faster rate of convergence of the method for other types of
boundary conditions.

in terms of PZT-4 properties. The

D

|

PZT-4 90t |P {
J__ PVDF o0 |P | o
- PVDF 90¢ |P (
| PZT4 O |P {
- [

Z
Figure 2. Laminates layup and electrical loading of piezoelectric layers
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Figure 3. Nommalized deflection W of cantilever piezoelectric

laminated cylindrical panels under electric loading (@ =100,g, = 0) at
0/a=05
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Figure 4. Normalized deflection W of FCCF piezoelectric laminated
cylindrical panels wnder electric loading (®, =100,q, =0) at
0/a=05
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After performing the convergence studies, new results for
panels with different set of boundary conditions are
developed. Figs. 6 and 7 show the dimensionless central

deflection W* of the piezoelectric laminated cylindrical
panel with various boundary conditions along x axis at
6/a=05. It is realized that the solution characteristics of
the method is dependent on the boundary conditions. It is
also seen that the locations of the maximum deflections are
dependent on the type of boundary conditions. Although, the
maximum deflection naturally occurs at the center of the
fully simply supported panel, its location is not evident for
other boundary conditions.

50
100}
150}
200}
2
250}
300+ e GDOTX7 .
B GDQ9X9
3501 v GDQ11X11
00 *  GDQ13X13 4
+ GDQ15X15
49 0 05
xia

*
Figure 5. Normalized deflection W of CCFC piezoelectric laminated
cylindrical panels wnder electric loading (CI)0 =100,q, = 0) at
0/a=0.5
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—+— 5588 GDQ 15X15
—0o—CSCS GDQ 15X15
—&— (888 GDQ16X15
—+— CB88C GDQ15X15

1595 0 05
xia

*
Figure 6. Nommalized deflection W of piezoelectric laminated
cylindrical panels with various boundary conditions under electrical loading

(@, =100,, =0) at 0/a=05
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-40
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——FSCS GDA 15X15
00l —o—FCSS GDQ 15X15

—o—SFCF GDQ 15%15

——SFCC GDQ 15X16
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xia

%
Figure 7. Non-dimensional deflection W of piezoelectric laminated
cylindrical panels with free edges wunder electrical loading

(@, =100,g, =0) at 6/c=0.5

4.2. Mechanical Loading

The normalized transverse deflection (W**) of the

piezoelectric laminated cylindrical panel under uniform
lateral mechanicalloading (d, =0,q, =100) is illustrated in

Figs. 8 and 9. The normalized deflection is defined as

3
W**ZIOOOW E42h interms of PZT-4 properties. Again
a 94
various boundary conditions are considered and the

deflection of panel is reported on the central circumferential
line. The results show that clamped edges effectively reduce
the deflection especially while they are adjacent to free edges
in comparison to opposite free and clamped sides.

120 T
3

—o—SCCS GDA 11X11
——SSCS GDA11X1
—7—FSCS 6DQ 11X11 |
—#*—FCSS GDQ 11X11

100

801
”; 60}

401

05

xia

T
Figure 8. Non-dimensional deflection W
cylindrical panels with free edges

(®, =0,g, =100) at 0/ =05

of piezoelectric laminated
under mechanical loading
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70
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40
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30

20
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Figure 9. Nommalized deflection W of piezoelectric laminated
cylindrical panels with various boundary conditions under mechanical

loading (®, =0,g, =100) at §/a=05

4.3. Electromechanical Loading

The last part of the results is dealt with the general type of
electromechanical loading (¥, =100,g, =100). Figure 10
depicts effects ofthe aforementioned boundary conditions on

the non-dimensional deflection (w ) of the piezoelectric

laminated cylindrical panel under this type of loading. The
normalized transverse deflection is also expressed in terms

of the  piezoelectric material  properties as
* E,e
W= 2931
100,
60

—o—FCS8S8 GDQ 18X15
—0— 5888 GDQ 15X15
—%—FCS8C GDQ 15X15
—*—SFCC GDQ 15X15
—+—SFCF GDQ 15X15

195 0 05
xla

*
Figure 10. Normalized deflection W of piezoelectric laminated
cylindrical ~panels with various boundary conditions under

electromechanical loading (@, =100,g, =100) at §/a=0.5

The present method is capable of predicting all variables
including displacements, rotations and stress resultants with
the same order of accuracy. To clarify it, the stress and
moment resultants of the piezoelectric laminated cylindrical
panel under electromechanical loading are determined. Figs.
11 and 12 illustrate the non-dimensional stress (Nx*,Ne*) and

Static Analysis of Laminated Piezoelectric Cylindrical Panels

moment resultants (Mx*, Mg*), respectively. The resultants

are nondimensionalized according to the equations
N = N ,M*: M , where e, is the PZT-4
e3Py e3P ga

property. It can be seen that the largest stress resultants occur
in the panels having SSSS boundary condition. On the other
hand, the stress resultants are at their lowest value for the
CCCCecase.

s CECC N
—+— CCCC N,

& b

—— 5555 N
—o— SSSS N,

Non dimensional stress resultants

& & 5 b

05 0 05
xfa
* *
Non-dimensional stress resultants Nx ,Ng of

piezoelectric laminated cylindrical panels under electromechanical loading

(@, =100,9, =100) at 9/a=05

Figure 11.

i CCCC M,

—+—Cccec M,

—9— CSCS M,

—0— CSCS M"J

Neon-dimensional couple resultant

05 0 05
xia

* *
Figure 12. Nomalized moment resultants Mx ,Mg of
piezoelectric laminated cylindrical panels under electromechanical loading

(®, =100,g, =100) & /a=0.5

5. Conclusions

The applicability and efficiency of the GDQ method are
investigated for static analysis of piezoelectric laminated
cylindrical panels. The procedure permits a systematic and a
straightforward modeling of mixed boundary conditions.
Numerical predictions are presented for deflection, stresses
and resultant forces with different types of boundary and
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various numbers of grid points. Of particular interests in this
study are panels with free edges and general
electromechanical loading which similar results are not
found in the open literature. Presence of all parameters
including displacements, rotations and stress resultants in the
governing equations provides a simple procedure to handle
any boundary conditions without any difficulty. Furthermore,
it results in the same order of accuracy for all parameters
including stress components.
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