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Summary. We consider a contrast invariant approach to motion estimation which
uses the direction of the gradient fields. The approach is region-based and assumes
an affine motion model for each region. We propose to check if the estimated motion
parameters fit properly the apparent motion of the region by a motion significance
analysis. Moreover, we propose a motion field improvement which consider those
regions that are not properly estimated according to the significance analysis and
reassign them a motion model of a properly estimated neighboring region.

1 Introduction

Most known motion estimation methods employ the intensity constancy as-

sumption, however, global or local illumination changes may violate this as-
sumption and prevent the correct motion to be estimated. In [1] a constraint
based on spatial gradient’s constancy is proposed [2]. The direction of the spa-

tial gradient is invariant with respect to global light changes and is insensitive
to changes in illumination direction [3]. The work presented in [4] is based on
the last property. The contrast invariance is incorporated in our approach [5]
by the assumption that the shapes of the image move along the sequence.

In this work we present a hypothesis testing analysis approach that allows
to measure how well the motion has been correctly estimated. This measure
is used to validate the estimated motion parameters. Moreover, the validation
output is used to reassign to the not properly estimated regions a motion
model of a neighboring region which has been properly estimated.

The paper is organized as follows: Sect. 2 summarizes our motion estima-
tion approach and presents the motion validation approach, Sect. 3 introduces
the motion model reassignment approach, Sect. 4 presents some results and
Sect. 5 ends up with the conclusions and future research work.
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2 Motion Estimation and Significance Analysis

Region-based Contrast Invariant Motion Estimation: Let I : Ω → R
be a given image, where Ω is the image domain. The shapes of the image
are identified with the family of its level lines which is a contrast invariant
geometric description of the image [6]. The main assumption is they move
along the image sequence (with possible deformation).

Motion is estimated between two frames of the sequence, denoted by I0

and I1, and φ(x) denotes the coordinates of the point at image I1 whose
coordinates are x at image I0. Using the unit normals to describe the level
lines, we propose to compute the optical flow φ by aligning the unit normal
vector field Z1(x) to the level lines of I1 with the transformed vector field of
Z(x) by the map φ, denoted by Zφ = (Dφ)† Z/‖(Dφ)† Z‖ if (Dφ)†Z 6= 0 and
0 otherwise. (Dφ)† denotes the cofactor matrix associated to Dφ, see [5].

Moreover we follow a region-based strategy, assuming that the motion
fields can be expressed locally by a six parameter affine model. Let R be a
partition into disjoint connected regions of the image I0 bounded by level lines.
The partition may be computed for instance with a segmentation algorithm
like the Mumford-Shah functional subordinated to the topographic map [7].

Motion is estimated by minimizing the energy functional:
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where Ψ(.) may represent a robust function, the factor 1/4 is used to normalize
the cost term to the range [0, 1], NP = card(R), and NRj

= card({x ∈ Rj}).
Motion is estimated using a gradient descent technique applied over ER for
each region R. For more details on this issue we refer to [5].

Motion Significance analysis: The minimization of ER to estimate
the motion parameters φR for any particular region R will always find a
certain minimum, be it local or global. We cannot ensure that such minimum
corresponds to the correct motion. Our purpose is to give a measure of the
degree in which the motion has been correctly estimated. Let R ∈ R be a
region of the image I0. We consider the following hypotheses (which will be
interpreted below): H0: “the motion field of R is correct” and H1: “the motion
field of R is not correct”.

Hypothesis Testing: Given a statistical model of the population, the
observed sample is analyzed in order to see if it can be explained by it. If the
observation diverges too much from the statistical model, the observation is
rejected as belonging to the population.

For each region R, let φR the estimated motion parameters, and {xi}R =
{xi ∈ R / ‖∇I1(φ(xi))‖ > γ}, and L = card({xi}R). The threshold γ is used
to ensure that the gradient orientations are not much affected by the presence
of noise. We assume that the points in {xi}R are “independent” [8]. For each
xi ∈ {xi}R we consider the unitary vectors Z1(φ(xi)) as a random variable
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and thus Yi(φ) = Ψ(1/4
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) may be interpreted as a
random variable measuring the alignment of the two normal vectors. As in [8],
we may consider that the vectors Z1(φ(xi)) and Zφ(xi) are not aligned if they
form an angle larger than a given threshold. We define the random variable
ER = 1

L

∑L

i=1
ρ

(

Yi(φ)
)

, where ρ : [0,+∞[→ [0,+∞[ is an increasing function.
Since Yi(φ) is directly related to the angle forming the two unitary vectors,
its non-alignment can be subsumed into ER by taking ρ(x) := ρβ(x) = 1 if
x > β, and 0 otherwise. In that case, ER is a measure of the number of non-
alignments for a given region R. We denote ER(φR) the observed value of ER

corresponding to the data. The motion field φR assigned to R is correct if the
error ER(φR) is “sufficiently” small. Our purpose in this work is to define the
region of rejection or acceptance using probability theory. If we assume that
H0 is true, the rejection region is of the form [ER ≥ δ], δ > 0 [9], but instead
of computing the value of δ for a given level of significance as is usually done
in hypothesis testing, we compute the probability P[ER ≥ ER(φR)|H0] which
corresponds to the probability of miss-detection or error of type I (to reject
H0 erroneously) for the observed value δ = ER(φR).

The probability that at least k0 non-alignments occur is given by the
binomial tail: P[ER ≥ k0/L] = B(p0, k0, L), where the probability of non-
alignment p0 is computed from the empirical data. Thus, the validation can
be based in the expected number of miss-detections which is defined as follow.

The number of miss-detections (NMD) of a region is defined as NMD(R,φ) =
NP · P [ER ≥ ER(φR)|H0], where NP is the number of tested regions.

For a given region R, we reject H0 if NMD(R,φ) < ǫ0. In that case we say
that the motion of R is not properly estimated. Assuming that the motion
model has been correctly estimated, the differences
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A Contrario Model : The a contratio models were introduced in [8] as

a tool for Gestalt’s detection. In this context, as it is usual in this type of
approach, we check that our observations cannot be explained by random
selection of the motion model, that is, the number of coincidences between
both vector fields Z1(φ(x)) and Zφ(x) is too large to be explained by a fortuite
coincidence. In this case, we reject H1 and we consider the motion model to
be validated. For the precise details of this approach, we refer to [10].

3 Application: Motion Reassignment

An interesting application of the previous validation analysis is the enhance-
ment of the overall motion estimation field. We propose to reassign to the not
properly estimated regions the motion models of neighboring regions which
have been correctly estimated. Neighboring regions may belong to the same
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Fig. 1. Region-based motion example. From left to right and top to bottom. Original
frame I0, original frame I1, partition of original frame I0, recovered motion field.

Fig. 2. Validation and reassignment example. From left to right. Validation using
hypothesis testing and the a contrario model. Motion reassignment for the Vectra
sequence.

moving object and thus they may have similar motions. The NMD(R,φ) may
be used to compare the different motion models that can be assigned to R.
The higher the NMD is the better does the motion model explain the region
movement. For each not properly estimated region the neighboring motion
model leading to the highest NMD is assigned.

4 Results

In all experiments below Ψ(r) =
√

r2, two vectors are aligned if they form an
angle below 16o and ǫ0 = 0.1 for the statistical models.

Fig. 1 (top) shows frames #9 and #10 of the vectra sequence. The apparent
motion of the car is zero while the background translates from right to left. The
partition and the resulting motion vector field are shown in Fig. 1 (bottom).
Some regions in the boundaries of the image and others near the car have
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an incorrect estimated motion field. A validity process becomes necessary
to detect these errors. Fig. 2 displays the outcome of each of the strategies
presented in Sect. 2. Regions that are found as wrongly (resp. well) estimated
are grey-shaded (resp. white). We have set the modulus gradient threshold
γ to 7. Note that the validation strategies have been able to detect most of
the wrongly estimated regions. It can be seen that the a contrario model is
more demanding than the hypothesis testing one. The a contrario model can
be considered a validation method, whereas the hypothesis testing model only
performs an error control. The obtained motion field after the reassignment
can be seen in Fig. 2 (right). We can identify different coherent moving regions
of the scenes in these motion field.

5 Conclusions

Following [5], we interpret the image sequence as a set of moving level lines
and we compute the optical flow as generated by a deformation between the
level lines of two consecutive frames. We have introduced a motion signifi-
cance measure based on hypothesis testing. These measures are useful both
to detect the possible motion estimation errors and as a basic criterion for
motion reassignment. Some issues have to be further developed in the future:
automatic selection of the modulus gradient threshold γ, and the sensibility
of the validation analysis to motion bias with respect the correct motion.
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