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Abstract

A P4-transversal of a graph G is a set of vertices T which meets every P4 of G. A P4-
transversal T is called stable if there are no edges in the subgraph of G induced by
T . It has been previously shown by Hoàng and Le that it is NP -complete to decide
whether a comparability (and hence perfect) graph G has a stable P4-transversal.
In the following we show that the problem is NP -complete for chordal graphs. We
apply this result to show that two related problems of deciding whether a chordal
graph has a P3-free P4-transversal, and deciding whether a chordal graph has a
P4-free P4-transversal (also known as a two-sided P4-transversal) are both NP -
complete. Additionally, we strengthen the main results to strongly chordal graphs.
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1 Introduction and results

A graph is perfect if for every induced subgraph H of G, the chromatic number
χ(H) is equal to the clique number ω(H). The Strong Perfect Graph Theorem
states that a graph is perfect if and only if it has no induced odd cycle or its
complement [2]. This result had been conjectured by Berge [1]. In the long
history of this conjecture, the study of the structure of P4’s in a graph has
been found to play an important role. In [8], the authors define the notion
of a P4-transversal to be a subset of vertices of a graph meeting every P4.
They show that if a graph has a P4-transversal with certain properties it is
guaranteed to be perfect. They also investigate the complexity of finding a
P4-transversal with various properties. In particular they investigate stable
P4-transversals, i.e., P4-transversals which form a stable set – a set of vertices
inducing a subgraph with no edges. They show that for comparability graphs
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(and therefore also for perfect graphs) it is NP -complete to decide whether
a graph has a stable P4-transversal. In [9], the authors consider a related
problem of P4-colourings. They show that finding a P4-free P4-transversal (a
“P4-free 2-colouring” in their terminology) is NP -complete for comparability
graphs, P5-free graphs and (C4, C5)-free graphs.

Here we first show that the problem of finding a stable P4-transversal remains
NP -complete when restricted to chordal graphs:

Theorem 1.1 It is NP -complete to decide whether a given chordal graph has
a stable P4-transversal.

We apply this result to derive the following consequences:

Theorem 1.2 It is NP -complete to decide whether a given chordal graph has
a P3-free P4-transversal.

Theorem 1.3 It is NP -complete to decide whether a given chordal graph has
a P4-free P4-transversal.

Note that Theorem 1.3 also improves on the results from [9] mentioned above.
We contrast Theorem 1.1 with the result of [4], which can be reformulated as
follows:

Theorem 1.4 [4] For chordal graphs, a stable P3-transversal can be found in
polynomial time.

We note that the NP -completeness of these kinds of partition problems for
general graphs has been proved in [6].

In the last section of the paper we discuss some extensions of these results.

2 Preliminaries

A graph G is called H-free if G contains no induced subgraph isomorphic to
a graph H . In particular, a P4-free graph is called a cograph. (Recall that P4

is the path with four vertices and three edges.) It has been shown [3] that any
P4-free graph can be constructed from a single vertex using the operations
of disjoint union and join. (The join of two graphs is constructed by taking
their disjoint union and adding all possible edges between the two graphs.)
The construction of a cograph G can be therefore represented as a rooted
tree T in which the leaves are the vertices of the graph G, and the internal
nodes are labeled either 0 or 1, denoting the operations of disjoint union and
join respectively. T shall be referred to as a tree representation of G. It could
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be easily seen that two vertices of G are adjacent if and only if their least
common ancestor in T is labeled 1. Note that T is not necessarily unique. We
call T a cotree if the labels of the internal nodes of T strictly alternate on
any path in T . It is known[3] that every cograph has a unique cotree (up to
isomorphism). If a tree representation T of a cograph G is not a cotree, one
can easily transform it into an equivalent cotree by identifying consecutive
vertices of T having the same label. Hence for simplicity, we shall refer to any
tree representation of a cograph as a cotree.

A graph is chordal if it does not contain an induced cycle of length 4 or more. It
is known [7] that a graph is chordal if and only if there exists a linear ordering
≺ of its vertices such that if v, w are two neighbours of u with u ≺ v, u ≺ w,
then v and w are adjacent. Such an ordering is called a perfect elimination
ordering.

A literal is a variable vi or its negation ¬vi (often written as v̄i). A clause is a
disjunction of literals. A propositional formula is in conjunctive normal form if
it is written as a conjunction of clauses. The set of all variables of the formula
ϕ is denoted by var(ϕ). The truth assignment τ for the set of variables var(ϕ)
is a mapping τ : var(ϕ) → {true, false}. The 3-satisfiability problem 3SAT

is the problem of finding a satisfying truth assignment for all variables of a
given formula in conjunctive normal form in which every clause has exactly 3
literals. It is known to be NP -complete.

It should be noted that all the problems mentioned in section 1 are clearly
in NP ; this follows from the fact that testing whether a graph contains a P4,
a P3, or is a stable set, can be done in polynomial time.

3 Stable P4-transversals

To prove Theorem 1.1, we describe a polynomial time reduction from the
problem 3SAT . Let ϕ be a formula in conjunctive normal form with exactly
three literals in any clause, i.e. ϕ =

∧m
j=1 Cj where Cj = l

j
1 ∨ l

j
2 ∨ l

j
3 where

l
j
1, l

j
2, l

j
3 are literals. Let var(ϕ) = {v1, v2, . . . , vn} be all variables appearing in

ϕ. Let J
(+)
i be the indices of clauses which contain the literal vi and J

(−)
i be

the indices of clauses which contain the literal ¬vi.

Let C(Cj) be the graph shown in Figure 1, and let G(ϕ) for the formula ϕ be
the graph Gn inductively defined as follows:

(1) Let G0 be the disjoint union of the graphs {C(Cj)}
m
j=1 (see Figure 1).

(2) Let Gi (see Figure 1) be the graph created from Gi−1 as follows. Add
two adjacent vertices vi and vi and make them completely adjacent to all
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vertices of Gi−1. For every j ∈ J
(+)
i add a vertex v

j
i adjacent to vi and

adjacent to the vertex l
j
k of C(Cj) if vi is the k-th literal of the clause Cj .

Similarly, for every j ∈ J
(−)
i add a vertex v

j
i adjacent to vi and adjacent

to the vertex l
j
k in C(Cj) if ¬vi is the k-th literal of the clause Cj. (Note

that we can assume that a literal occurs in a clause only once.)

Gi

vi

vi

v
j′

i

v
j
i

v
j′

i

v
j
i

...

...
Gi−1

l
j
1 l

j
2

l
j
3 C(Cj)

Fig. 1. The graphs Gi and C(Cj). Note that the circle in the center is the graph Gi−1

completely adjacent to vi and vi; and each of the vertices v
j
i and v

j
i is adjacent to a

single vertex in Gi−1. The graph C(Cj) corresponds to the clause Cj = l
j
1 ∨ l

j
2 ∨ l

j
3.

We can also describe the graph G(ϕ) in the following (non-inductive) way:

(1) G(ϕ) contains the vertices vi, vi for every i, the vertices v
j
i (resp. v

j
i )

for every occurrence of the literal vi (resp. ¬vi) in the clause Cj, and the
vertices of C(Cj) for every clause Cj containing among others the vertices
l
j
1, l

j
2 and l

j
3.

(2) The vertex vi (resp. vi) is adjacent to all vertices of C(Cj) for every j, to
the vertices vi′ , vi′ for all i′, to all vertices v

j
i (resp. v

j
i ) that may exist,

and to all vertices v
j
i′ , v

j
i′ that may exist, for each i′ with i′ < i.

(3) The vertex v
j
i (resp. v

j
i ) is adjacent to the vertex vi (resp. vi), to the

vertex l
j
k such that vi (resp. ¬vi) is the k-th literal of the clause Cj, and

to all vertices vi′, vi′ for all i′ with i′ > i.
(4) The vertex l

j
k is adjacent to its only neighbour in C(Cj), to the vertex v

j
i

(resp. v
j
i ) such that vi (resp. ¬vi) is the k-th literal of the clause Cj, and

to the vertices vi′ , vi′ for all i′.
(5) The remaining vertices of C(Cj) are only adjacent to their respective

neighbours in C(Cj) and to the vertices vi, vi for all i.

First we need the following proposition and its corollary:

Proposition 3.1 For all i, the graph Gi is chordal.

Proof. We prove this by induction. For i = 0, observe that the graph C(Cj)
is chordal for every j, hence G0 is chordal. For i > 0, suppose that Gi−1

is chordal; let π be a perfect elimination ordering of its vertices. Now it is
not difficult to see that v1

i , v
2
i , . . . , v

1
i , v

2
i , . . . , π, vi, vi is a perfect elimination

ordering of Gi. 2
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Corollary 3.2 The graph G(ϕ) is chordal.

We make the following observations about the graph G(ϕ) and its subgraphs:

Observation 3.3 Every stable P4-transversal of the graph C(Cj) contains at
least one of the vertices l

j
1,l

j
2 or l

j
3. Every maximal stable set of C(Cj) is a

P4-transversal.

Proof. The proof is by inspection. 2

Proposition 3.4 Let S be a stable P4-transversal of G(ϕ). Then the following
holds:

(1) For all i, vi 6∈ S and vi 6∈ S.

(2) For any j, v
j
i 6∈ S implies for all j′, v

j′

i ∈ S

Proof.

(1) The vertex vi is adjacent to all vertices of C(Cj), and so if it belongs to
the stable set S, then no vertex of C(Cj) can be in S. Therefore G(ϕ)\S

contains all vertices of C(Cj) and hence contains a P4, contrary to S

being a P4-transversal. The same holds for vi.
(2) Suppose that v

j
i 6∈ S and also v

j′

i 6∈ S for some j, j′. Then by the previous
argument also vi 6∈ S and vi 6∈ S, and hence S cannot be a P4-transversal
since the vertices v

j
i , vi, vi, v

j′

i form a P4 in G(ϕ) \ S.
2

Lemma 3.5 The formula ϕ is satisfiable if and only if the graph G(ϕ) has a
stable P4-transversal.

Proof. First suppose that τ is a satisfying truth assignment of ϕ. We use τ

to construct a stable P4-transversal of G(ϕ) = Gn.

Let S
j
0 be any maximal stable set in C(Cj) with the following property. For

all k, the vertex l
j
k ∈ S

j
0 if and only if vi is the k-th literal of the clause Cj

and τ(vi) = true, or ¬vi is the k-th literal of the clause Cj and τ(vi) = false.
Clearly since τ satisfies ϕ and therefore also satisfies the clause Cj, at least
one of the vertices l

j
1, l

j
2, l

j
3 is in S

j
0. By Observation 3.3, S

j
0 is a P4-transversal

in C(Cj). Now let S0 =
⋃m

j=1 S
j
0. Since the graphs C(Cj) in G0 are vertex

disjoint, it follows that S0 is a stable P4-transversal of G0.

Now let S = S0 ∪
⋃n

i=1 S+
i where

S+
i =







{vj
i}j∈J

(−)
i

if τ(vi) = true

{vj
i }j∈J

(+)
i

if τ(vi) = false
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1

0

1

vi

vi

v1
i v2

i
. . .v

j
i
. . .

Ti−1

Fig. 2. The cotree for the graph Gi \ Si

We show that S is a stable P4-transversal of G(ϕ). First let Si = S0∪
⋃i

j=1 S+
j .

Clearly Si = Si−1 ∪ S+
i and Si−1 ⊆ Si. We show by induction that Si is a

stable P4-transversal of Gi.

For i = 0 the claim follows from the above. Therefore suppose that i > 0 and
Si−1 is a stable P4-transversal of the graph Gi−1. Without loss of generality,
we may assume that τ(vi) = true. Then Si = Si−1 ∪ {vj

i}j∈J
(−)
i

, where Si−1 is

a stable set. Using the fact that τ(vi) = true and the definition of S
j
0, we have

that l
j
k 6∈ S

j
0 whenever ¬vi is the k-th literal of the clause Cj. Since in that

case l
j
k and vi are the only neighbours of the vertex v

j
i in Gi, it easily follows

that Si is a stable set. Now we only need to show that Si is a P4-transversal
of Gi, that is that Gi \ Si is a P4-free graph. From the induction hypothesis
Gi−1 \ Si−1 is already a P4-free graph. Therefore there exists a cotree Ti−1 for
this graph. To show the claim we construct a cotree for Gi \ Si. As in the
previous argument, it follows that l

j
k ∈ S

j
0, whenever vi is the k-th literal of

the clause Cj. Since in that case the vertex v
j
i is only adjacent to the vertex

vi in Gi \ Si, we obtain the cotree for Gi \ Si as shown in Figure 2.

It follows that S = Sn is a stable P4-transversal of the graph G(ϕ) = Gn.

Now suppose that G(ϕ) has a stable P4-transversal, say S. We construct the
truth assignment τ for the formula ϕ in the following way: for every variable
vi we set τ(vi) = true just if for some j the vertex v

j
i 6∈ S. We show that τ

satisfies ϕ.

Consider the clause Cj of ϕ. Since S is a stable P4-transversal of G(ϕ), the set
S ∩C(Cj) is a stable P4-transversal of C(Cj). It follows from Observation 3.3
that the vertex l

j
k ∈ S ∩ C(Cj) for some k, and hence l

j
k ∈ S. If vi is the k-th

literal of the clause Cj, it follows that v
j
i is not in the stable set S. (Recall

that the vertex v
j
i is a neighbour of l

j
k.) Therefore by the definition of τ , we

have that τ(vi) = true, and therefore τ satisfies Cj . If ¬vi is the k-th literal of
the clause Cj , we deduce that v

j
i 6∈ S. By Proposition 3.4, we must have for

all j′, v
j′

i ∈ S. Therefore it follows from the definition of τ that τ(vi) = false,
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and we again conclude that τ satisfies Cj.

Clearly, since τ satisfies all clauses Cj , it satisfies the formula ϕ; this concludes
the proof. 2

Proof. [Theorem 1.1] One can easily see that the graph G(ϕ) can be con-
structed in polynomial time. Hence the claim follows from Lemma 3.5. 2

4 P3-free and P4-free P4-transversals

We now proceed to prove Theorem 1.2 and 1.3.

Proposition 4.1 Let Y be the graph shown in Figure 3.

(1) Every P3-free P4-transversal S of the graph Y has the property that u ∈ S

and v 6∈ S (see Figure 3a).
(2) Every P4-free P4-transversal S of the graph Y has the property that either

u ∈ S and v 6∈ S, or u 6∈ S and v ∈ S (see Figure 3a,3b).

u v x

y

Y

u v
x

y

x′

x′′

y′

y′′

u v
x

y

x′

x′′

y′

y′′

a) b)

Fig. 3. The graph Y and a sketch of some possible P4-transversals (the doubly
circled vertices)

Proof. Observe that among the neighbours of x and the neighbours of y there
must always be a vertex x′ ∈ S and a vertex x′′ 6∈ S, and similarly a vertex
y′ ∈ S and a vertex y′′ 6∈ S. (Clearly both neighbourhoods contain a P4, so
they cannot be entirely in S, nor entirely not in S.) It follows that x and y

cannot both be in S, and cannot both be not in S. (In the former case the
vertices y′, y, x, x′ form a P4 in S, and in the latter case, the vertices y′′, y, x, x′′

form a P4 in Y \ S.) Without loss of generality we may assume that y ∈ S

and x 6∈ S.
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First suppose that S is P3-free. Then we have v 6∈ S, since otherwise the
vertices v, y, y′ form a P3 in S. Moreover u must be in S, since otherwise the
vertices u, v, x, x′′ form a P4 in Y \ S. This proves the first part of the claim.

Now suppose that S is P4-free. Then either v 6∈ S and we similarly find that
u ∈ S, or v ∈ S and then we have that u 6∈ S, since otherwise the vertices
u, v, y, y′ form a P4 in S. This concludes the proof. 2

◦
◦

◦◦◦
◦

◦
◦
◦
◦ ◦ ◦

◦
◦

◦

◦
◦◦

◦

◦

◦

◦
◦ ◦

◦

◦

©

©

©
©©

©

©

©

©
© ©

©

©

G

a b

G

◦
◦

◦
©

◦◦
◦

©

◦
◦ ◦

©

◦
◦
◦

© ◦
◦◦
©

◦
©

u

Y

◦ ◦
©

u u′

Y ′

a) b)

Fig. 4. The construction of the graph G′ used in the proof of Theorem 1.2 (a) and
Theorem 1.3 (b)

Proof. [Theorem 1.2] In order to prove the NP -completeness of the problem of
recognizing the existence of a P3-free P4-transversal, we construct a polynomial
time reduction from the stable P4-transversal problem for chordal graphs.

Let G be a chordal graph. Let G′ be the graph constructed from G in the
following way (see Figure 4a). For every vertex w ∈ V (G) we add a copy Yw

of the graph Y (see Figure 3) in which we change the labels of the vertices u

and v to uw and vw respectively, and we make the vertices w and uw adjacent.
Observe that G′ is chordal, since both G and Y are chordal. We now prove
that G has a stable P4-transversal if and only if G′ has a P3-free P4-transversal.

Suppose that G has a stable P4-transversal S. Let Sw be any P3-free transversal
of Yw. Let S ′ = S ∪

⋃

w∈V (G) Sw. By Proposition 4.1, we have uw ∈ S ′ for all
w ∈ V (G). Since for every w the vertex uw is a cut-vertex in G′, it easily
follows that S ′ is a P4-transversal of G′. Moreover, since S is stable, and for
every w the vertex vw 6∈ S ′, it follows that S ′ is P3-free.

Now suppose that G′ has a P3-free P4-transversal S ′. Let S = S ′ ∩ V (G).
Clearly S is a P4-transversal of G. We show that S is also stable, thus proving
the claim. Suppose that there are two adjacent vertices w, w′ ∈ S. By Propo-
sition 4.1, we have uw ∈ S ′ and uw′ ∈ S ′. Therefore the vertices uw, w, w′, uw′

form a P4 in S ′ contrary to S ′ being P3-free. 2
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Proof. [Theorem 1.3] As in the previous proof, we construct a polynomial
time reduction from the stable P4-transversal problem for chordal graphs. Let
G be a chordal graph. Let Y ′ be the graph obtained from Y by adding an
additional vertex u′ adjacent to both u and v. Let G′ be the graph obtained
from G as follows (see Figure 4b). For every vertex w ∈ V (G) we add a copy
Y ′

w of the graph Y ′ in which we change the labels of the vertices u, u′ and v to
uw, u′

w and vw respectively, and we make w adjacent to uw and u′

w. Moreover,
we add a copy Y ′′ of the graph Y ′, in which we change the labels of the vertices
u, u′ and v to a, b and f respectively. We make a and b adjacent to all vertices
of G, and make b adjacent to uw for every w ∈ V (G).

Observe that G′ is chordal. Indeed, since G is chordal, it has a perfect elimina-
tion ordering π. Similarly, since Y ′

w is chordal, it also has a perfect elimination
ordering πw. It is easy to see, by inspection, that we may choose πw to end
with the vertices u′

w and uw, in that order. Lastly, since Y ′′ is chordal, let
π′′ be any perfect elimination ordering of Y ′′. Now one can easily verify that
πw1 , πw2, . . . , π, π′′ is a perfect elimination ordering of G′, where w1, w2, . . . is
an enumeration of the vertices of G.

We now prove that G has a stable P4-transversal if and only if G′ has a P4-
free P4-transversal. Suppose that G has a stable P4-transversal S. Let Sw be
a P4-free P4-transversal of Y ′

w satisfying uw, u′

w ∈ Sw. Let S ′′ be a P4-free
P4-transversal of Y ′′ satisfying a, b 6∈ S ′′; it also follows that f ∈ S ′′. Now let
S ′ = S ∪ S ′′ ∪

⋃

w∈V (G) Sw. We show that S ′ is a P4-free P4-transversal of the
graph G′.

Since Sw is P4-free, let Tw be the cotree representing Sw \ {uw, u′

w}. Similarly,
let T ′′ be the cotree for S ′′, T the cotree for G \ S, Tw the cotree for Yw \ Sw,
and T

′′

the cotree for Y ′′ \ (S ′′ ∪{a, b}). Let T ′ and T
′

be the cotrees depicted
on Figure 5.

0

1

wuw u′

w
T ′′ Tw

if w ∈ S

∀w ∈ V (G)∀w ∈ V (G)

T ′ : 0

1

T

a bT
′′ Tw

∀w ∈ V (G)

T
′

:

Fig. 5. The cotrees corresponding to the subgraphs of G′ induced on S′ and G′ \S′.
(The subtrees marked with ∀w ∈ V (G) indicate that for every vertex in G, such
subtree is added.)
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One can easily verify that T ′ and T
′

are exactly the cotrees of the subgraphs
of G′ induced on S ′ and G′ \ S ′ respectively. That shows that S ′ and G′ \ S ′

are both P4-free, and hence S ′ is a P4-free P4-transversal of the graph G′.

Now suppose that S ′ is a P4-free P4-transversal of G′. We may assume that
the vertex f of Y ′′ is in S ′. (Otherwise we consider G′ \ S ′ in place of S ′ since
both S ′ and G′ \ S ′ are P4-free.) Now it follows from Proposition 4.1 that
a, b 6∈ S ′. Similarly, it follows that for every w either uw, u′

w ∈ S ′ and vw 6∈ S ′,
or uw, u′

w 6∈ S ′ and vw ∈ S ′. Since the latter would create a P4 in G′ \ S ′

(i.e., the vertices a, b, uw, u′

w form a P4 in G′), it follows that uw, u′

w ∈ S ′ and
vw 6∈ S ′ for every w ∈ V (G).

Now let S = S ′∩V (G). We show that S is a stable P4-transversal of the graph
G. Clearly S is a P4-transversal of G. We only need to show that S is also
stable. Suppose otherwise, i.e., let w, w′ ∈ S be adjacent. Then the vertices
uw, w, w′, uw′ clearly form a P4 in S ′ (recall that uw ∈ S ′ for all w ∈ V (G)),
which leads to a contradiction since S ′ is P4-free. Hence S must be stable. 2

5 Further Results

A graph G is strongly chordal if it is chordal and there exists a perfect elimi-
nation ordering ≺ of the vertices of G such that if u ≺ v ≺ w ≺ z and (u, z),
(u, w) and (v, w) are edges of G then also (v, z) is an edge (such ordering is
called strong elimination ordering). Strongly chordal graphs form an interest-
ing subclass of chordal graph as there are several difficult combinatorial graph
problems that are polynomially solvable in strongly chordal graphs, but are
NP -complete for chordal graphs [5].

In the previous sections we proved that it is NP -complete to decide whether
a chordal graph has a stable P4-transversal, a P3-free P4-transversal or a P4-
free transversal. It is easy to check that the perfect elimination orderings of
G(ϕ) and G′ used in the proofs of these results are in fact strong elimination
orderings (provided G is strongly chordal in the case of G′). Note that it suffices
to show this for G(ϕ) and G′ from Theorem 1.3 since G′ from Theorem 1.2 is
an induced subgraph of G′ from Theorem 1.3. Hence we obtain the following
stronger result.

Theorem 5.1 (1) It is NP -complete to decide whether a strongly chordal
graph has a stable P4-transversal.

(2) It is NP -complete to decide whether a strongly chordal graph has a P3-free
P4-transversal.
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(3) It is NP -complete to decide whether a strongly chordal graph has a P4-free
P4-transversal.
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[8] C. T. Hoàng, V. B. Le: On P4-transversals of perfect graphs, Discrete
Mathematics 216 (2000), 195–210.
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