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A targeted effort to identify novel neurotrophic factors for midbrain dopaminergic neurons resulted in the
isolation of GDNF (glial cell line-derived neurotrophic factor) from the supernatant of a rat glial cell line in
1993. Over two decades and 1200 papers later, the GDNF ligand family and their different receptor systems
are now recognized as one of the major neurotrophic networks in the nervous system, important for the devel-
opment,maintenance and function of a variety of neurons and glial cells. Themanyways inwhich the fourmem-
bers of the GDNF ligand family can signal and function allow these factors to take part in the control of multiple
types of processes, from neuronal survival to axon guidance and synapse formation in the developing nervous
system, to synaptic function and regenerative responses in the adult. In this review, we will briefly summarize
basic aspects of GDNF signaling mechanisms and receptor systems and then review our current knowledge of
the physiology of GDNF activities in the central nervous system, with an eye to its relevance for neurodegenera-
tive and neuropsychiatric diseases.
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1. Basic signaling mechanisms and receptor systems for the GDNF
ligand family

Following the isolation of GDNF (Lin et al., 1993), additional ligands
structurally similar to GDNFwere identified and characterized.Work by
different laboratories showed that the GDNF ligand family consists of
four proteins: GDNF, Neurturin, Artemin and Persephin, all isolated
within 5 years of the GDNF discovery (for a review, see (Airaksinen
and Saarma, 2002)). The characterization of GDNF receptors would
follow soon thereafter. Biochemical studies of GDNF signaling (Trupp
et al., 1996) as well as analyses of Gdnf knock-out mice (Pichel et al.,
1996) led to the realization that the, previously orphan, receptor tyro-
sine kinase RET was a signaling receptor for GDNF (for a review, see
(Ibanez, 2013). Later work showed that GDNF binding to RET was of
low affinity and required an auxiliary ligand-binding subunit that was
to be called GDNF Family Receptor alpha 1, or GFRα1 (for a review,
see (Airaksinen and Saarma, 2002)). In total, four GFRα-like receptors
were identified (i.e. GFRα1 to 4), eachwith selectivity (although not ex-
clusive specificity) for each of the four members of the GDNF ligand
family. These receptors bind GDNF ligands with high affinity but they
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do not themselves signal, as they lack an intracellular domain and are
anchored to the plasmamembrane through a lipid linkage (GPI-anchor)
(reviewed in (Airaksinen and Saarma, 2002)). In complex with a cog-
nate GFRα receptor, GDNF ligands acquire high affinity for RET. The
downstream signaling elicited by the GDNF/GFRα1/RET complex has
many of the characteristic features of receptor tyrosine kinases, includ-
ing activation of the Ras/MAP kinase and PI3K/AKT pathways (reviewed
in (Ibanez, 2013)). The intensity and duration of RET signaling can be
modified by the ability of the GPI-anchor of GFRα co-receptors to parti-
tion into sub compartments of the plasmamembrane, such as lipid rafts
(reviewed in (Paratcha and Ibanez, 2002)), aswell as cleavage bymem-
brane phospholipases, which allows GFRα receptors to function in sol-
uble form (Paratcha et al., 2001). This latter phenomenon, also called
“trans” signaling, explains why GFRα co-receptors are expressed by
many cells and tissues in the absence of RET and can thereby display
non-cell autonomous functions (reviewed in (Paratcha and Ledda,
2008; Ibanez, 2010)). Trans signaling may also have therapeutic appli-
cations, as infusion of soluble GFRα1 has recently been shown to poten-
tiate dopaminergic neuron function during normal aging (Pruett and
Salvatore, 2013). The physiological significance of lipid raft signaling
by the GFRα1/RET complex has recently been demonstrated in vivo
(Tsui et al., 2015).

In addition to RET, some members of the GDNF family can signal by
interaction with the Neural Cell Adhesion Molecule (NCAM) (Paratcha
et al., 2003). Although GDNF can interact directly with NCAM, high
its receptors— Relevance for disorders of the central nervous system,
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affinity binding and downstream signaling are dependent on the pres-
ence of cognate GFRα co-receptors (reviewed in (Paratcha and Ledda,
2008; Ibanez, 2010). The specificity and physiological relevance of
NCAM as a GDNF signaling receptor has been documented in multiple
studies by several different laboratories (see for example (Charoy
et al., 2012; Duveau and Fritschy, 2010; Euteneuer et al., 2013; Nielsen
et al., 2009; Sjöstrand and Ibanez, 2008; Sjöstrand et al., 2007; Wan
and Too, 2010)). GDNF signaling throughNCAM can result in the activa-
tion of Src-like kinases and MAP kinases and contributes to the regula-
tion of several different processes, including neurite outgrowth and
synapse formation (reviewed in (Paratcha and Ledda, 2008)). In addi-
tion to intracellular signaling, GDNF and GFRα1 have also been shown
to affect cell behavior through specific effects on cell adhesion
(reviewed in (Ibanez, 2010)). GFRα1 has been shown to antagonize
NCAM-mediated cell adhesion (Paratcha et al., 2003), a phenomenon
that depends upon direct interaction of GFRα1 with the fourth Ig do-
main in NCAM (Sjöstrand and Ibanez, 2008). In this context, GFRα1
would have the capacity to exert biological effects in the absence of ei-
ther GDNF or RET. Ongoing analysis of different brain areas in Gfra1mu-
tant mice is beginning to shed light on the physiological relevance of
this activity. Independently of NCAM, GFRα1 has been shown to func-
tion as a cell adhesion molecule in its own right, albeit one regulated
by its ligand GDNF, a concept that has been termed ligand-mediated
cell adhesion (Ledda, 2007; Ledda et al., 2007). Different lines of evi-
dence suggest that this activity can contribute to synapse formation in
the hippocampus, as reviewed in greater detail below. It should also
be mentioned that other work has hinted at the presence of additional
GDNF receptors besides GFRα1, RET and NCAM. Syndecan-3 has been
shown to interact with GDNF through its heparin sulfate chains
(Bespalov et al., 2011). Finally, the activities of GDNF on GABAergic in-
terneurons of the medial ganglionic eminence (MGE), reviewed in
greater detail below, have been shown to require GFRα1 but to be inde-
pendent of either RET or NCAM (Pozas and Ibanez, 2005). More recent
work has shown that GDNF may signal through a transmembrane pro-
tein that is distinct from other receptors known to be present in MGE
cells, including MET or ErbB4 (Perrinjaquet et al., 2011).

As the main focus of this review is on GDNF activities in brain,
peripheral actions of GDNF and related ligands will only be briefly
mentioned here. Following its discovery as a neurotrophic factor for
brain dopaminergic neurons, it was soon realized that GDNF has also
powerful activities in peripheral neurons, including retinal ganglion
cells, sympathetic, parasympathetic and sensory neurons (see for exam-
ple (Baudet et al., 2000; Fundin et al., 1999; Jing et al., 1996; Ohnaka
et al., 2012; Rossi et al., 1999; Trupp et al., 1995)). More recent work
has shown that GDNF ligands can regulate pain responses by modulat-
ing sensitization of sensory neurons to different stimuli (Alvarez et al.,
2012; Lippoldt et al., 2013; Sakai et al., 2008a). The link between
GDNF and RET would further establish GDNF as one of the primary
branching factors for the ureteric buds of the developing kidney
(Sainio et al., 1997; Shakya et al., 2005) and a key regulator of the devel-
opment and maintenance of neurons in the enteric nervous system
(Enomoto et al., 1998; Wang et al., 2010; Young, 2001). GDNF has also
been found to be a potent regulator of spermatogonial self-renewal
and differentiation (Meng et al., 2000) and is required in adult stages
for the maintenance of the spermatogonial stem cell pool (Savitt et al.,
2012). In addition, early investigations pointed to the importance of
GDNF signaling for motoneuron survival (Henderson et al., 1994;
Oppenheim et al., 2000), and more recently differentiation (Haase
et al., 2002), axon guidance (Bonanomi et al., 2012; Kramer et al.,
2006) and neuromuscular connectivity (Baudet et al., 2008). In particu-
lar, fusimotormotoneurons appear to bemost sensitive to GDNF (Gould
et al., 2008). Interestingly, GDNF was recently shown to elicit different
effects onmotoneuron axons versus cell bodies (Zahavi et al., 2015). De-
livery of GDNF in a cell therapy paradigm has been shown to prolong
lifespan and ameliorate disease progression in a rat model of familial
amyotrophic lateral sclerosis (ALS) (Krakora et al., 2013).
Please cite this article as: Ibáñez, C.F., Andressoo, J.-O., Biology of GDNF and
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2. GDNF function and therapeutic potential in the brain dopamine
system

Themainmotor symptoms in Parkinson's disease (PD) are caused by
gradual loss of midbrain dopamine neurons residing in the substantia
nigra pars compacta (SNpc) and projecting mainly into the dorsal
striatum (Björklund and Dunnett, 2007a; Meissner et al., 2011). Since
halting or reversing treatments for PD are not available, the initial dis-
covery of GDNF as a survival factor for midbrain dopaminergic neurons
in culture generated great excitement in the field and was quickly
followed by in vivo studies and subsequently clinical trials. The suc-
cesses and draw-backs of GDNF based therapies in PD (discussed in
greater detail below) highlight a need for a greater understanding of
the physiology of endogenous GDNF in vivo.

2.1. GDNF expression in the nigrostriatal dopamine system

In mice, the SNpc contains about 10,000 to 15,000 dopaminergic
neurons which express GDNF receptors RET and GFRα1 (Golden et al.,
1999; Hunot et al., 1996; Trupp et al., 1997). These mainly project via
the medial forebrain bundle to the dorsal striatum, which expresses
GDNF (Björklund and Dunnett, 2007b). The axonal tree of an individual
dopaminergic neuron branches extensively, covering on average 1.5% of
the total striatal volume, thus with an estimated capacity to influence
approximately 75,000 striatal neurons (Matsuda et al., 2009). In the stri-
atum, GDNF is predominantly expressed by parvalbumin positive inter-
neurons which make up 0.7% of all striatal neurons (Hidalgo-Figueroa
et al., 2012). Thus, on average, about 525 GDNF-expressing neurons re-
side within the area covered by an individual dopaminergic axonal tree.
As a consequence, the axonal trees of dopaminergic neurons are highly
overlapping, covering themouse striatum about 225 times. This redun-
dant innervation is likely to be important, and it may explain the re-
markable compensatory capacity of the nigrostriatal dopaminergic
system: PD becomes symptomatic only after more than 50% of striatal
dopamine levels and 30–40% of SNpc neurons are lost (Burke and
O'Malley, 2013). In rodent models of PD, it was shown that the axonal
trees of the remaining axons can re-innervate the striatal areas left va-
cant by the degenerating dopaminergic neurons (Burke and O'Malley,
2013; Parish et al., 2001), opening an opportunity to halt or reverse
the progression of PD via GDNF delivery.

2.2. Ectopic GDNF application for PD therapy

Intracranial delivery of GDNF potentiates striatal dopamine system
function and midbrain dopaminergic neuronal survival in several
models of chemically-induced PD in rodents (Beck et al., 1995; Hoffer
et al., 1994; Tomac et al., 1995; Winkler et al., 1996) as well as non-
human primates (Gash et al., 1996). Interestingly, GDNF delivery into
the striatum, but not to the SNpc, results in functional recovery in
rodent PD models (Kirik et al., 2000, 2004), underlying the importance
of GDNF delivery to its physiological site of expression for the treatment
of PD. Upon intracranial delivery, GDNF induces re-growth of
degenerating dopaminergic axons in PD animal models (Meissner
et al., 2011) and in aging human brain (Love et al., 2005). In clinical tri-
als, however, the effects of intracranial GDNF delivery varied from pos-
itive clinical benefits (Gill et al., 2003; Love et al., 2005; Patel et al., 2005)
to no effect (Lang et al., 2006). Variability in GDNF delivery systems, sta-
tistical considerations and issues with patient grading and inclusion
criteria have left several clinical trials inconclusive (Lang et al., 2006;
Sherer et al., 2006). At the time of this writing, two clinical trials are on-
going, one using an improved preparation of GDNF protein, the other
based on adeno-associated virus (AAV) delivery. While hopes are still
high that GDNF based therapies may be able to alleviate or halt the de-
generative process in PD patients, several still unresolved concerns will
need to be addressed before concrete progress is made in this area. Be-
cause GDNF is a strong chemo-attractant for axons of dopaminergic
its receptors— Relevance for disorders of the central nervous system,
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neurons, ectopic GDNF application results in growth of the re-
innervating axons towards the GDNF injection site, instead of the origi-
nal innervation targets, resulting in aberrant sprouting (Georgievska
et al., 2002, 2004; Hudson et al., 1995). Another concern relates with
GDNF dosing, which usually exceeds endogenous GDNF levels by at
least one or two orders of the magnitude and has been linked to unde-
sired side-effects. Virally delivered GDNF was shown to result in down-
regulation of the levels of tyrosine hydroxylase (TH), the key enzyme in
dopamine synthesis (Georgievska et al., 2004; Rosenblad et al., 2003).
Ectopic GDNF administration has also been reported to cause hyperac-
tivity (Emerich et al., 1996; Hebert and Gerhardt, 1997; Hebert et al.,
1996; Hudson et al., 1995) as well as reduced food intake and
bodyweight (Hudson et al., 1995; Manfredsson et al., 2009).

2.3. Endogenous GDNF function in the brain dopamine system

The brain dopamine system largely matures during the first post-
natal weeks. Two waves of programmed cell death are known to take
place during the first two postnatal weeks, paralleled by maturation of
striatal innervation as striatal GDNF levels peak towards the end of
the second week (Airaksinen and Saarma, 2002; Burke, 2003;
Hidalgo-Figueroa et al., 2012; Oo et al., 2005; Trupp et al., 1996). In
this regard, it is intriguing that both RET aswell as GFRα1 are expressed
inmidbrain dopaminergic neurons from very early stages of their devel-
opment in the mouse embryo (Golden et al., 1999). Mice that develop
without GDNF die at birth due to agenesis of kidney and enteric nerves,
while the brain dopamine system is still intact at this age in these mu-
tants (Moore et al., 1996; Pichel et al., 1996; Sánchez et al., 1996). On
the other hand, heterozygous GDNF mutants, with about half GDNF
levels in the striatum, display rather mild changes in the brain dopami-
nergic system at postnatal and adult stages (Boger et al., 2006;
Granholm et al., 2011). Similar results have been obtained in null mu-
tants of the GFRA1 gene (Cacalano et al., 1998; Enomoto et al., 1998).

Conditional ablation of RET expression in dopaminergic neurons has
no detectable effect on striatal dopamine levels or cell integrity in the
SNPc until about 9 months of age (Jain et al., 2006). After this age, how-
ever, up to 30% dopaminergic neuron loss was observed in conditional
mutant mice that were between 1 and 2 years old (Kramer et al.,
2007), suggesting that endogenous GDNF signaling through RET is
only required for long term maintenance of the dopaminergic
nigrostriatal system. In vitro experiments have suggested that RET is
the main GDNF receptor in midbrain dopaminergic neurons (Taraviras
et al., 1999). Whether other GDNF receptors, such as NCAM or
Syndecan-3, play any significant roles in the development or mainte-
nance of the brain dopamine system has not yet been established. Be-
sides development and maintenance, RET signaling may exert potent
neuroprotective functions in the face of a neural challenge or insult. A
recent study has shown that mice lacking both Parkin (a gene linked
to PD pathogenesis (Exner et al., 2012)) and RET in SNPc dopaminergic
neurons exhibited accelerated dopaminergic neuron and axonal loss
compared with either Parkin-deficient or RET-deficient mice, due to
impaired mitochondrial morphology and function (Meka et al., 2015).
The results of this study highlight a cross-talk between the PD protein
network and GDNF signaling whichmay have implications for develop-
ment of therapeutic strategies in PD.

Conditional ablation of GDNF expression has been investigated in a
number of ways. In the first study, whole-body inactivation of the
GDNF gene was induced in mice at one month of age using a
tamoxifen-inducible Cre-mediated strategy (Pascual et al., 2008).
These researchers reported 60–70% loss of dopaminergic neurons in
the midbrain 7 months after tamoxifen treatment. Strikingly, overall
GDNF levels in striatum were reduced by only 50% in these animals.
These results suggested the possibility that GDNF may utilize receptors
distinct from RET in adult midbrain dopaminergic neurons or, alterna-
tively, that lack of GDNF/RET signaling from early stages of development
triggers compensatory mechanisms that rescue dopaminergic neuron
Please cite this article as: Ibáñez, C.F., Andressoo, J.-O., Biology of GDNF and
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survival (Ibanez, 2008). A more recent study repeated these experi-
ments using a similar set up but with an independently generated line
of conditional GDNF mutant mice. In addition, this new study also in-
duced deletion of the GDNF gene via intrastriatal delivery of a virus ex-
pressing Cre recombinase as well as using pan-neuronal Cre expression
from the Nestin gene (Kopra et al., 2015). In contrast to the first study,
these researchers found that neither of the three approaches affected
dopaminergic neuron survival in the SNPc nor dopamine levels in the
striatum up to an age of 19 months. The stark discrepancy between
these two studies has been attributed to several factors, including differ-
ences in genetic background and extent of reduction of GDNF levels.
Ongoing studies by other laboratories may help to resolve the disparity
of these results. Even if it is finally demonstrated that dopaminergic
neuron survival is not dependent on GDNF in vivo, it is still possible
that endogenous GDNF regulates the function of dopaminergic neurons
or modulate their survival under stress situations, such as PD. Several
recent gain-of-function studies have brought some light on these
possibilities.

Transgenic overexpression of either GDNF or GFRα1 in the forebrain
of mice using a CAMKII promoter was reported to increase dopaminer-
gic neuron numbers in the SNPc and protection of striatal dopaminergic
fibers, but not cell bodies, to an excitotoxic lesion that mimics PD in ro-
dents (Kholodilov et al., 2004, 2011). In line with these results, infusion
of recombinant GFRα1 in the SNPcwas also reported to increase TH and
dopamine content in the SNPc of aged rats (Pruett and Salvatore, 2013).
As GFRα1 is thought to require GDNF to function, these results were
interpreted as evidence for a role of endogenous GDNF in midbrain do-
paminergic neuron development ormaintenance. On the other hand, as
discussed above, ectopic administration of GDNF or GFRα1 does not
necessarily reflect the functions of the endogenously expressed proteins
and can even lead to confounding effects. A few studies have attempted
to overcome these limitations by enhancing GDNF function through
manipulation of endogenous genes in the pathway.Mice carrying amu-
tation found in patients suffering ofmultiple endocrine neoplasia type B
(MEN2B) that constitutively activates the RET receptor showed a global
enhancement of the nigrostriatal system, including increased number of
dopaminergic neurons in the SNPc, increased levels of THanddopamine
transporter (DAT), as well as elevated striatal dopamine levels
(Mijatovic et al., 2007, 2008, 2011). A more recent study has reported
results obtained from GDNF hypermorphic mice which displayed two-
fold elevated GDNF expression following introduction of a transcription
stop signal in the 3′ untranslated region (UTR) of the endogenous Gdnf
gene (Kumar et al., 2015). Further work revealed that a site in the Gdnf
3′ UTR sequence interacted with micro RNAs (miRNAs) that negatively
regulate GDNF expression by destabilizing Gdnf mRNA and possibly its
translation. Increased GDNF protein expression was detected in stria-
tum of these mice leading to increased number of dopaminergic neu-
rons in the SNPc and elevated dopamine levels in striatum. In contrast
to previous studies using ectopic GDNF expression or administration,
no aberrant sprouting of dopaminergic axons, down-regulation of TH
levels or hyperactivity were observed. Importantly, striatal dopaminer-
gic axons, although not SNPc cell bodies, were protected in a PD model
induced by supranigral lactacystin application. The effects of increased
levels of endogenous GDNF showed similarities, but also differences,
from constitutive RET activation after MEN2B mutation. Interestingly,
enhanced TH expression and reduced spontaneous locomotion was
only observed in MEN2B RET mice (Mijatovic et al., 2007). GDNF
hypermorphic mice also showed enhanced striatal dopamine release
and re-uptake as a result of elevated DAT activity (Kumar et al., 2015).
Although this result iswhatwould be expected froma dopaminotrophic
factor such as GDNF, a recent study using Ret knock-out heterozygous
mice reported somewhat contradicting observations (Zhu et al., 2015).
These researchers found enhanced dopamine uptake as well as in-
creased surface localization and DAT activity in dopaminergic axons
specifically in the ventral striatum of these mice, suggesting that RET
signaling negatively regulates DAT activity. Clearly, more work needs
its receptors— Relevance for disorders of the central nervous system,
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to be done to resolve how GDNF/RET signaling regulates DAT activity
and expression, an activity that may have important implications for
the role of these molecules in a range of conditions, including addictive
behaviors, as discussed below.

3. Other GDNF activities in the CNS: relevance for neuropsychiatric
disorders

Although most research on the function of GDNF and its receptors
has concentrated on midbrain dopaminergic neurons, the realization
that GDNF receptors are present in many other brain regions set the
stage for investigations of GDNF activities in other classes of neurons
and their implications for neurological conditions other than Parkinson's
disease.

3.1. Hippocampal synaptogenesis

GDNF and two of its receptors, GFRα1 and NCAM, but not RET, are
expressed by hippocampal neurons during embryonic and early postna-
tal stages (Ledda et al., 2007). While NCAM was exclusively localized
presynaptically, GFRα1 was present at both pre- and post-synaptic
sites (Ledda et al., 2007). A series of studies established that GFRα1
can function as a Ligand-Induced Cell Adhesion Molecule (LICAM) at
synaptic sites (reviewed in (Ledda, 2007)). Thus, GFRα1 promoted ad-
hesion between cells only in the presence of GDNF, providing a novel
mechanism of cell–cell contact regulated by external factors. In hippo-
campal neuron cultures, GDNF was found to increase the number of
synapses. Moreover, ectopic presynaptic sites could be induced by the
contact of beads coated with GFRα1 in the presence of soluble GDNF
(Ledda et al., 2007), indicating an instructive role of GDNF/GFRα1 in
synapse formation. This effectwas in part dependent on presynaptic ex-
pression of NCAM. Mutant mice with reduced levels of GDNF showed
decreased presynaptic maturation and reduced number of presynaptic
sites formed during hippocampal synaptogenesis (Ledda et al., 2007),
supporting a role for GDNF signaling in hippocampal presynaptic
assembly in vivo. Whether postsynaptic GFRα1 molecules may also
contribute cell-autonomously to differentiation of post-synaptic sites
remains to be explored.

3.2. GABAergic neurons

In the forebrain, inhibitory (GABAergic) interneurons are generated
in the ventral telencephalon andmigrate tangentially to the developing
cortex, hippocampus and olfactory bulb (recently reviewed in (Bartolini
et al., 2013)). The main region of GABAergic neurogenesis in the fore-
brain is localized to the ganglionic eminences, transient neurogenic
sites in the embryonic mammalian brain. Themedial and caudal gangli-
onic eminences (MGE and CGE, respectively) are the main contributors
of cortical GABAergic neurons, while the lateral ganglionic eminence
(LGE) mainly contributes inhibitory interneurons to the olfactory bulb.
Both GDNF and GFRα1 have been found to be expressed in the MGE
and along the tangential migratory pathway of GABAergic cells in the
developing cerebral cortex (Pozas and Ibanez, 2005). In vitro studies
demonstrated that GDNF can promote the functional and morphologi-
cal differentiation of MGE-derived GABAergic neurons and function as
a chemoattractant for GABAergic cells in explants from the MGE and
the subventricular zone (SVZ) (Paratcha et al., 2006; Pozas and Ibanez,
2005). Using neurons extracted from different strains of knock-out
mice, these effects were shown to require GFRα1, but neither NCAM
nor RET. In fact, soluble GFRα1 supplied exogenously to MGE cultures
promoted GABAergic differentiation andmigration even in cells lacking
endogenous GFRα1 (Perrinjaquet et al., 2011), arguing for the existence
of a new transmembrane receptor partner. An independent set of stud-
ies implicated the heparan sulfate proteoglycan syndecan-3 as a novel
receptor for GDNF in MGE-derived GABAergic neurons, although its
functions do not appear to depend on GFRα1 (Bespalov et al., 2011).
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Importantly, mutant mice lacking GFRα1 showed reduced numbers of
tangentially migrating GABAergic neurons and fewer inhibitory neu-
rons in cortex and hippocampus at birth (Pozas and Ibanez, 2005).
Using a mouse model with deficits in GFRα1 signaling that by-passes
the postnatal lethality of global GFRα1 knock-outs, it could be later
demonstrated that GFRα1 contributes to the development and alloca-
tion of parvalbumin expressing GABAergic neurons in the cerebral cor-
tex (Canty et al., 2009). Intriguingly, these mice showed decreased
inhibitory activity in the cortex and displayed increased social behavior
compared to control mice (Canty et al., 2009), suggesting a positive re-
lationship between cortical excitability and social behavior, a finding
that is in agreement with some models of human autism (Tabuchi
et al., 2007).

GFRα1 signaling has also been shown to play an important role in
the development of the olfactory system. Mice lacking GFRα1 showed
deficits in all major classes of GABAergic interneurons in the olfactory
bulb (OB), including those expressing tyrosine hydroxylase, calbindin
and calretinin (Marks et al., 2012). As GFRα1 itself was not expressed
by matured GABAergic neurons in the OB, these deficits may be due to
non-cell-autonomous functions of GFRα1 in other elements of the olfac-
tory system. In fact, mutant mice displayed impaired neurogenesis in
the olfactory epithelium, reduced migration of olfactory ensheathing
cells and stunted growth of sensory neuron axons. As a consequence,
theOB nerve layerwas thin and glomeruli were disorganized in themu-
tants (Marks et al., 2012). Similar deficitswere observed inmice lacking
GDNF (Marks et al., 2012). It is also possible that GFRα1 could function
transiently and cell-autonomously in subpopulations of OB interneuron
precursors to regulate their differentiation, migration, or survival before
their final allocation in the OB. Addressing these possibilities will re-
quire the generation and analysis of conditional mutant mice lacking
GFRα1 specifically in GABAergic OB interneurons.

Intriguingly, several other types of GABAergic neurons also express
GFRα1, raising the possibility of a more general role of GDNF signaling
in GABAergic neuron development and function. GABAergic neurons
of the septum express GFRα1 from early stages of development. Some
of these cells may contribute precursors to the OB. Others are resident
in basal and medial septum and may have intrinsic functions within
these nuclei. GABAergic neurons of the cerebellum, including Purkinje
cells (a projection neuron) and basket cells (a type of cerebellar inter-
neuron) express GFRα1 transiently during their development (M.
Sergaki and C.F. Ibanez, unpublished observations). Specific targeting
of GFRα1 in these cell populations will be necessary to establish its pre-
cise cellular functions. Taken together, these studies suggest an emerg-
ing role of GDNF/GFRα1 signaling in the development and function of
multiple classes of GABAergic neurons in the mammalian brain.

3.3. Exercise, blood–brain barrier and microglial activation

An intriguing aspect of adult GDNF expression and function is the
possibility of it being regulated by physical activity. Studies in rodents
have shown upregulatedGDNF expression in several CNS structures fol-
lowing short-term as well as chronic exercise. In one study, striatal
GDNF levels were found to be dramatically increased after forced limb
use in rats (Cohen et al., 2003). Increased GDNF expression correlated
with enhanced neuroprotective effects in the 6-OH dopamine model
of Parkinson's disease, although it is unclear whether the neuroprotec-
tion observed can be attributed to enhanced GDNF signaling or to
other effects of exercise. In another study, both voluntary as well as in-
voluntary exercise led to pronounced increase in GDNF protein in the
spinal cord of young rats (McCullough et al., 2013). Also in older
animals, low-intensity running led to GDNF increased levels. Interest-
ingly, both young and old exercised animals showed a doubling in
cholineacetyltransferase (ChAT) positive motor neuron cell body areas
(McCullough et al., 2013). These studies suggest that GDNF expression
can be regulated by experience, in particular physical activity, leading
to intrinsic neuroprotective and neuroregenerative outcomes.
its receptors— Relevance for disorders of the central nervous system,
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Alterations in theblood–brain barrier (BBB) and blood–nerve barrier
(BNB) have been implicated in several neurological conditions, includ-
ing stroke and dementia. A few recent studies have highlighted the
role of GDNF in themaintenance of functional properties of cellular ele-
ments of the BBB and BNB, including pericytes and endothelial cells.
GDNF was found to increase the expression of claudin-5 and the
trans-endothelial electrical resistance in microvascular endothelial
cells derived from either brain or peripheral nerves (Shimizu et al.,
2012). Claudin-5 has been recognized as one of the most important
components in the maintenance of BBB integrity and function. In this
case, the source of GDNF was localized to brain and peripheral nerve
pericytes, respectively, indicating a paracrine role of GDNF in BBB and
BNB maintenance. Another study found that GDNF very efficiently in-
duced trans-endothelial electrical resistance recovery following serum
withdrawal in cultures of human endothelial cells (Yosef and Ubogu,
2012). This effect involved signaling via theRET receptor tyrosine kinase
aswell as upregulation of Claudin-5 expression and cytoskeletal reorga-
nization. These studies suggest important functions of the GDNF/RET
signaling system in the maintenance of BBB and BNB integrity and
function.

Microglial activation has been recognized as a major factor in the
pathogenesis of several neurodegenerative diseases and has been impli-
cated as a main source of inflammation contributing to the neuronal
dysfunction and degeneration. Factors secreted by astrocytes have
been shown to reduce the phagocytic activity and the production of re-
active oxygen species by activated microglia. Further experiments
establishedGDNF as one of themajor astrocyte-derived components re-
sponsible for these effects (Rocha et al., 2012). These results indicate
that GDNF may be an important regulator of microglial activation and
suggest that GDNF may be able protect from neurodegeneration
through the inhibition of neuroinflammation.

3.4. Stroke, epilepsy and Alzheimer's disease

Amultitude of studies have investigated the effects of brain ischemia
on the mRNA and protein expression of GDNF and its receptors. The
consensus from a large body of literature supports the idea that both
focal and global ischemia results in upregulation of GDNF protein levels
by a transcriptionalmechanism (reviewed in (Duarte et al., 2012)). Also
the levels of GFRα1, but not RET, have been reported to increase after
different ischemia paradigms (Duarte et al., 2012). The fact that
GFRα1, but not RET, was found to be upregulated suggests trans-
acting functions for the GFRα1 receptor, as previously documented
in peripheral neurons (Ledda et al., 2002; Paratcha et al., 2001).
Although many of those studies have interpreted the induction of
GDNF and GFRα1 expression after ischemia as a sort of self-defense
neuroregenerative reaction, the actual functional consequence of this
endogenous response is unclear, given the current lack of loss-of-func-
tion studies in this area. On the other hand,many gain-of-function stud-
ies, using either local administration of purified protein, viral vectors or
transplantation of GDNF-expressing cells, have documented neuropro-
tective effects of exogenous GDNF in different experimental models of
focal and global brain ischemia (reviewed in (Duarte et al., 2012)).
These treatments induced a number of neuroprotective effects, includ-
ing reduction in infarct size and brain edema, aswell as decrease in neu-
ronal apoptosis in the penumbra region surrounding the core of the
stroke. These effects may be a combination of direct anti-apoptotic ac-
tions, namely by promoting the survival of compromised neurons, and
indirect effects, such as enhanced proliferation, migration or survival
of neuronal precursors generated as a result of the insult (Kobayashi
et al., 2006). Although the majority of studies have explored neuropro-
tective activities by administration of GDNF in advance of the ischemic
insult, some studies were also able to show significant, albeit more
modest, neuroprotection when GDNFwas administered after the ische-
mic injury, typically within a relatively narrow window of up to 4–6 h
post insult (Duarte et al., 2012). Thus, although the available evidence
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does support neuroprotective effects of GDNF in cerebral ischemia, the
role of endogenous GDNF, the cellular mechanisms involved and the
possible utility of GDNF or GDNFmimetics in the treatment of stroke re-
main relatively unexplored. Conditional alleles of the Gdnf gene may be
useful in addressing possible endogenous neuroprotective functions of
GDNF in stroke and ischemia. Such approach may also help elucidating
the actual cellular targets of GDNF action in ischemia. Given that GDNF
has been shown to exert effects in pericytes, endothelial cells and mi-
croglia, and may also affect BBB integrity and neuroinflammation (see
previous section), it would seem important to investigate further
these activities in the context of ischemia.

The involvement of the GDNF signaling system in epilepsy has been
mainly studied from twodifferent angles. Thefirst one,more traditional,
has focused on regulation of GDNF expression after epileptic seizures
and possible neuroprotection from seizure-induced neuronal loss
using gain-of-function approaches. Here, as in the case of stroke, several
examples of GDNF upregulation after neuronal hyperactivation have
been described (see for example (Reeben et al., 1998; Trupp et al.,
1997)). However, administration of GDNF was shown to afford neuro-
protection only in a subset of studies (e.g. (Martin et al., 1995)) but
not others (e.g. (Kanter-Schlifke et al., 2009)), despite the fact that, in
both cases, exogenous GDNF ameliorated seizure development. Differ-
ences in neuroprotection could have been due to the different experi-
mental paradigms used to induce epilepsy and to alternative routes of
GDNF administration. A second class of studies have focused on endog-
enous functions of GDNF and its receptors in network activity and sei-
zure development using loss-of-function approaches. Due to its effects
on GABAergic neuron development, defects in GFRα1 signaling lead to
cortical hyperactivity and increased sensitivity to sub-threshold doses
of epileptogenic agents (Canty et al., 2009). Although this result would
be in agreement with gain-of-function studies that demonstrated anti-
epileptic effects of exogenous GDNF administration, it stands in contrast
to defects in signaling by the related receptor GFRα2, which have been
shown to impair the development and persistence of kindling epilepsy
(Nanobashvili et al., 2000). Although GDNF can also bind to GFRα2
(Trupp et al., 1998), this receptor displays higher affinity for the
GDNF-related molecule neurturin (reviewed in (Airaksinen and
Saarma, 2002)). This raises the intriguing possibility that two different,
but structurally and functionally related, receptors in the GDNF family,
namely GFRα1 and GFRα2, play opposed roles in neuronal activation
and seizure development. More studies are needed to establish this, as
well as its possible mechanistic basis. Although blockade of NCAM has
also been shown to limit epileptogenesis and seizure-induced neurode-
generation (Duveau and Fritschy, 2010), it is not clear whether this ef-
fect is due to reduced GDNF signaling via NCAM.

Alzheimer's disease (AD) leads to progressive loss of cognitive func-
tion and dementia, and affects over 10% of people after 65 years of age.
AD diagnosis can be difficult andmay come too late for amajority of pa-
tients. Great efforts are being made on the identification of molecular
biomarkers that could identify pre-symptomatic individuals with mild
cognitive impairment who may eventually convert to AD. Intriguingly,
a study of over 250 AD patients identified 18 signaling proteins in
blood plasma, one of which was GDNF, that could be used to classify
blinded samples from AD and control subjects with great accuracy
(Ray et al., 2007). In this study, GDNF levels were found to be decreased
in plasma of AD patients compared to controls. Whether GDNF is only a
biomarker or also a factor with an active role in pathogenesis or disease
progression is the key question here. It is not difficult to envision how a
signaling molecule such as GDNF, with potent effects on neuronal mat-
uration, cell survival, synapse formation and more, can affect cognitive
functions and, if aberrantly or insufficiently expressed or secreted, con-
tribute to cognitive decline. Given the complexities of AD pathogenesis,
however, the difficulty at present is to narrow down potential processes
for GDNF involvement. The ability of GDNF to prevent degeneration of
noradrenergic neurons of the locus coeruleus (Arenas et al., 1995), a nu-
cleus in the brain stem that declines during AD progression (Bondareff
its receptors— Relevance for disorders of the central nervous system,
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et al., 1982; Tomlinson et al., 1981), may have relevance in this context
and could represent a potential entry point for further studies. A more
recent report has offered a potentially more direct link by showing ef-
fects of GDNF on the release of the β-amyloid peptide, a major compo-
nent of amyloid plaques in the AD brain, from human neuron-like cells,
without increased expression of amyloid protein precursor (APP) or
secretases (Scholz et al., 2013). RET knock-down in those cells dimin-
ished β-amyloid release, suggesting effects mediated by a tyrosine
kinase signaling cascade. There are several mouse models of AD which
could be crossed with mice deficient in GDNF or RET signaling. Howev-
er, at present, no genetic studies have addressed the importance of
endogenousGDNF, GFRα1 or RET in the development of AD phenotypes
in such models.

3.5. Neuropsychiatric disorders

In this last section, we summarize results from a subset of studies
that have investigated possible roles of GDNF and its receptors in a
range of neuropsychiatric conditions, including addiction, anxiety,
depression, obsessive-compulsory and bipolar disorders, autism and
schizophrenia.

The prominent role of midbrain dopaminergic neurons in the
circuits involved in addictive behaviors spurred interest in the possible
involvement of GDNF and its receptors in addiction. Dopaminergic
transmission regulates self-administration of drugs of abuse, and they
in turn increase dopamine levels in striatum of rodents and humans.
The first study linking GDNF signaling with addiction reported that
GDNF infusion into the ventral segmental area (VTA) of the midbrain
suppressed the effects of prolonged cocaine administration, including
several biochemical and behavioral adaptations to drug intake
(Messer et al., 2000). Both cocaine and amphetamines have also been
reported to modulate GDNF expression and downstream signaling,
although the results of different studies vary depending on whether
acute or chronic effects of drug intake are being examined (reviewed
in (Carnicella and Ron, 2009)). A role for endogenous GDNF in the reg-
ulation of addictive behavior is suggested by studies with anti-GDNF
blocking antibodies and mutant mice heterozygous for a null allele of
the Gdnf gene which displayed increased sensitivity to the rewarding
effect of cocaine and methamphetamine (Carnicella and Ron, 2009).
Several studies have now established GDNF as an endogenous negative
regulator of a range of biochemical and behavioral adaptations to
psychostimulants. Although it was initially reported that GDNF does
not contribute to themechanisms that enhance locomotor activity in re-
sponse to ethanol (Carnicella et al., 2009), a recent study showed that
GDNF hypermorphic mice run more than wild type controls after am-
phetamine injection (Kumar et al., 2015). GDNF has also been found
to suppress the action of other drugs, including opioids and ethanol. Ex-
ogenous GDNF administration has been shown to rapidly repress exces-
sive consumption of ethanol, but endogenously produced GDNF would
appear to be relevant for controlling ethanol drinking behaviors only
after a period of abstinence (Carnicella et al., 2008). Further studies
using conditional mouse mutants, lacking GDNF in selective areas of
the brain thus by-passing the early lethality of null global mutants,
will be required to establish the precise role of endogenous GDNF in
addictive behaviors. Unfortunately, the mechanisms by which GDNF
counters the rewarding value and neuroadaptations induced by
psychostimulants are unknown. Clearly, given the known range of
GDNF bioactivities, synaptic remodeling and changes in synaptic re-
sponses could result in alterations in midbrain dopaminergic circuits
which ultimately influence addictive behaviors. Specifically, the effects
of GDNF signaling on the regulation of DAT activity, as discussed earlier,
are worth investigating further in the context of addiction.

Interest in a possible role of GDNF in anxiety and depression
stemmed from the discovery of associations between a subset of poly-
morphisms in the Gdnf gene and these conditions. Association of two
Gdnf gene variants with anxiety, but not with depression, in humans
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was reported in one recent study (Kotyuk et al., 2013), while another
study of Chinese individuals did find an association between a different
Gdnf gene variant and depression risk (Ma et al., 2013). A separate line
of enquiry has examined possible correlations between plasma or
serumGDNF levels and depression scores in different groups of patients
of varied ethnical origins. Despite some variable results, the majority of
these studies performed so far agree that circulating GDNF levels are
significantly decreased in patients with depression (e.g. (Diniz et al.,
2012; Tseng et al., 2013)), including one recent meta-analysis of over
500 patients (Lin and Tseng, 2015). It should be noted that at least
one earlier study reported increased plasma GDNF levels in late-onset
depression (Wang et al., 2011). One more recent study found no differ-
ence in plasma GDNF between patientswithmajor depressive disorders
and controls at baseline, but reported significantly lower levels patients
showing recurrent depression episodes than infirst-episode patients in-
dependently of treatment (Lee et al., 2015). Although GDNF has been
suggested as a possible anti-depressant agent, intra-cerebroventricular
administration of GDNF failed to produce an antidepressant effect in
a mouse strain genetically predisposed to depressive-like behavior,
despite alterations in several components of serotonin synthesis and
signaling (Naumenko et al., 2013). Moreover, the role of endogenous
GDNF in anxiety and depression behaviors, if any, is not understood.
Treatment ofmicewith the anti-depressantfluoxetinewas shown to el-
evate endogenous GDNF protein andmRNA levels in total brain extracts
and hippocampus (Ubhi et al., 2012), although the relevance of these
observations is unclear. Together, studies so far appear to indicate a pos-
sible diagnostic value of plasmaGDNF levels in depression, butwhether
GDNF may play a role in the development, progression or treatment of
this and related mood disorders is unclear at the moment.

A recent study found significantly elevated serum GDNF levels
during the manic phase of patients with bipolar disorder (BD) (Tunca
et al., 2015), a result thatwould be in agreementwith data frompatients
with depression syndrome (see above). The same study found a positive
correlation between GDNF levels and usage of antidepressants in pa-
tients with obsessive compulsive disorder (OCD), which is also in agree-
ment with an earlier OCD study (Fontenelle et al., 2012). However, as
indicated earlier, not all BD studies agree, and one from 2011 found in
fact lower levels of circulating GDNF in BD patients in mania compared
to euthymia, the relatively stablemood state in BD (Barbosa et al., 2011).

An earlier study examining associations between polymorphisms in
several genes encoding neurotrophic factors, including GDNF, and inci-
dence of attention deficit hyperactivity disorder (ADHD) found no
strong correlation with GDNF gene variants (Syed et al., 2007). A later
study, however, found increased levels of plasma GDNF in a cohort of
86 ADHD children compared to healthy controls (Shim et al., 2015).
Also recently, a GDNF polymorphismwas found to be significantly asso-
ciated with Tourette syndrome (Huertas-Fernández et al., 2015), a dis-
order frequently accompanied by ADHD and OCD as comorbidities. An
early study reported an association between a polymorphism in the
gene encoding GFRα1 and the incidence of schizophrenia (Moises
et al., 2002).Moreover, theGDNF gene is locatedwithin a region in chro-
mosome 5 which has been indicated as a potential schizophrenia sus-
ceptibility locus by genome scans (Suarez et al., 2006). However, a
more recent analysis of polymorphisms in the GDNF gene failed to
find any association with this syndrome (Williams et al., 2007). More
recently, serum GDNF levels were studied in several affected patients
and found to be significantly increased in schizophrenics compared to
controls (Tunca et al., 2015). Given the known roles of GDNF in themat-
uration and allocation of cortical GABAergic interneurons, as reviewed
above, a possible role of GDNF in such disorders could be due to alter-
ations in one or several of these types neurons, including parvalbumin
interneurons (Canty et al., 2009). Alterations in this class of interneu-
rons have been linked to a number of cognitive disorders, including
TS, ADHD and autism (e.g. (Gant et al., 2009; Kalanithi et al., 2005;
Wöhr et al., 2015)) as well as schizophrenia (e.g. (Gant et al., 2009;
Lodge et al., 2009; Sakai et al., 2008b)).
its receptors— Relevance for disorders of the central nervous system,
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4. Conclusions and future directions

Although GDNF was initially discovered as a neurotrophic factor for
midbrain dopaminergic neurons, and most of the research effort has so
far concentrated in understanding its functions in the nigrostriatal sys-
tem, there are still many important questions that need to be resolved
in this “classical” area of GDNF research beforewe have a level of under-
standing that can be safely and efficiently translated into clinical prac-
tices. With regards to the development and adult function of the brain
dopaminergic system, we now understand that elevation of GDNF sig-
naling at its normal sites of expression is sufficient to enhance neuron
survival and function. Whether endogenous GDNF is required for
these functions is still unclear. Although it would appear, from the
majority of studies performed to date, that endogenous GDNF/RET sig-
naling is not necessary for the development and initial maintenance of
midbrain dopaminergic neurons, it can indeed exert important regula-
tory effects on the function and injury responses of these neurons, as
demonstrated by its effects on DAT activity, cocaine sensitivity and neu-
roprotection upon loss of Parkin in adult animals. If it turns out that
GDNFmainly affects adult dopaminergic neuron function and injury re-
sponses, the question then arises as to why RET and GFRα1 are already
expressed at embryonic stages of development in these neurons. From a
therapeutic perspective, the recent demonstration of neuroprotective
effects in a PD model after increased expression of GDNF from endoge-
nous sites, without many of the side effects observed following ectopic
GDNF administration, is encouraging. The future challenge here will
be to devise strategies to elevate endogenous GDNF expression by
means other than genetic manipulation. In this regard, evidence
demonstrating beneficial effects of physical activity in PD (Borrione,
2014) as well as upregulation of GDNF expression after exercise
(Cohen et al., 2003) is intriguing and deserves further attention.

In view of the neuroprotective effects of GDNF in cerebral ischemia,
the function of GDNF on the cellular components of the BBB needs to be
characterized more thoroughly. Such understanding may open more
effective avenues for GDNF based therapies in stroke and ischemic dam-
age. The observation that GDNF levels in serumor plasma are decreased
in AD patients, if confirmed by further studies, is interesting, not only
from a more immediate diagnostic perspective, but also for develop-
ment of novel therapeutic strategies in the longer term. As noted earlier,
however, this will require considerably more work. Based on initial ob-
servations, further characterization of the role of GDNF and RET signal-
ing in β-amyloid release in primary neurons would seem like a good
point of entry in this research. The current availability of improved
lines of mice with mutations in the Gdnf, Gfra1 and Ret genes, together
with the many AD mouse models already developed, could also offer a
good opportunity to test a possible role for GDNF signaling in AD path-
ophysiology. Finally, the emerging role of GDNF and GFRα1 in the de-
velopment and allocation of forebrain GABAergic neurons provides a
good conceptual basis from which to explore possible roles for these
proteins in several neuropsychiatric conditions, such as depression, au-
tism and schizophrenia, for which an indirect link with GDNF has been
established through genetic linkage or protein levels in plasma.More di-
rect investigations using loss- and gain-of-function approaches will be
constrained by the limitations of the available animal models for these
rather complex syndromes. For studies of depression, investigating in
greater detail the responses to anti-depressants, such as fluoxetine, in
hypo and hypermorphic mutants of GDNF signaling components may
offer some insights into their possible functions. A genetic mouse
model of Tourette syndrome (Godar et al., 2014) could also represent
a valuable tool to approach the role of the GDNF system in ADHD and
OCD.

In this article, we have attempted to summarize our current knowl-
edge of the physiological activities of GDNF and its receptors in the cen-
tral nervous system, with special attention to neurodegenerative and
neuropsychiatric diseases. Overall, the field has matured considerably
since the initial characterization of molecular components and basic
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functions. Progress has been particularly substantial in the elucidation
of GDNF actions in the brain dopaminergic system. However, despite
much effort, we still have an incomplete understanding of why endog-
enous GDNF is there and for what purpose. The last decade has been
marked by a considerable expansion of the field and the realization
that GDNF has many other functions outside the nigrostriatal system.
The future challenge here lies in increasing our mechanistic under-
standing of the many so far correlative observations. A common chal-
lenge for the future of all GDNF research will be to harness this basic
knowledge for the design of better therapies.
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