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Abstract  The Static analysis of laminated piezoelectric cylindrical shells with various boundary conditions is presented 
employing Generalized Differential Quadrature (GDQ) method. The first-order shear deformation theory (FSDT) is 
considered to model the static response of panel. Different symmetric and asymmetric lamination sequences together with 
various combinations of clamped, simply supported and free boundary conditions are considered. Particular interest of this 
study regards to asymmetric p iezoelectric orthotropic cylindrical panels having free edges and subjected to general 
electromechanical loading. Taking into account the effects of shear deformation and initial curvature, a system of fifteen first 
order partial d ifferential equations (PDEs) in terms of unknown displacements, rotations, moments and forces is developed. 
Several numerical examples are presented to demonstrate the accuracy and convergence of the proposed method with 
relatively small number of grid points. It  is also revealed that the present method offers similar order of accuracy for all 
variables including displacements and stress resultants. Further results for panels with particu lar boundary conditions are 
provided which can be used as benchmarks in future. 
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1. Introduction 
Laminated Piezoelect ric structures have found wide 

applications as key structural elements due to enhanced 
elect ro -mechan ical characterist ics [1-7]. In  part icu lar, 
bending, buckling and vibration of laminated piezoelectric 
cylindrical panels subjected  to various combinations of 
load ing and boundary cond it ions have been the main 
subject of many investigations[8-15]. It  is well-known that 
analytical methods are only applicable to particular types of 
boundary cond it ions  such  as panels with  at  least two 
opposite sides simply supported. In  this regard , Chen  et 
al.[16] p res ented  an  exact  elas t icity  s o lu t ion  fo r an 
orthot rop ic cy lindrical shell with p iezoelect ric layers. 
Kapuria et al.[17] demonstrated similar study to obtain an 
analytical solut ion for free v ibrat ion of simply supported 
piezoelectric laminated circu lar panels in  cylindrical bending. 
They employed a layerwise expanding in Fourier series 
together with the modified Frobenius method. Daneshmehr 
e t  al .[18] invest igated  dynamic response o f cross-p ly 
laminated panels with a piezoelectric layer. They found a 
three-d imens ional elast icity so lut ion fo r fin itely long, 
simply-supported shell panels . In  th is paper the h igh ly  
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coupled partial differential equations reduced to ordinary 
differential equations with variab le coefficients by means of 
trigonometric function expansion in circumferential and 
longitudinal direct ions. This method also applied to 
functionally graded  piezoelectric (FGP) cylindrical shell 
panels under pressure and electrostatic excitation, recently 
[19]. So, in the range of analytical solutions one can find 
similar studies for laminated piezoelectric cylindrical panels 
and shell, while they are all limited to  special cases of 
geometries, simplified theories and boundary conditions. 
Thus, numerical techniques, as alternatives to analytical 
approaches, have been developed to obtain solutions for 
different structural components subjected to various types of 
loading and boundary conditions. Among these numerical 
studies, one can refer to boundary element[20], dynamic 
relaxation[21], extended Kantorovich method[22], various 
meshless methods[23], differential quadrature method 
(DQ)[24-25], d ifferential cubature method (DC)[26], and 
generalized differential quadrature (GDQ)[27].  

In this paper, the GDQ method is employed to obtain a 
solution for static analysis of laminated cylindrical panel 
with piezoelectric layers. General laminate layups and any 
combination of various boundary conditions are considered. 
Accuracy and rapid convergence of the method are examined 
with various examples. Of particular interests in this study 
are panels with free edges under electromechanical loading, 
whereas similar results are not found in the open literature to 
the best of authors' knowledge. Predict ions of the presented 
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method for various stress and displacement components 
exhibit a  good agreement compared with other solutions.  

2. Governing Equations 
Consider a piezoelectric laminated cylindrical panel with 

length a, mean radius R, total angle α and total thickness h as 
shown in Figure 1. The curvilinear coordinate system is 
located on the mid-surface of the laminate. The coordinates 
in the longitudinal, tangential and radial d irect ions are 
designated by x, θ, and z, respectively and are depicted in 
Figure 1. According to the first order shear deformation 

theory, the displacement field can be written as: 

         (1) 

where and  denote the displacements of the 
middle surface, and  are the rotation of tangents to 
the middle surface. Strain-displacement relat ions for a 
cylindrical shell in terms of cylindrical coordinates can be 
expressed as: 

               (2) 

where 

       (3) 

 
Figure 1.  Geometry of the panel 

In the above equations, 0
xε  and 0

θε are the normal strains, 0
xγ  and 0  θγ are the in-plane shear strains, xκ  and θκ 

are the change in the curvature, xη  and  θη  denote the torsion, 0
xµ  and 0

θµ  are the shear strains of the referenced 
mid-surface. Subscript comma denotes the differentiation with respect to x or θ.  

The stress-strain relations for the k th layer of the general laminated piezoelectric cylindrical panel in the laminate 
coordinate system can be expressed as follows[28-29], 
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where ( )k

ijQ  are the transformed stiffness components of the k th layer, 
k

ije  are the transformed p iezoelectric moduli, Φ  

is the applied voltage across the k th layer and  k
xε , 

k
yε , 

k
xyε , k

zε  are dielectric coefficients of the k th layer. 
In-plane stress resultants (Nx, Nθ , Nxθ , Nθx), couple resultants (Mx , Mθ , Mxθ , Mθx) and transverse shear force resultants 

(Qx ,Qθ) can be determined by integration of the relevant stress components over the entire thickness of the panel as below:  

            (5) 

It is seen that for a cylindrical panel in general case Nxθ ≠ Nθx and Mxθ ≠ Mθx, unless the term z/R is ignored. Th is is due to 
the difference in the radii of curvature in two perpendicular directions.  

Finally, constitutive equations for general laminated cylindrical panels in terms of d isplacement and rotation components 
can be derived as: 
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in which Ks is the shear correction factor and all components of the coefficient matrix can be determined using: 

 i,j=1,2,4,5,6         (7a) 

     (7b) 

In all presented results 5/6 is considered for the shear correction factor Ks.  
The equations of motion can be obtained using the principle of min imum potential energy whereas for the present case 

yields to[30]:  

             (8) 

where q(x,θ) is the lateral distributed load. 
The five equations of motion together with the ten constitutive equations are the complete set of governing equations for 

static analysis of piezoelectric laminated cylindrical panels. The governing equations consist of a set of partial differential 
equations in terms of fifteen unknowns, i.e . displacement, rotation and stress resultant components. 

Three different types of boundary conditions, i.e. clamped (C), simply supported (S) and free (F) are considered. These 
boundary conditions in terms of panel parameters are:  

-Clamped (C): 
0 ( & )x xu u w at x constantθ θβ β θ= = = = = =                    (9) 

-Simply supported (S): 
0 ( )xx xxN u w M at x constantθ θβ= = = = = =  

0 ( tan )x xu N w M at cons tθθ θθβ θ= = = = = =                        (10) 
-Free (F): 

0 ( )xx x xxx xN N Q M M at x constantθ θ= = = = = =  

0 ( )x xN N Q M M at constantθ θθ θ θ θθ θ= = = = = =                        (11) 

Once mid-surface displacements and rotations are found from governing equations, one may obtain all strain components 
through the thickness of the panel using equations (2) and (3). Finally, all stress components within the kth layer of the panel 
are determined using the stress-strain relations for the same layer and then the stress resultants can be found. 
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3. Application of the GDQ 
The GDQ method is employed to solve the developed differential equations of the laminated piezoelectric cy lindrical 

panels. The essence of the GDQ method is that the partial derivative of a function with respect to a variable is approximated 
by a weighted sum of function values at all discrete points in that direct ion. Considering a function f(x) with n d iscrete grid 
points[31], we have 
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where xj are the discrete points in the variable domain. f(xj) and Cij
(m) are the function values at these points and the related 

weighting coefficients, respectively. In  order to determine the weighting coefficients  Cij
(m), the Lagrange interpolation basic 

functions[32, 33] are used as the test functions and explicit formulas for computing the GDQ weighting coefficients are 
obtained[34], 
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As referred above, the first step to employ the GDQ technique is to discretize the solution domain into n×m grid points. It 
means that we assume n  grid points in  the x  direct ion and m grid  points in the θ direction. A lthough the simplest procedure for 
discretizat ion of the domain is to select equally spaced points, it is shown[34] that one of the best options for obtaining grid 
points is zeros of the well-known Chebyshev polynomials: 

                            (16) 

where a and α are geometric parameters of the panel shown in Figure 1. The next step is to discretize the governing equations 
based on the definit ion given in  equation (12). Thus, the discretized fo rm of the governing equations at a sample grid point  (i,j) 
can be written as: 
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Following the procedure leads to a system of 15(n×m) algebraic equations with the same number of unknowns.  
The last step is to apply boundary conditions (10-12) to the obtained algebraic equations. Considering the fact that five of 

the fifteen unknown parameters vanish at each boundary node for any type of boundary conditions, the relevant unknowns 
should be removed from the equations. 

  

4. Results and Discussion 
The presented algorithm is employed to solve the 

governing equations of static analysis for laminated 
orthotropic cylindrical panels integrated with piezoelectric 
layers. In this study the effects of different types of boundary 
conditions are investigated. Three general types of loadings 
are considered: electrical, mechanical and electromechanical. 
A plate with SCFS boundary conditions means that sides 1, 2, 
3, 4 (see Figure 1) are simply supported, clamped, free and 
simply supported, respectively.  

Table 1.  Normalized induced transverse displacement ( 2
4

0

10

c

wEw
S q h

= , 

q0=1) of infinitely long cylindrical panel with one composite layer 

=100  =0  S=R/hc 

Present 
work 

Chen et 
al.[16]  Present 

work 
Chen et 
al.[16]   

-0.0345 -0.0340  0.1160 0.1120  10 

0.0487 0.0481  0.0764 0.0754  50 

0.0613 0.0604  0.0754 0.0740  100 

 

At first, the efficiency and the accuracy  of the present 
method are demonstrated. The normalized transverse central 
deflections for a simply supported infinitely long cylindrical 
panel subjected to sinusoidal distributed mechanical and 
electrical loading are compared with those of exact elasticity 
solution for a shell strip having  piezoelectric layers in  
Table 1. The variations of deflection with three values of 
(S=R/hc) are studied where hc is the composite layer 
thickness. To model a long simply  supported panel, the 
length of the panel is considered to be extremely large and 
the boundary conditions are considered to be SFSF.  

The piezoelectric layers are assumed to be embedded on 
the top and the bottom surfaces of the panel. The top and the 
bottom layers are taken as the actuator and the sensor, 
respectively. The middle layer is an orthotropic material with 
the fiber orientation angle of 90°. It  should be noted that the 
fiber angles of laminates are measured relat ive to the panel 
axis. The thickness ratio of the piezoelectric layer to the 
composite layer is / 0.01p ch h = , the panel radius is R=1 
and the panel total angle is equal to / 3α π= . The  
Piezoelectric layers are assumed to be elastically isotropic 
and uniaxially polarized with the material properties of: 

   (18) 

 

0Φ0Φ

2
31

11 22

2 0.29 0.046( / )
0.106 9( / )rr

E GPa e C m
E F mθθ

υ
ε ε ε ε

= = =
= = = = −
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The material properties of the graphite/epoxy composite 
layers are:  

   (19) 

The electromechanical loading functions are expressed as: 

0 0sin( ) , sin( )q q πθ πθ
α α

= Φ = Φ where q0 and Φ0 are the 

peak value. The voltage is applied to the upper surface of the 
actuator, while the voltage of the actuator interface and the 
sensor surfaces are assumed to be zero. It is seen that the 
predicted normalized transverse displacements are in good 
agreement with those reported by Ref.[16]. 

Table 2.  Normalized induced transverse displacement ( 2
4

0

10

c

wEw
S q h

= , 

q0=1) of infinitely long cylindrical panel with three composite layers 

=100  =0  S=R/hc 

Present 
work 

Chen et 
al.[16]  Present 

work 
Chen et 
al.[16]   

-0.0230 -0.0227  0.1511 0.1440  10 

0.0522 0.0518  0.0819 0.0808  50 

0.0650 0.0641  0.0797 0.0785  100 

Similar results are tabulated in Table 2 for a d ifferent 
layup of the middle composite layers. The middle layers are 
made of equal thickness plies with  the stacking sequence 
of[90/0/90]. Again good agreements are achieved. 

To show the capability of the GDQ method in accurately 

predicting stresses, a fully simply supported cylindrical 
panel subjected to doubly sinusoidal loading on the upper 
surface 

( ( , ) 0 sin( / )sin( / ), / 2xq q x a x x aθ π πθ α′ ′= × = + ) 
is considered. Material p roperties of the panel are:

1 2 12 2 13 2/ 25, / / 0.5E E G E G E= = = , 23 2/ 0.2,G E =

12 0.25υ =  and the geometry parameters are set to be: (a=4, 
R=1, α=π/4,  S=R/h=50). The normalized central deflection 
and stresses for both symmetric (90/0/90) and asymmetric 
cross ply (0/90) layups are presented in Table 3. In both cases 
the layers are of equal thickness. The normalized t ransverse 
deflection and stresses are defined as follows:  

1

2

1

2

1

2

*(0, / 2), * *(0, / 2, / 2)
* *(0, / 2, / 2)
* *(0, / 2, / 2)

* *(0, / 2, / 2)

* *( / 2,0, / 2)

* *( / 2,0, / 2)

xx xx

xx xx

yy yy

yy yy

xy xy

xy xy

w h
h

h
h

a h
a h

α σ σ α
σ σ α
σ σ α

σ σ α

σ σ

σ σ

=
= −
=

= −

=

= −

    (20) 

where: 

* *1
3 2

0 0

1010 , ij
ij

wEw
q hS q S

σ
σ= =             (21) 

Included in the table are also benchmarks results of 
three-dimensional elasticity analysis[35], closed form 
solution of higher order zigzag theory[36] and finite element 
analysis[30]. It is demonstrated that the obtained GDQ 
results are in good agreement with the other solutions.  

Table 3.  Normalized deflection and stress of simply supported cylindrical panel under sinusoidal distributed mechanical loading 

Model *w        

[90/0/90] 
3D 

Elasticity[35] 0.5495 0.0712 -0.0225 3.930 -3.987 0.0118 0.0760 

FEM[30] 0.5458 0.0711 -0.0214 3.9489 -3.9555 0.0114 0.0765 
Closed 

Form[36] 0.5486 0.0710 -0.0217 3.9265 -3.9870 0.0123 0.0764 

GDQ 0.5459 0.0712 -0.0213 3.9434 -3.9625 0.0114 0.0765 

[0˚/90 ]̊ 
3D 

Elasticity[35] 2.242 0.2189 1.61 8.937 -0.9670 0.0784 0.3449 

FEM[30] 2.2586 0.2211 1.6169 9.0939 -0.9601 0.0767 0.3501 
Closed 

Form[36] 2.2372 0.2187 1.6051 8.9543 -0.9615 0.0784 0.3444 

GDQ 2.2644 0.2211 1.6253 9.1102 -0.9647 0.0769 0.3502 

 

  

1 2 12 13

12 23

172 6.9 0.25
3.4 1.4

E GPa E GPa
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υ υ= = = =
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To demonstrate the capability of the developed algorithm 
to deal with arb itrary boundary conditions and either 
electrical or mechanical loadings, an illustrative example is 
taken up. A piezoelectric cylindrical panel with a length and 
radius of a=R=1m, a total angle of 1Radα = and thickness 
of h=0.1m is considered. The complete set of results can be 
used as benchmarks in future studies.  

In the following results, the panels are considered to be 
composed of PZT-4 and polyvinyledene fluoride (PVDF) 
polarized along the radial d irect ion. The laminates layup and 
the direction of polarization of the piezoelectric laminates 
are shown schematically in Figure 2. The individual layers 
are taken  to be of equal thickness. The elastic and 
piezoelectric properties of piezoelectric material are also 
given in Tab le 4[37]. Three types of uniform loading are 
considered for panels as: electrical, mechanical and 
electromechanical by setting q=q0 and/or Φ=Φ0 which are 
applied to the upper surface. 

Table 4.  Material properties of piezoelectric layers 

Heyliger, Saravanos[37] Property 
PVDF PZT-4  
237.0 81.3  

23.2 81.3  

10.5 64.5  

0.154 0.329  

0.178 0.432  

0.177 0.432  

2.15 25.6  

4.4 25.6  

6.43 30.6  

-0.13 -5.2  

-0.14 -5.2  

-0.28 15.08  

-0.01 12.72  

-0.01 12.72  

4.1. Electrical Loading  
In order to show the convergence of the present work, the 

non-dimensional deflection of the p iezoelectric panel is 
presented for different types of boundary conditions in Figs. 
3 through 5. The polarization of PVDF layers (see Figure 2) 
are reversed and the electrical/mechanical parameters of the 
loading are considered to be 

0 0( 100, 0)qΦ = = . The 
deflections are reported on the central circumferential line of 
the panel ( / 0.5θ α = ) and are calculated from expression 

* 2 31

010
E ew w

 
=  Φ 

 in terms of PZT-4 propert ies. The 

boundary conditions of the panels are FCFF, FCCF and 
CCFC in Figs. 3-5, respectively. It is obvious that the free 
type boundary conditions exhib it the worst convergence 
characteristic than the others. It is found that the use of 
seventeen grid points in the x and θ  directions respectively 
can provide accurate numerical results. This guarantees 
faster rate of convergence of the method for other types of 
boundary conditions.  

 
Figure 2.  Laminates layup and electrical loading of piezoelectric layers 

 

Figure 3.  Normalized deflection *w of cantilever piezoelectric 
laminated cylindrical panels under electric loading  at 

 

 

Figure 4.  Normalized deflection *w of FCCF piezoelectric laminated 
cylindrical panels under electric loading  at 
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After performing the convergence studies, new results for 
panels with different set of boundary conditions are 
developed. Figs. 6 and 7 show the dimensionless central 

deflection *w  of the piezoelectric laminated cylindrical 
panel with various boundary conditions along x axis at 

/ 0.5θ α = . It is realized  that the solution characteristics of 
the method is dependent on the boundary conditions. It is 
also seen that the locations of the maximum deflect ions are 
dependent on the type of boundary conditions. Although, the 
maximum deflection naturally occurs at the center of the 
fully simply supported panel, its location is not evident for 
other boundary conditions. 

 

Figure 5.  Normalized deflection *w  of CCFC piezoelectric laminated 
cylindrical panels under electric loading  at 

 

 

Figure 6.  Normalized deflection *w of piezoelectric laminated 
cylindrical panels with various boundary conditions under electrical loading

 at  

 

Figure 7.  Non-dimensional deflection *w of piezoelectric laminated 
cylindrical panels with free edges under electrical loading

 at  

4.2. Mechanical Loading  

The normalized transverse deflection ( )**w of the 

piezoelectric laminated cylindrical panel under uniform 
lateral mechanical loading 0 0( 0, 100)qΦ = =  is illustrated in 
Figs. 8 and 9. The normalized deflection is defined as 

3
2
4

0

** 1000 E hw w
a q

 
=   

 
 in terms of PZT-4 propert ies. Again 

various boundary conditions are considered and the 
deflection of panel is reported on the central circumferential 
line. The results show that clamped edges effectively reduce 
the deflection especially while they are ad jacent to free edges 
in comparison to opposite free and clamped sides. 

 

Figure 8.  Non-dimensional deflection of piezoelectric laminated 
cylindrical panels with free edges under mechanical loading

 at  

0 0( 100, 0)qΦ = =
/ 0.5θ α =

0 0( 100, 0)qΦ = = / 0.5θ α =

0 0( 100, 0)qΦ = = / 0.5θ α =

**w

0 0( 0, 100)qΦ = = / 0.5θ α =



26 J. E. Jam et al.:  Static Analysis of Laminated Piezoelectric Cylindrical Panels   
 

 

 

Figure 9.  Normalized deflection of piezoelectric laminated 
cylindrical panels with various boundary conditions under mechanical 
loading  at  

4.3. Electromechanical Loading  
The last part of the results is dealt with the general type of 

electromechanical loading 0 0( 100, 100)qΦ = = . Figure 10 
depicts effects of the aforementioned boundary conditions on 

the non-dimensional deflection ( )*w  of the piezoelectric 

laminated cylindrical panel under this type of loading. The 
normalized  transverse deflection is also expressed in terms 
of the piezoelectric material propert ies as 

2 31

0

*
10
E ew w

 
=  Φ 

. 

 

Figure 10.  Normalized deflection *w of piezoelectric laminated 
cylindrical panels with various boundary conditions under 
electromechanical loading  at  

The present method is capable of predicting all variables 
including d isplacements, rotations and stress resultants with 
the same order of accuracy. To clarify it, the stress and 
moment resultants of the piezoelectric laminated cylindrical 
panel under electromechanical loading are determined. Figs. 
11 and 12 illustrate the non-dimensional stress (Nx

*, Nθ
*) and 

moment resultants (Mx
*, Mθ

*), respectively. The resultants 
are nondimensionalized according to the equations 

31 0 31 0

* *,N MN M
e e a

= =
Φ Φ

 , where 31e  is the PZT-4 

property. It can be seen that the largest stress resultants occur 
in the panels having SSSS boundary condition. On the other 
hand, the stress resultants are at their lowest value for the 
CCCC case. 

 

Figure 11.  Non-dimensional stress resultants * *,xN Nθ  of 
piezoelectric laminated cylindrical panels under electromechanical loading

 at  

 

Figure 12.  Normalized moment resultants * *,xM Mθ  of 
piezoelectric laminated cylindrical panels under electromechanical loading

 at  

5. Conclusions 
The applicability and efficiency of the GDQ method are 

investigated for static analysis of p iezoelectric laminated 
cylindrical panels. The procedure permits a systematic and a 
straightforward modeling of mixed boundary conditions. 
Numerical predictions are presented for deflect ion, stresses 
and resultant forces with  different types of boundary and 

**w

0 0( 0, 100)qΦ = = / 0.5θ α =

0 0( 100, 100)qΦ = = / 0.5θ α =

0 0( 100, 100)qΦ = = / 0.5θ α =

0 0( 100, 100)qΦ = = / 0.5θ α =
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various numbers of grid points. Of part icular interests in this 
study are panels with free edges and general 
electromechanical loading which similar results are not 
found in the open literature. Presence of all parameters 
including d isplacements, rotations and stress resultants in the 
governing equations provides a simple p rocedure to handle 
any boundary conditions without any difficulty. Furthermore, 
it results in the same order of accuracy for all parameters 
including stress components.  
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