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Abstract.  To increase the accuracy of finite element simulations in daily practice the local German and Austrian Deep 
Drawing Research Groups of IDDRG founded a special Working Group in year 2000. The main objective of this group 
was the continuously ongoing study and discussion of numerical / material effects in simulation jobs and to work out 
possible solutions. As a first theme of this group the intensive study of small die radii and the possibility of detecting 
material failure in these critical forming positions was selected. The part itself is a fictional body panel outside in which 
the original door handle of the VW Golf A4 has been constructed, a typical position of possible material necking or 
rupture in the press shop. All conditions to do a successful simulation have been taken care of in advance, material data, 
boundary conditions, friction, FLC and others where determined for the two materials in investigation – a mild steel and 
a dual phase steel HXT500X. The results of the experiments have been used to design the descriptions of two different 
benchmark runs for the simulation. The simulations with different programs as well as with different parameters showed 
on one hand negligible and on the other hand parameters with strong impact on the result – thereby having a different 
impact on a possible material failure prediction.  

 

INTRODUCTION 

Issues concerning the feasibility of forming small 
radii with mild steel and high-strength materials are 
routinely encountered in practice. To address this 
problem, a working group was set up at Stahlinstitut 
VDEh in year 2000 as part of the German Group of the 
International Deep Drawing Group (IDDRG) to 

investigate potential deviations between simulated and 
practical trial results in a systematic manner. The 
addressees included automotive manufacturers, 
component suppliers and producers of semi-finished 
products as well as academic institutes and research 
departments.  

To ensure that the working group would operate 
effectively, the objective was defined as follows:  
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“The aim of the working group is not to capture a 
momentary image of the performance capability of FE 
systems, but to understand the deviations between 
simulated and practical sheet forming results. In 
addition, the causes of such deviations are to be 
examined through a longer-term discussion and 
experience sharing effort.”  

This discussion should address both the core 
project tasks and the choice of components. It deserves 
to be noted at this point that there exists a close 
correlation between software capabilities and the skills 
and experience of the users, a fact which should be 
taken into account in evaluating results.  

Based on the first two discussion sessions, it was 
determined that the initial steps of this joint project 
should be dedicated to the accurate simulation of 
cracking phenomena in the door handle recess area. 
The expectations placed on the trials and the 
definability of boundary conditions by working group 
members were likewise established. Implementation of 
the requirements specified by the working group was 
handled by voestalpine Stahl GmbH on the 
experimental side and by ThyssenKrupp Stahl AG at 
the level of integration into the simulation 
environments. For this purpose, voestalpine Stahl AG 
agreed, firstly, to build a new punch into which the 
door handle recess of the current Golf A4 model, made 
available by VW as a CAD data record, was then 
integrated with a minimum tool radius of 2.2 mm, and 
secondly, to conduct the actual experimental 
investigations. The simulation was described after, and 
in awareness of the experiments conducted. However, 
the result of the experiments was not known to the 
participating working group members at the time of its 
first meetings. 

EXPERIMENTS 

The experiments were carried out with a double-
acting 6300 kN hydraulic press using the modular trial 
toolset, which was of a pan-shaped design embodying 
the door handle recess (refer to Fig. 1). To prevent 
material draw in out of the blank holder area, the blank 
had to be spot-welded to a 2.5 mm gauge support sheet 
since the maximum blank holder force of the press 
(2500 kN) was insufficient to securely lock the 
material. In order not to introduce another unknown 
quantity (friction) into the benchmarking process, no 
lubricant was used between the punch and the sheet 
metal (each blank was wiped dry). For the simulation, 
a friction coefficient of µ = 0.14 was stipulated. The 
selected drawing speed was 94 mm/s.  

For the deep drawing trials, grade DC04 ZE75/75 
and HXT500X+ZE (DP500) sheets (both 
electrolytically galvanized) with a nominal thickness 
of 0.8 mm were selected and made available by 
voestalpine Stahl GmbH and ThyssenKrupp Stahl AG, 
respectively. The sheets measured 1000 by 1500 mm, 
their lengthwise dimension (coordinate x in Fig. 1) 
coinciding with the direction of rolling. 

In pressing the blanks, the punch was initially 
lowered full stroke several times until tearing of the 
metal occurred (reproduction of the same result). The 
punch stroke was then progressively reduced until the 
part could be reliably produced without visible 
necking. Lateral drawing-in of the blank was neither 
visible nor measurable. The component was then 
measured on its top side (refer to Fig. 1) using the 
ARGUS automatic strain analysing system 
(Gesellschaft für Optische Messtechnik GmbH). The 
strain distribution was also analysed in marked 
sections and validated through sheet thickness 
measurements at defined points. The basic geometry 
of what was identified as the most critical location in 
the experiments is illustrated once again in Fig. 2 
along a part of section B2*_S5. From the slightly 
curved line of the punch (left), the surface descends 
slightly in the door handle mounting area before 
continuing into the handle recess with a 2.2 mm die 
radius (right side). 
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FIGURE 1.  Model part and measured sections for 
simulation run B2*, shown on the component.. 

R2.2

punch contact area
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FIGURE 2.  Part of the geometry for the door handle recess 
along section B2*_S2 
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SIMULATION BENCHMARK RUNS 

Definitions for runs B1 and B2 

It is assumed that, in their day-to-day work with 
FEM software for sheet metal forming simulations, 
users model components on the basis of given 
parameter specifications which are often derived from 
default parameters defined only once. However, since 
the result of a metal forming simulation will always 
depend on user/software interaction and on the user's 
experience with specific component categories, an 
attempt was made here to permit a separation of 
individual effects via the definition of the simulation 
runs.  

Based on the experimental results and the 
requirements placed on the working group's objectives, 
the following boundary conditions were established 
for the definition of the simulation runs: 

• On the one hand, the FEM programs 
employed should analyse the general 
feasibility of the components for a stated 
punch stroke (simulation runs B1*). This was 
carried out mainly with "normal", i.e., 
software-defined standard (default) 
parameters, and only partially with accurately 
specified parameters (e.g., friction, material). 

• On the other hand, users were to adopt what 
in their experience were the best settings for 
the specific simulation software with the 
given component (simulation runs B2*). 

The objective of the B1* simulation runs was to 
test the automatic parameter-finding capability of the 
examined programs with the selected geometry. 
Specifying a drawing depth at which necking or 
tearing had occurred in the trials, this simulation was 
to be used exclusively for inter-comparison of all 
results obtained. The main information provided by 
this simulation run was an evaluation of the simulation 
result regarding component feasibility. 

The B2* simulation run, on the other hand, allowed 
the user to adapt specific software settings to the sheet 
metal forming problem on hand. The intention here 
was to enable each user to obtain the best result he 
could possibly achieve. The drawing depth defined for 
this simulation was one which, in the trials, had 
yielded acceptable components and permitted an 
appropriate strain analysis. 

It was a feature common to all phase B1* und B2* 
simulation runs (cf. Table 1.) that the participating 
members were not aware of the trial results. To 
standardize the model definitions adopted by the 
working group members, the stress-strain curves of the 
materials used (B*A = DC04 and B*B = HXT500X) 
were supplied to them in the form of an extrapolated 
yield curve section or as a software-specific "material 
data" library file with the appropriate forming limit 
curve. To avoid deviations attributable to tool 
meshing, square or triangular tool grids were 
generated on the basis of standard parameters by 
Engineering Systems International GmbH (ESI) and 
made available in a Nastran format. 

TABLE 1. Software version used in the simulations. 
Software Version Simulation run 

AutoForm 
Incremental 

3.2 B1x, B2x 

LS-DYNA 970 B1x, B2x 

Pam-Stamp 2000/ 2G B1x, B2x 

Indeed 7.3 B1x, B2x 

Optris 6.1 b B2x 

 

Results of the first simulation block 

Simulation run B1A and B1B 

Results obtained along the specified, defined 
sections with the AutoForm, Pam-Stamp, LS-Dyna 
and Indeed software were submitted for the first 
simulation run (B1*) 

Overall, this data led to the following conclusions:  

• Locations found to be critical in the trials 
were not identified as such by all participants 
with their software. In some cases, the critical 
nature of these points was greatly 
underestimated.  

• The differences between the maximum strains 
calculated for critical points lay in the region 
of approx. two-tenths (0.2) of the major 
strain. This result varied greatly, even among 
users of the same program.  

• The degree of major strain determined by the 
simulation tended to be greater with 
increasing number of mesh elements. 
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• The greatest difficulties were encountered in 
detecting and modelling the entrance radius of 
the door handle recess (generation of 
elements necessary to simulate this radius).  

• The differences between modelling and 
experimental results arose with both materials 
at the specified drawing depth.  

To draw a conclusion from the purely numerical 
simulation run, it may be observed that the programs, 
when employed with their standard parameter settings, 
will provide highly different assessments of the 
component's feasibility and manufacturing reliability. 
In many cases the tooling would have been cleared for 
production on the basis of the simulations conducted 
although its process capability was, in reality, 
inadequate.  
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FIGURE 3.  Results of run B1A calculated by all programs 
with material mild steel, evaluation of door handle recess 
radius in section B1*_S3, corresponding to section B2*_S5 

Simulation runs B2A and B2B 

Results obtained with the AutoForm, Pam-Stamp, 
LS-Dyna, Optris and Indeed software were submitted 
for simulation run B2*. This time, contrary to the B1* 
run, program users were free to adapt additional 
simulation parameters to the application at hand in 
order to improve the simulation result. However, to 
avoid interpretation problems, the tool mesh as well as 
a description of material characteristics (stress-strain 
curve, forming limit curve, friction) were once again 
specified. A further difference from simulation run 
B1* was that the drawing depth defined for the punch 
was based on the experimentally determined values. 
At a punch stroke of 40 mm, components drawn from 
the DC04 mild steel material exhibited barely onset of 
necking in the door handle recess; for the material dual 
phase 500, a 34 mm punch stroke was determined as 
the limit where necking was reliably prevented.  

The simulation results were compared initially to 
one another and then with the experimentally 
determined strains along the six defined component 
sections. 

The comparison of the numerical simulation results 
can be summarized as follows: 

It emerged from the data submitted that the critical 
point was not identified by all software/user 
combinations. However, a certain improvement in 
results was detectable with regard to the critical door 
handle recess areas. This improvement often correlated 
with the use of a much increased number of elements 
(compare Fig. 4). Areas with smaller strains were 
modelled more accurately, across all software/user 
combinations, than areas with high local strain peaks.  

Overall, the result quality was improved through a 
more precise prediction of actual (measured) 
deformations at the drawing depths used. 
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FIGURE 4.  Results of run B2A (example): calculated 
maximum major strain at the door handle recess radius for 
all programs. 
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FIGURE 5.  Result of run B2A (example) for a low-strain 
area (punch edge radius – section B2A_S3). 
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FIGURE 6.  Result of simulation run B2B for section _S5 
(example). Representing a reduced drawing depth compared 
to mild steel. 

Overall, it emerged from the evaluation of the two 
simulation runs and their comparison with the trial 
data that the most critical point of the component – a 
section through the radius of the door handle recess in 
its short dimension – was underestimated by many 
users. Only in a few cases was the part rated as 
potentially critical. As had been the case in run B1*, 
the quality of the results obtained varied greatly, even 
where these had been obtained with the same software.  

In the light of this observation, the software 
manufacturers were requested to examine the key 
factors influencing the simulation results and the 
differences between the models.  

The following factors were identified as key 
parameters for these investigations:  

• Influence of the strain rate on critical 
deformations (stability of the stress 
calculation process) 

• Initial blank mesh (number and orientation of 
elements) 

• Number of refining steps and selection of the 
refinement strategy/criterion (permitted steps, 
etc.). 

• Evaluation of the influence of the friction 
coefficient (impact on result) 

• Differences in simulation models used by the 
individual participants 

RESULTS OF THE GENERAL 
PARAMETER OPTIMIZATION 

PROCESS 

Based on the analysis of the simulations, the 
potentially influencing factors and parameters 
expected to yield an improved simulation result were 
selectively examined. In the present paper we shall 
limit our review to the two items outlined below.  

Influence of strain rate sensitivity 

The rationale for examining the influence of the 
strain rate was that, for both materials tested, the 
critical deformations determined were of a magnitude 
where yield behaviour may also be influenced by the 
material's strain rate sensitivity due to reduced 
hardening. This influence was evaluated on the basis 
of an identical simulation where the strain rate 
sensitivity for DC04 was assumed to be m = 0.025. 
The results of the two calculations are shown in Table 
2. It emerges that the simulation in which the strain 
rate is not taken into account yields an overestimated 
maximum strain for all sections (values above 100 %), 
whereas the simulation in which the strain rate was 
considered tends to underestimate these values at the 
critical points (S2 and S5).  

TABLE 2. Effect of considering strain rate on 
maximum strain in the sections (example mild steel). 
Run B2A Measur

ement 
Simulation / measurement 

ratio (in %) 
Section 
point 

max. εεεε1 Without 
strain rate 

With strain 
rate effects 

S1 0,12 135 117 

S2 0,21 106 92 

S3 0,15 138 110 

S4 0,07 121 101 

S5 0,36 104 92 

S6 0,07 114 97 

 

Influence of initial mesh and refinement 
strategies/criteria on the simulation result 

To verify the effects of mesh element size on the 
calculated deformations, simulation runs were carried 
out with and without adaptive mesh adjustment for the 
blank. It was found that an element edge length ≤ 1.5 
mm was required to model the local deformation 
gradients at critical points. However, an adaptive 
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refinement – with adjustment of parameters to the 
simulation problem – yielded only marginal 
differences from the simulations carried out with a 
constant mesh adjusted for the problem at hand. 

It emerged from the investigations that the 
detection of major strains on small radii requires the 
choice of a fine initial mesh and a sufficient number of 
refinement steps. This approach will lead to better 
results if the refinement criteria themselves (e.g., angle 
criterion) are adapted as well. Only then will the 
simulation user be able to model local loads and hence 
resolve the local deformation distribution properly.  

To estimate the effects of the tool mesh on the 
simulation result, the tool was re-meshed by 
DaimlerChrysler AG. This was followed by a series of 
simulation runs. The results of these simulations shall 
not be discussed here.  

Based on all investigation done in this working 
group each individual software company produced 
comments and recommendations concerning the 
settings and procedures to be adopted with the 
respective programs. These settings were published in 
[1]. 

CONCLUSION 

The investigations pursued to date by the working 
group with a view to improving the simulation of 
small radii have shown that in some sheet metal 
forming applications, closer attention to software 
settings on the part of simulation users is required. The 
wisdom of merely relying on the program's default 
values should be routinely questioned with regard to 
the specific geometry under simulation. As could be 
demonstrated, a selective adaptation of simulation 
parameters in the various software systems produced a 
significant increase in the accuracy with which failure 
probabilities were simulated. 

The originally intended longer-term discussion and 
open experience-sharing process between all 
participants proved very helpful in achieving this goal. 
Now that the results have been published for the 
benefit of a wider circle of users, further topics in the 
field of metal forming simulation will be addressed. 
These will include issues for which no satisfactory 
modelling or interpretation approach has been 
developed to date. 
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