
Interprocedural Shape Analysis
for Effectively Cutpoint-Free Programs

J. Kreiker1, T. Reps2!, N. Rinetzky3!!, M. Sagiv4, R. Wilhelm5, and E. Yahav6

1 Technical University of Munich joba@model.in.tum.de
2 University of Wisconsin reps@cs.wisc.edu

3 Queen Mary University of London maon@eecs.qmul.ac.uk
4 Tel Aviv University msagiv@tau.ac.il

5 University des Saarlandes wilhelm@cs.uni-sb.de
6 IBM T.J. Watson Research Center eyahav@us.ibm.com

Abstract. We present a framework for local interprocedural shape analysis that
computes procedure summaries as transformers of procedure-local heaps (the
parts of the heap that the procedure may reach). A main challenge in procedure-
local shape analysis is the handling of cutpoints, objects that separate the input
heap of an invoked procedure from the rest of the heap, which—from the view-
point of that invocation—is non-accessible and immutable.
In this paper, we limit our attention to effectively cutpoint-free programs—
programs in which the only objects that separate the callee’s heap from the rest
of the heap, when considering live reference fields, are the ones pointed to by
the actual parameters of the invocation. This limitation (and certain variations of
it, which we also describe) simplifies the local-reasoning about procedure calls
because the analysis needs not track cutpoints. Furthermore, our analysis (con-
servatively) verifies that a program is effectively cutpoint-free,

1 Introduction

Shape-analysis algorithms statically analyze a program to determine information about
the heap-allocated data structures that the program manipulates. The algorithms are
conservative (sound), i.e., the discovered information is true for every input. Handling
the heap in a precise manner requires strong pointer updates [3]. However, performing
strong pointer updates requires a flow-sensitive and context-sensitive analysis and ex-
pensive heap abstractions, which may be doubly-exponential in the program size [25].
The presence of procedures escalates the problem because of interactions between the
program stack and the heap [22] and because recursive calls may introduce additional
exponential factors in an analysis. This makes interprocedural shape analysis a chal-
lenging problem.

This paper introduces a new approach for local [10,18] interprocedural shape anal-
ysis for a class of imperative programs. The main idea is to restrict the aliasing between
! Supported by NSF under grants CCF-0540955, CCF-0810053, and CCF-0904371, by ONR
under grant N00014-09-1-0510, by ARL under grant W911NF-09-1-0413, and by AFRL un-
der grant FA9550-09-1-0279.

!! Supported by EPSRC.

live access paths at procedure calls. This allows procedure invocations to be analyzed
ignoring non-relevant parts of the heap, more specifically, the parts of the heap not
reachable from actual parameters. Moreover, shape analysis verifies that the above re-
strictions are satisfied.

The restricted class of programs is chosen based on observations made in [20].
There, Rinetzky et al. present a non-standard semantics in which procedures operate
on procedure-local heaps containing only the objects reachable from actual parame-
ters. The most complicated aspect of [20] is the treatment of sharing from the global
heap and local variables of pending calls into the procedure-local heap. The problem
is that the local heap can be accessed via access paths that bypass actual parameters.
Therefore, objects in the local heap are treated differently when they separate the local
heap (accessible by a procedure) from the rest of the heap (which—from the viewpoint
of that procedure—is non-accessible and immutable). These objects are referred to as
cutpoints [20].

Example 1. Fig. 1 illustrates the notions of local heaps and cutpoints. To gain intuition, Fig. 1
shows these notions using the familiar store-based semantics. (See, e.g., [18]). The figure depicts
a memory state of a program comprised of four procedures: main, foo, bar, and zoo. The
figure depicts a memory state that may occur at the entry to zoo. The stack of activation records
is depicted on the left side of the diagram. Each activation record is labeled with the name of the
procedure it is associated with. Thus, as we can see, zoo was invoked by bar; procedure bar
was invoked by foo; and foo was invoked by the main procedure. The activation record at the
top of the stack pertains to the current procedure (zoo). All other activation records pertain to
pending procedure calls. Thus, for example, the access paths z1.f1.f1, y9, and x5.f2 are
pending access paths.

Heap-allocated objects are depicted as rectangles labeled with their location. The value of
a reference variable (resp. field) is depicted by an edge labeled with the name of the variable
(resp. field). The shaded cloud marks the part of the heap that zoo can access (i.e., the part of the
heap containing the relevant objects for the invocation). The cutpoints for the invocation of zoo
(u8 and u9) are heavily shaded. Note that u7 is not a cutpoint because it is also pointed to by
h7 , zoo’s formal parameter.

Cutpoints present a major challenge for shape abstractions: Procedure-local heaps
together with special handling of cutpoints was found to be key in obtaining efficient
and precise interprocedural shape-analysis algorithms [28]. Thus, the shape abstraction
cannot abstract away the sharing patterns induced by cutpoints between the procedure-
local heap of the procedure and the rest of the heap. These sharing patterns may lack
any regular shape. However, the regularity of the sharing pattern is, in fact, what enables
the effective shape abstraction of unbounded linked data structures.

We observe that cutpoints need special treatment in the analysis of a procedure be-
cause the caller may use its direct references to the cutpoint after the procedure returns.
We develop an interprocedural shape analysis in which such direct usages are forbid-
den. We refer to a reference that, at the time when a procedure is invoked, points to a
cutpoint and does not come from an object in the callee’s local heap as a piercing refer-
ence for that invocation. An execution is effectively cutpoint-free if in every invocation
that occurs during the execution, all the piercing references for that invocation are not
live [26] at the time of the invocation, i.e., their r-values are not used later on in the
execution before being set. A program is effectively cutpoint-free if all its executions

2

f1

f2

f1

f1

f1

f2

f1

f1 f2

f1

u7

u11
u12

u8 u10
u9u6

u5

u1
u2

u3
u4

f2
f1

Stack Heap

zoo

bar

foo

main 1

x7

y9

x5

9

xx5

h7

z
z

x9

Fig. 1. An illustration of the cutpoints for an invocation in a store-based small-step (stack-based)
operational semantics at the entry to zoo. We assume that h7 is zoo’s formal parameter.

are. When analyzing effectively cutpoint-free programs, there is no need to give special
care to cutpoint objects. However, to verify that a program is effectively cutpoint-free,
special care needs to be taken regarding future usages of piercing references.

In this paper we present ECPF, a small-step operational semantics [16] that handles
effectively cutpoint-free programs. This semantics is interesting because procedures op-
erate on local heaps, i.e., every procedure invocation starts executing on a memory state
in which parts of the heap not relevant to the invocation are ignored. Thus, ECPF sup-
ports the notion of heap-locality [10,18] while permitting the usage of a global heap and
destructive updates. Moreover, the absence of cutpoints drastically simplifies the mean-
ing of procedure calls. ECPF tracks the set of piercing references and checks that their
values are never used, thus dynamically verifying that the program execution is indeed
effectively cutpoint-free. As a result, ECPF is applicable to arbitrary programs, and
does not require an a priori classification of a program as effectively cutpoint-free. We
show that for effectively cutpoint-free programs, ECPF is observationally equivalent
to the standard global heap semantics.

ECPF gives rise to a functional [6,27] interprocedural shape analysis for effectively
cutpoint-free programs. The analysis tabulates abstractions of memory states before
and after procedure calls. Mimicking the semantics, memory states are represented in
a procedure-local way ignoring parts of the heap not relevant to the procedure with no
special abstraction for cutpoints. This reduces the complexity of the analysis because
the analysis of procedures does not represent information about references and the heap
from calling contexts. Indeed, this makes the analysis local in the heap and thus allows
reusing the summarized effect of a procedure at different calling contexts.

Technically, our algorithm is built on top of the 3-valued logical framework for
program analysis of [13, 25]. Thus, it is parametric in the heap abstraction and in the
concrete effects of program statements, which allows experimenting with different in-
stances of interprocedural shape analyzers. For example, we can employ different ab-

3

stractions for singly-, doubly-linked lists, and trees. Also, a combination of theorems
in Appendix A.2 and [25] guarantees that every instance of our interprocedural frame-
work is sound (see Sec. 5).

Main results. The contributions of this paper can be summarized as follows:
1. We define the notion of effectively cutpoint-free programs, in which the context
not reachable from a procedure’s actual parameters can be ignored when reasoning
about the procedure’s possible effect.

2. We define an operational semantics for a simple imperative language with refer-
ences and procedures. The semantics dynamically checks that a program execution
is effectively cutpoint-free. Procedures operate on procedure-local heaps, thus sup-
porting the notion of heap-locality while permitting the usage of a global heap and
destructive updates.

3. We present an interprocedural shape analysis for effectively cutpoint-free pro-
grams. The analysis is local in the heap and thus allows reusing the effect of a
procedure at different calling contexts and at different call-sites.

4. We describe several extensions to our approach that allow its efficiency, precision,
and applicability to be improved by utilizing a limited form of user-supplied anno-
tations.

Outline. The rest of the paper is organized as follows. Sec. 2 presents an informal
overview of our approach. Sec. 3 introduces our programmingmodel. Sec. 4 defines our
new local heap semantics, which checks whether a program is effectively cutpoint-free.
Sec. 5 conservatively abstracts this semantics and provides the semantic foundation of
the local interprocedural shape analysis algorithm described in Sec. 6. Sec. 7 describes
certain efficiency-oriented extensions of our approach and certain relaxations of our
restrictions aimed at increasing the class of effectively cutpoint-free programs. Sec. 8
describes related work, and Sec. 9 concludes.

2 Overview

This section provides an overview of our framework for interprocedural shape analysis
using procedure-local heaps. The presentation is at an intuitive level; a more detailed
treatment of this material is presented in the later sections of the paper.

2.1 Motivating Example
Fig. 2 shows a simple Java program that splices three non-shared, disjoint, acyclic
singly-linked lists using a recursive splice procedure. This program serves as a run-
ning example in this paper.

2.2 Procedure-Local Heaps
In our semantics, procedures operate on local heaps. The local heap contains only the
part of the program’s heap accessible to the procedure. Thus, procedures are invoked on
local heaps containing only objects reachable from actual parameters. We refer to these
objects as the relevant objects for the invocation.

4

public class List{
List n = null;
int data;

public List(int d){
this.data = d;

}

static public List create3(int k) {
List t1 = new List(k);
List t2 = new List(k+1);
List t3 = new List(k+2);
t1.n = t2; t2.n = t3;
return t1;

}

static public int getData(List w) {
assert(w != null);
int d = w.data;
return d;

}

public static List splice(List p, List q) {
List w = q;
if (p != null) {

List pn = p.n;
p.n = null;
p.n = splice(q, pn);
w = p;

}
return w;

}

public static void main(String[] argv) {
List x = create3(1);
List y = create3(4);
List z = create3(7);
List t = splice(x, y);
List s = splice(t, z);
int i = 0;
"0 : // if (y == null) i++;
"1 : // if (y == x) i++;
"2 : // int i = getData(y);
print(i);

}
}

Fig. 2. An effectively-cutpoint-free program written in Java

Example 2. Fig. 3 shows the concrete memory states that occur at the call t=splice(x,y).
Sc
3 shows the state at the point of the call, and Se

3 shows the state on entry to splice. Here,
splice is invoked on local heaps containing the (relevant) objects reachable from either x or y.

The fact that the local heap of the invocation t=splice(x,y) contains only the
lists referenced by x and y guarantees that destructive updates performed by splice
can only affect access paths that pass through an object referenced by either x or y.

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

3

6

9

2

5

8

1

4

7

x

y

z n n

n n

n n 3

6

2

5

1

4

p

q n n

n n 3

6

2

5

1

4

p,w

q n n
n n n

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

(Sc
3) (Se

3) (Sx
3) (Sr

3)

Fig. 3. Concrete states for the invocation t = splice(x, y) in the running example.

2.3 Cutpoints and Cutpoint-Freedom

Obviously, this is not always the case. In particular, consider the second call in
the example program, s=splice(t,z). Fig. 4(a) shows the concrete states when

5

s=splice(t,z) is invoked. S ccp
4 shows the state on invocation, and S

rcp
4 the state

when the call returns. As shown in the figure, the destructive updates of the splice
procedure change not only paths from t and z, but also change the access paths from y.

To emphasize the effect of this invocation, consider a variant of the example pro-
gram in which the invocation s=splice(t,z) has been replaced with an invocation
s=splice(y,z), as shown in Fig. 4(b). In this variant, the invocation can only affect
access paths that pass through an object referenced by either y or z.

We capture the difference between these invocations by introducing the notion of
a cutpoint [20]. A cutpoint for an invocation is an object that is: (i) reachable from an
actual parameter, (ii) not pointed-to by an actual parameter, and (iii) reachable without
going through an object that is pointed-to by an actual parameter (that is, it is either
pointed-to by a variable or by an object not reachable from the parameters). In other
words, a cutpoint is a relevant object that separates the part of the heap that is reachable
for the invocation from the rest of the heap, but not pointed-to by a parameter.

For example, the object pointed-to by y at the call s=splice(t,z) (Fig. 4(a)) is
a cutpoint, thus this invocation is not cutpoint-free [23]. In contrast, in the invocation
s=splice(y,z) (Fig. 4(b)) no object is a cutpoint, and thus this invocation is cutpoint-
free [23].

call splice(t,z) return s=splice(t,z) call splice(y,z) return s=splice(y,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4y n
n

987z nn

x,s,
n

n

n

n

t 3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

x,t

s,y
n

n
n n n

987z
n nn

(Sccp
4) (Srcp

4) (Sc
4) (Sr

4)
(a) (b)

Fig. 4. Concrete states for: (a) the invocation s=splice(t,z) in the program of Fig. 2;
(b) a variant of this program with an invocation s=splice(y,z).

2.4 Effective Cutpoint-Freedom

The importance of cutpoints is that they allow the analysis to handle more precisely
the notion of procedure local variables: No invocation of splice can modify the local
variables of main. Thus, when control returns to main, it is guaranteed that the local
variable y points to the same object that it pointed to before the invocation, and the
main procedure can use the y reference to access directly that object. In general, it is
very challenging to design a shape analysis that can track relations between arbitrary
objects across the execution of procedure calls. However, if the caller does not use its
direct references to the cutpoints after the procedure returns, the analysis does not need
to track this relation.

6

For example, note that after main regains control, it does not use the value of the
y variable. Thus, although the invocation s=splice(t,z) has a cutpoint, and is thus
not cutpoint-free, in the context of the whole execution this invocation is effectively
cutpoint free.

The semantics utilizes the above observation and instead of giving special treatment
to the cutpoint objects, it assigns a special inaccessible value to all piercing references.
The inaccessible value is used to track references which should not be used. It is a
simple mechanism which the semantics uses to check (in runtime) whether a piercing
pointer is used , e.g., in a dereference operation or during the evaluation of a condition,
and if such a usage occurs to abort the execution and report that the program is not
effectively cutpoint-free. (See Sec. 4).

Example 3. Fig. 5 shows the concrete memory states that occur at the call s=splice(t,z).
Sc
5 shows the state at the point of the call, in which the object pointed to by y is a cutpoint. In

Sr
5 , the return state of that call, y no longer points to an object, instead it has the inaccessible
value, depicted by a black bullet. The semantics intentionally does not utilize the information it
has regarding the identity of objects. It acts as if it “forgets” that the object referenced by y at
the call state is the third node in the returned list, mimicking in the concrete semantics the loss
of information that occurs in the analysis. Note that the cutpoint object is not treated differently
during the execution of splice, e.g., Se

5 and Sx
5 show the states on entry to splice of the call

and at its exit, respectively.
Also note that if any of the statements in lines !0 − !2 was to be uncommented, variable y

would have been live at the time of the call s=splice(t,z), and thus the execution would not
have been effectively cutpoint-free.

call s=splice(t,z) enter splice(p,q) exit splice(p,q) return s=splice(t,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

p
n n

n n n

987q n n

3

6

2

5

1

4 n
n

987q nn

p,w

n

n

nn
3

6

2

5

1

4y n
n

987z nn

x,s,
n

n

n

n

t

(Sc
5) (Se

5) (Sx
5) (Sr

5)

Fig. 5. Concrete states for the invocation s = splice(t, z) in the running example.

2.5 Interprocedural Shape Analysis

The algorithm computes procedure summaries by tabulating pairs of abstract in-
put memory-states and abstract output memory-states. The tabulation is restricted to
abstract memory-states that occur in the analyzed program. The tabulated abstract
memory-states represent procedure-local heaps, but do not keep track of cutpoints.
However, they do record the inaccessible values. Therefore, these abstract states are

7

independent of the context in which a procedure is invoked. As a result, the summary
computed for a procedure could be used at different calling contexts and at different
call-sites while sustaining enough information to verify effective cutpoint freedom.

3 Programming Model

For expository reasons we limit our attention to a small imperative programming lan-
guage. It has references to objects. Objects have fields, which can be either references
to other objects or integers. The analyses developed here can be applied to Java-like
languages and other imperative pointer languages alike (unless pointer arithmetic is
used).

We abstract from specific control-flow statements and simply assume the presence
of one control-flow graph per procedure. Control-flow graph edges are annotated with
any one of the following statements below, where x.f denotes the f field of the object
referenced by x. The statement x = alloc() returns a reference to a newly created
object. Conditionals are implemented using assume statements.

stms ::= x = null | x = y | x = y.f |
x.f = y | x = alloc() | assume(x !" y) |
y = p(x1, . . . , xk) | return

In our running example we take the liberty to use integer variables and fields as well.
In the rest of the paper, we assume that we are working with a fixed arbitrary pro-

gramP . For a procedure p, Vp denotes the set of its local variables andFp ⊆ Vp denotes
the set of its formal parameters. A procedure returns a value by assigning it to a des-
ignated variable ret. We assume that parameters are passed by value and that formal
parameters cannot be assigned to. The set of all local variables of P is written V . We
write F to denote the set of all field names in P .

We assume a standard store-based operational semantics for our language, very
much like GSB defined previously in [19, 20]. GSB treats live cutpoints properly.

4 Concrete Semantics

In this section, we define ECPF (effectively cutpoint-free), a non-standard semantics
that checks whether a program execution is effectively cutpoint-free. ECPF defines the
execution traces that are the foundation of our analysis.

ECPF is a store-based semantics (see, e.g., [18]). A traditional aspect of a store-
based semantics is that a memory state represents a heap comprised of all the allocated
objects. ECPF , on the other hand, is a procedure-local heap semantics [20]: A memory
state that occurs during the execution of a procedure does not represent objects that, at
the time of the invocation, are not reachable from the actual parameters.

ECPF is a small-step operational semantics [16]. Instead of encoding a stack of
activation records inside the memory state, as is traditionally done, ECPF maintains a
stack of program states [12, 21]: Every program state consists of a program point and
a memory state. The program state of the current procedure is stored at the top of the

8

stack, and it is the only one that can be manipulated by intraprocedural statements. We
refer to this memory state as the current memory state. When a procedure is invoked,
the entry memory state of the callee is computed by a Call operation according to the
caller’s current memory state, and pushed onto the stack. When a procedure returns, the
stack is popped, and the caller’s return memory state is updated using a Ret operation
according to its memory state before the invocation (the call memory state) and the
callee’s (popped) exit memory state. TheCall andRet operations of ECPF are defined
in Fig. 8.

The use of a stack of program states allows us to represent in every memory state
the (values of) local variables and the local heap of just one procedure. The lifting of an
intraprocedural semantics to an interprocedural semantics, that uses a stack of program
states, is formally defined in [19].

An execution trace of a program P always begins with P ’s main executing on an
initial memory state in which all its reference variables have the value null and the heap
is empty. We say that a memory state is reachable in a program P if it occurs as the
current memory state in an execution trace of P .

ECPF is a procedure-local heap semantics [20]: when a procedure is invoked, it
starts executing on an input heap containing only the set of relevant objects for the
invocation. An object is relevant for an invocation if it is a parameter object, i.e., either
referenced by an actual parameter or reachable from one.

A procedure-local heap semantics and its abstractions benefit from not having to
represent irrelevant objects. However, in general, the semantics needs to take special
care of cutpoints. In this paper, we avoid the need to take special care of cutpoint ob-
jects by assuming and verifying that a program is effectively cutpoint free: We refer
to a reference that at invocation time points to a cutpoint and does not come from an
object in the callee’s local heap as a piercing reference for that invocation. An execu-
tion is effectively cutpoint-free if in every of its invocations during an execution all the
piercing references for that invocation are dead at the time of the invocation, i.e., their
r-values are not used before being set. A program is effectively cutpoint-free if all of its
executions are.

For effectively cutpoint-free programs, there is no need to give special care to cut-
point objects. However, to verify that a program is effectively cutpoint-free, special care
needs to be taken regarding the piercing references. In this section, we describe the way
ECPF validates at runtime that an execution is effectively cutpoint-free.

4.1 Memory States

Fig. 6 defines the concrete semantic domains and the meta-variables ranging over them.
We assume Loc to be an unbounded set of locations. A value v ∈ Val is either a
location, null, or •, the inaccessible value used to represent references to locations that
should not be accessed.

A memory state in the ECPF semantics is, essentially, a 2-level store. Formally,
a memory state is a 3-tuple σ = 〈ρ, L, h〉: ρ ∈ E is an environment assigning values
for the variables of the current procedure. L ⊂ Loc is the set of allocated locations. (A
dynamically allocated object is identified by its location. We interchangeably use the
terms object and location.) h ∈ H assigns values to fields of allocated objects.

9

l ∈ Loc
v ∈ Val = Loc ∪ {null} ∪ {•}
ρ ∈ E = V ⇀ Val
h ∈ H = Loc ⇀ F ⇀ Val
σ ∈ Σ = E×2Loc×H

Fig. 6. Semantic domains.

In ECPF , reachability is defined with respect to relevant objects: Informally, an
object l2 is reachable from an object l1 in a memory state σ if there is a directed path
in the heap of σ from l1 to l2. An object l is reachable in σ if it is reachable from a
location that is pointed-to by some variable. Note that •-valued references do not point
to any object.

4.2 Operational Semantics of Intraprocedural Statements

The meaning of atomic statements is described by a transition relation i!⊆ (Σ ×
stms) × Σ ' {σ•}, where σ• is a special error state indicating a forbidden usage of the
inaccessible value.

Fig. 7 defines the axioms for atomic intraprocedural statements. These are handled
as in a standard 2-level store semantics like GSB.7 The main difference between the
ECPF semantics and GSB with respect to the meaning of intraprocedural statements
is captured by the side-conditions of the form ρ(x) = • or ρ(y) = •, which prevent
usage of the inaccessible locations.

〈x = null,σ〉 i! 〈ρ[x '→null], L, h〉

〈x = y,σ〉 i! 〈ρ[x '→ρ(y)],L, h〉

〈x = y.f,σ〉 i! 〈ρ[x '→h(ρ(y), f)], L, h〉 ρ(y) ∈ Loc

〈y.f = x,σ〉 i! 〈ρ, L, h[(ρ(y), f) '→ρ(x)]〉 ρ(y) ∈ Loc

〈x = alloc(),σ〉 i! 〈ρ[x '→ l],L∪{l}, h[l '→I]〉 l∈Loc \ L

〈assume(x &' y),σ〉 i! σ ρ(x) &' ρ(y)

〈x = y,σ〉 i! σ• ρ(y) = •

〈x = y.f,σ〉 i! σ• ρ(y) = • or h(ρ(y)) = •

〈y.f = x,σ〉 i! σ• ρ(y) = • or ρ(x) = •

〈assume(x &' y),σ〉 i! σ• ρ(x) = • or ρ(y) = •

Fig. 7. Axioms for intraprocedural statements, where in each line σ is understood as a shorthand
for 〈ρ, L, h〉 . I denotes the function λf ∈ F .null. &' stands for either = or)=. When convenient,
we sometimes treat h as an uncurried function, i.e., as a function from Loc × F to Val .

10

4.3 Operational Semantics of Interprocedural Statements

Fig. 8 defines the meaning of the Call and Ret operations pertaining to an arbitrary
procedure call y = p(x1, . . . , xk) assuming p’s formal parameters are z1, . . . , zk, the
memory state at the call site is σc = 〈ρc, Lc, hc〉, and the memory state at the exit of p
is σx = 〈ρx, Lx, hx〉. The Call operation is used to compute the state update along a
call edge in the control-flow graph; theRet operation computes the state update along a
return edge. As defined in Sec. 3, variable ret is used to communicate the return value.
We use the function Rh(L) to compute the locations that are reachable in heap h from
the set of locations L. This function is formally defined in Appendix A.1.

Cally=p(x1,...,xk)(σc) = σe

σe = 〈ρe, Lc, hc|Lrel 〉
ρe = [zi '→ ρc(xi) | 1≤ i≤k]

Rety=p(x1,...,xk)(σc,σx) = σr

σr = 〈ρr, Lx, hr〉
ρr = (block ◦ ρc)[y '→ρx(ret)]

hr = (block ◦ hc|Lc\Lrel
) ∪ hx

where:
Lparameters = {ρc(xi) ∈ Loc | 1≤ i≤k}
Lrel = Rhc (Lparameters)

Lcutpoints = (Lrel \ Lparameters) ∩
({ρc(z) | z ∈ Vq} ∪ {hc(l)f ∈ Loc | l ∈ Lc \ Lrel , f ∈ F)

block = λv ∈ Val .

{
• v ∈ Lcutpoints

v otherwise

Cally=p(x1,...,xk)(σc) = σ• ρc(x1) = • or · · · or ρc(xk) = •
Rety=p(x1,...,xk)(σc,σx) = σ• ρx(ret) = •

Fig. 8.Call andRet operations for an arbitrary procedure call y = p(x1, . . . , xk) by an arbitrary
procedure q, where it is understood that σc = 〈ρc, Lc, hc〉, σx = 〈ρx, Lx, hx〉, and Vq denotes
the set of local variables of procedure q.

Procedure calls The Call operation computes the callee’s entry memory state (σe)
from the state at the call-site (σc). The entry memory state is computed by binding
the values of the formal parameters in the callee’s environment to the values of the
corresponding actual parameters (ρe) and restricting the caller’s heap to the relevant
objects for the invocation (Lrel).

Example 4. Fig. 3 shows the entry state Se
3 that results from applying the Call operation pertain-

ing to the invocation t=splice(x, y) to the call memory stateSc
3. Fig. 5 shows the entry state

Se
5 that results from applying the Call operation pertaining to the invocation s=splice(t,

z) to the call memory state Sc
5.

11

Procedure returns TheRet operationmaps the memory state at the exit of a procedure
(σx) together with the state at call-site (σc) to the return state σr from which the caller
resumes its computation.Ret updates the caller’s memory state by carving out the input
heap passed to the callee from the caller’s heap (hc|Lc\Lrel

) and replacing it with the
callee’s (possibly) mutated heap (hx).

In ECPF , an object never changes its location, and locations are never reallocated.
Thus, any pointer to a relevant object in the caller’s memory state (either by a field of
an irrelevant object or a variable) points after the replacement to an up-to-date version
of the object.

Blocking piercing references. ECPF detects forbidden accesses that violate the
effective-cutpoint-freedomcondition, and aborts the program in an error state if such an
access is detected. Technically, when a procedure invocation returns, ECPF assigns the
special value • to all piercing references, an operation which we refer to as blocking,
and uses this special value to detect forbidden accesses. (Recall that in an effectively
cutpoint-free execution, every live reference that points to an object which separate the
callee’s heap from the caller’s heap should point to a parameter object, i.e., to one of
the objects in Lparameters.)

Example 5. Fig. 3 shows the return state Sr
3 , that results from applying the Ret operation per-

taining to the invocation t=splice(x, y) to the call memory state Sc
3 and the exit memory

state Sx
3 . Fig. 5 shows the return state Sr

5 , that results from applying the Ret operation pertaining
to the invocation s=splice(t, z) to the call memory state Sc

5 and the exit memory state Sx
5 .

The second node in the list pointed to by t at the call state Sc
5 is a cutpoint. Thus, variable y gets

blocked when computing Sr
5 .

4.4 Observational Soundness

We say that two values are comparable in ECPF if neither one is •. We say that a
ECPF memory state σ is observationally sound with respect to a standard semantics
σG if for every pair of access paths that have comparable values in σ, they have equal
values in σ iff they have equal values in σG. ECPF simulates the standard 2-level store
semantics: Executing the same sequence of statements in the ECPF semantics and in
the standard semantics either results in a ECPF memory states that is observationally
sound with respect to the resulting standard memory state, or the ECPF execution gets
to an error state due to a constraint breach (detected by ECPF). A program is effectively
cutpoint-free if it does not have an execution trace that gets to an error state. (Note that
the initial state of an execution in ECPF is observationally sound with respect to its
standard counterpart).

Our goal is to detect structural invariants that are true according to the standard
semantics. ECPF acts like the standard semantics as long as the program’s execution
satisfies certain constraints. ECPF enforces these restrictions by blocking references
that a program should not access. Similarly, our analysis reports an invariant concerning
equality of access paths only when these access paths have comparable values.

An invariant concerning equality of access paths in ECPF for an effectively
cutpoint-free program is also an invariant in the standard semantics. This makes abstract

12

interpretations of ECPF suitable for verifying data-structure invariants, for detecting
memory access violations, and for performing compile-time garbage collection.

5 Abstract Interpretation

In this section, we present ECPF#, an abstract interpretation [5] of the ECPF se-
mantics. ECPF# is the basis of our static-analysis algorithm which uses the 3-valued
logic-based framework of [25]. The soundness of the abstract semantics with respect to
GSB7 is guaranteed by the combination of the theorems in Appendix A.2 and [25]:
– In Appendix A.2, we show that for effectively cutpoint-free programs, ECPF is
observationally equivalent to GSB.

– In [25], it is shown that every program-analyzer that is an instance of the 3-valued
logic-based framework is sound with respect to the concrete semantics it is based
on.

5.1 Abstract States

We conservatively represent unbounded sets of unbounded memory states using a
bounded set of bounded 3-valued logical structures, which we refer to as abstract states.
Note that there are actually three different notions of concrete states. The most concrete
states are those in GSB, containing full information including integer variables and
fields. Integers are already abstracted away when we talk about ECPF , which, on top
of that, also yields errors when cutpoint references are illegally used. ECPF states
are equivalently encoded into two-valued logical structures by viewing objects as in-
dividuals in a logical structure and references as binary predicates (see below). Note,
however, that location identifiers play no role in the logical structure encoding. Indeed,
the semantics does not distinguish between isomorphic structures.

We use the term concrete state whenever we talk about a state that is not a 3-valued
logical structure. We believe that, despite the resulting imprecision, our intentions are
clear. In drawings, we use the same graphical notations to depict concrete states in all
of the aforementioned semantics. (Integer values, when drawn, should be ignored when
considering a figure to be a graphical depiction of a state in ECPF or of a logical
structure.)

3-valued logical structures. A 3-valued logical structure is a logical structure with an
extra truth-value 1

2 , which denotes values that may be 1 or may be 0. The information
partial order on the set {0, 1

2 , 1} is defined as 0 (1
2) 1, and 0 * 1 = 1

2 . Formally, a
3-valued logical structure is S #=〈US!

, ιS
!〉 where:

– US! is the universe of the structure.
– ιS

! is an interpretation function mapping predicates to their truth-value in the struc-
ture, i.e., for every predicate p ∈ P of arity k, ιS(p) : US!k → {0, 12 , 1}.

7 GSB is a standard two-level store semantics for heap-manipulating programs. It is formally
defined in [20].

13

A 2-valued logical structure is a 3-valued logical structure where the truth-values of
predicates are either 0 or 1. The set of 3-valued logical structures is denoted by 3Struct .
The set of 2-valued logical structures is denoted by 2Struct .

Abstraction function. We abstract sets of ECPF memory states by a point-wise appli-
cation of an extraction function β : Σ ⇀ 3Struct mapping an ECPF memory state
to its best representation by an abstract state. The extraction function β is defined as
a composition of two functions: (i) βshape : Σ ⇀ 2Struct , which maps an ECPF
memory state to a 2-valued logical structure and (ii) canonical abstraction [25], which
maps 2-valued logical structures to a bounded number of 3-valued logical structures.

Representing Memory States using 2-Valued Logical Structures We represent
ECPF memory states using 2-valued logical structures. Every individual in the struc-
ture corresponds to a heap-allocated object. Predicates of the structure correspond to
properties of heap-allocated objects.

Core predicates. Tab. 1 shows the core predicates used in this paper. A binary pred-
icate f(v1, v2) holds when the f ∈ F field of v1 points to v2. The designated binary
predicate eq(v1, v2) is the equality predicate, which records equality between v1 and v2.
A unary predicate x(v) holds for an object that is referenced by the reference variable
x ∈ V of the current procedure.8 The predicate ia holds only for a unique individual,
which represents the inaccessible locations. The role of the predicates inUc and inUx
is explained in Sec. 5.2.

Instrumentation predicates. Instrumentation predicates record derived properties of in-
dividuals, and are defined using a logical formula over core predicates. Instrumentation
predicates are stored in the logical structures like core predicates. They are used to
refine the abstract semantics, as we shall shortly see. Tab. 2 lists the instrumentation
predicates used in this paper. We use F (v1, v2) as a shorthand to denote that v1 has a
field f ∈ F which points to v2 and F ∗(v1, v2) as the reflexive transitive closure of F .
(For a formal definition, see Appendix B).

2-valued logical structures are depicted as directed graphs. We draw individuals as
boxes. We depict the value of a reference variable x by drawing an edge from x to the
individual representing the object that x references. For all other unary predicates p,
we draw p inside a node u when ιS(p)(u) = 1; conversely, when ιS(p)(u) = 0 we do
not draw p in u. A directed edge between nodes u1 and u2 that is labeled with a binary
predicate symbol p indicates that ιS(p)(u1, u2) = 1. For clarity, we do not draw the
binary equality predicate eq . The inaccessible value is depicted as a line ending with •.
Example 6. The structure Sc

3 of Fig. 3 shows a 2-valued logical structure that represents the
memory state of the program at the call t=splice(x, y). The depicted numerical values are
only shown for presentation reasons, and have no meaning in the logical representation.

The structure Sr
5 of Fig. 5 shows a 2-valued logical structure that represents the memory state

of the program at the return of s=splice(t, y). Note that the value of y is the inaccessible
value.
8 For simplicity, we use the same set of predicates for all procedures. Thus, our semantics en-
sures that ιS(x) = λu.0 for every local variable x that does not belong to the current call.

14

Table 1. Predicates used to represent (concrete) memory states.

Predicate Intended Meaning
f(v1, v2) the f-field of object v1 points to object v2
eq(v1, v2) v1 and v2 are the same object
x(v) reference variable x points to the object v

ia(v) v is an inaccessible location

inUc(v) v originates from the caller’s memory state at the call site
inUx(v) v originated from the callee’s memory state at the exit site

Table 2. The instrumentation predicates used in this paper.

Predicate Intended Meaning Defining Formula
robj (v1, v2) v2 is reachable from v1 by some field path ¬ia(v1) ∧ ¬ia(v2) ∧ F ∗(v1, v2)

ils(v) v is locally shared. i.e., v is pointed-to by ∃v1, v2 : ¬ia(v)
a field of more than one object in the local heap ¬eq(v1, v2) ∧ F (v1, v) ∧ F (v2, v)

c(v) v resides on a directed cycle of fields ∃v1 : F (v, v1) ∧ F ∗(v1, v)

rx(v) v is reachable from variable x ¬ia(v) ∧ ∃vx : x(vx) ∧ F ∗(vx, v)

Bounded Abstraction We now formally define how memory states are represented
using abstract memory states. The idea is that each object from the (concrete) state is
mapped to an individual in the abstract state. An abstract memory state may include
summary nodes, i.e., individuals that correspond to one or more concrete nodes in one
of the concrete states represented by the abstract state. For a summary node u ∈ U # in
abstract state S# = 〈U #, ι#〉 it holds that ι(eq)(u, u) = 1

2 .

Canonical abstraction. A 3-valued logical structure S # is a canonical abstraction
of a 2-valued logical structure S if there exists a surjective function υ : U S → US!

satisfying the following conditions: (i) For all u1, u2 ∈ US , υ(u1) = υ(u2) iff for all
unary predicates p ∈ P , ιS(p)(u1) = ιS(p)(u2), and (ii) for all predicates p ∈ P of
arity k and for all k-tuples u#

1, u
#
2, . . . , u

#
k ∈ US! ,

ιS
!

(p)(u#
1, u

#
2, . . . , u

#
k) =

⊔

u1,...,uk∈Us

υ(ui)=u!
i

ιS(p)(u1, u2, . . . , uk).

3-valued logical structures are also drawn as directed graphs. Definite values
(0 and 1) are drawn as for 2-valued structures. Binary indefinite predicate values (1

2)
are drawn as dotted directed edges. Summary nodes are depicted by a double frame.

Example 7. Fig. 9 shows the abstract states (as 3-valued logical structures) representing the con-
crete states of Fig. 3. Note that only the local variables p and q are represented inside the call
to splice(p,q). Representing only the local variables inside a call ensures that the number

15

of unary predicates to be considered when analyzing the procedure is proportional to the num-
ber of its local variables. This reduces the overall complexity of our algorithm to be worst-case
doubly-exponential in the maximal number of local variables rather than doubly-exponential in
their total number (as in e.g., [22]).

splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

x

y

z

rx

ry

rz

n

n

n rx

ry

rz

n

n

n

p

q

rp

rq
n

n

rq

n

n

rp p,w

q

rp

rp n
n
rw

n

rq
rp rwrq

rw x,t

y

z

rx

ry

rz

n

n

rt

rz

n

n

rx rt ry
rx rt

(Sc#
9) (Se#

9) (Sx#
9) (Sr#

9)

Fig. 9. Abstract states for the invocation t = splice(x, y); in the running example.

The Importance of Reachability Recording derived properties by means of instrumen-
tation predicates may provide additional information that would have been otherwise
lost under abstraction. In particular, because canonical abstraction is directed by unary
predicates, adding unary instrumentation predicates may further refine the abstraction.
This is called the instrumentation principle in [25]. In our framework, the predicates
that record reachability from variables play a central role. They enable us to identify
the individuals representing objects that are reachable from actual parameters. For ex-
ample, in the 3-valued logical structure S c#

9 depicted in Fig. 9, we can detect that the
top two lists represent objects that are reachable from the actual parameters because
either rx or ry holds for these individuals. None of these predicates holds for the indi-
viduals at the (irrelevant) list referenced by z. We believe that these predicates should
be incorporated in any instance of our framework.

5.2 Abstract Operational Semantics

The meaning of statements is described by a transition relation #!⊆ (3Struct ×stms)×
3Struct . Because our framework is based on [25], the encoding of the meaning of state-
ments in ECPF (as transformers of 2-valued structures), also defines the corresponding
abstract semantics (as transformers of 3-valued structures). This abstract semantics is
obtained by reinterpreting logical formulae using a 3-valued logic semantics and serves
as the basis for our static analysis. In particular, reinterpreting the side conditions of in-
traprocedural statements conservatively verifies that the program is effectively cutpoint-
free.

For brevity, we omit the aforementioned encoding from the body of the paper and
provide it in Appendix B. We wish to note that all the transformers, including the inter-

16

procedural operations Call and Ret are specified using predicate-update formulae 9 in
first-order logic with transitive closure.

6 Interprocedural Static Analysis

Abstract interpretation of the ECPF semantics provides the semantic foundations for
an interprocedural static-analysis algorithm that computes procedure summaries by tab-
ulating abstract input memory-states to abstract output memory-states. The tabulation
is restricted to abstract memory-states that occur in the analyzed program. The inter-
procedural tabulation algorithm is the variant of the IFDS-framework [17] presented
in [23], adapted to assume and verify effective cutpoint freedom.

enter splice(p,q) exit splice(p,q)

p qrp rq
nn rq

n n
rp p,w

q
rp rq

nnrw

n
rp rw

rq
rp rw

p qrp rq
n rq

n

p,w
q

rp rq
nnrw

n
rp rw

rq
rp rw

q rq
n rq

n

q,w rq
nrw

n
rq rw

Fig. 10. Partial tabulation of abstract states for the splice procedure.

Example 8. Fig. 10 shows a partial tabulation of abstract local heaps for the splice procedure
of the running example. The figure shows 3 possible input states of the list pointed-to by p.
Identical possible input states of the list pointed-to by q, and their combinations are not shown.
As mentioned in Sec. 1, the splice procedure is only analyzed 9 times before its tabulation is
complete, producing a summary that is then reused whenever the effect of splice(p, q) is
needed.

Note that this tabulation represents the input/output relation for any call to splice, includ-
ing ones with cutpoints, e.g., the call s=splice(t, y) and all recursive calls to splice in
our running example.
9 Predicate-update formulae express the semantics of statements: Suppose that σ is a memory
state that arises before statement st , that σ′ is the store that arises after st is evaluated on σ,
and that S is the 2-valued logical structure that encodes σ. A collection of predicate-update
formulae–one for each predicate p in the vocabulary of S–allows one to obtain the structure S′

that encodes σ′. When evaluated in structure S, the predicate-update formula for a predicate
p indicates what the value of p should be in S′. See [25, Observation 2.6]. Evaluation of the
predicate-update formulae in 3-valued logic captures the transfer function for st of the abstract
semantics. See [25, Observation 2.9].

17

7 Extensions and Relaxations

In this section, we describe several extensions that use a limited form of annotations on
procedures to improve the analysis algorithmic’s efficiency, precision, and applicability.

7.1 Blindspots

ECPF records in every state the value of every formal parameter at the entry to the
procedure. This is done to allow the caller to observe the (possibly mutated) part of the
heap that was relevant to the callee after the callee returns. However, in certain cases,
such observations are not needed or even desirable.

For example, in the program of Fig. 2, the variable y is not used after the call
t=splice(x, y). Thus, the effort invested to restore its value when the call returns
is, for all practical purposes, wasted. Furthermore, direct access to the list returned
by splice through one of the actual parameters might be considered a form of bad
programming. (A clearer example might be a merge procedure that merges two sorted
lists. When an invocation of merge returns, one actual parameter references the head of
the list and the other one references one of the list elements. Using the actual parameters
at this point makes the code less readable and more sensitive to the implementation
details of merge. Thus, it is reasonable to expect that the caller uses the returned value,
but not the actual parameters.)

Blindspots (for a procedure invocation) are parameter objects for which all the vari-
ables and fields pointing to them at the time of the call, excluding fields of relevant
objects for the invocation, are dead when the procedure returns. 10 ECPF , and its ab-
stract interpretations, can utilize an annotation (e.g., in the form of a subset of the ac-
tual/formal parameters) that states which of the parameter objects are blindspots. Such
information can improve the efficiency of the analysis algorithim by allowing it to avoid
tracking unnecessary information. It also allows verifying good programming style.

For example, Fig. 11 shows the call, entry, exit, and return states that occur in the
ECPF during the invocation t=splice(x,y) when both parameter objects are an-
notated as a blindspots. Based on this annotation, the exit state does not record the value
of the formal parameters, allowing for more compact summaries. Note that at the return
state, x and y are blocked. As a result, the returned list can be accessed only through t.

7.2 Tolerance for a Bounded Number of Cutpoints

ECPF , and its abstract interpretations, can allow for procedure invocations to have
up to a bounded number of live cutpoints, i.e., cutpoints that are accessed directly by
a piercing reference after the procedure returns. The main idea is to treat cutpoints
as additional parameters: Every procedure is modified to have k additional (hidden)
formal parameters (where k is the bound on the number of allowed cutpoints). When
a procedure is invoked, the (modified) semantics binds the additional parameters with
references to the cutpoints.
10 Note that a blindspot for a procedure invocation is not necessarily a dead object.

18

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

3

6

9

2

5

8

1

4

7

x

y

z n n

n n

n n 3

6

2

5

1

4

p

q n n

n n 3

6

2

5

1

4

w
n n

n n n
3

6

2

5

1

4

t

y
n n

n n n

987z n n

x

(Sc
11) (Se

11) (Sx
11) (Sr

11)

Fig. 11. Concrete states for the invocation t = splice(x, y) when both parameter objects
are annotated as a blindspots.

We can allow for a bounded number of cutpoints by having an annotation regarding
the maximal number of allowed cutpoints11 or by having the user provide a specification
(using first-order formulae with transitive closure) of a distinguished set of explicitly-
allowed cutpoints. For example, a cutpoint at the last element of a list can be treated
differently then other cutpoints.

Fig. 12 depicts the call, entry, exit, and return states that occur in the ECPF during
the invocation s = splice(t, z) when procedures are allowed to have at least
one cutpoint, or, alternatively, when the second element of the first list is specified as an
explicitly-allowed cutpoint. The hidden parameterX 1 gets bound to the cutpoint at the
entry state and used to restore the value of y at the return state.

call splice(t,z) enter splice(p,q) exit splice(p,q) return s=splice(t,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

p
n n

n n n

987q n n

X1

3

6

2

5

1

4 n
n

987q nn

p,w
n

n

n

n
X1

3

6

2

5

1

4y n
n

987z nn

x,s,
n

n

n

n

t

(Sc
12) (Se

12) (Sx
12) (Sr

12)

Fig. 12. Concrete states for the invocation s = splice(t, z) when one cutpoint is allowed
or alternatively, when access path t.n is specified as an explicitly-allowed cutpoint.

7.3 Restricted Access to the Inaccessible Value

For a program to be effectively cutpoint-free, every piercing reference must not be live
at the time of the actual invocation. The reason behind this requirement is to allow
the semantics/analysis to avoid maintaining certain aliasing relations, yet still main-
tain a certain notion of observational soundness with respect to the standard semantics.
11 This is the essence of the treatment of cutpoints by Gotsman et al. [8].

19

However, certain usages of piercing references are innocuous, i.e., our notion of obser-
vational soundness is still maintained as long as programs use piercing references in
certain restricted ways. For example, statements such as x = y, as well as conditions
involving comparisons between •-valued references and null, are innocuous. In the
former case, the assignment neither affects the control flow of the program nor may
lead to a memory fault. In the latter case, it always holds that a •-valued reference is not
null-valued; thus the condition of the assume statement always evaluates to the same
value in both semantics.

Effectively, the above observation allows us to relax the requirements of executions
to be effectively cutpoint-free: Instead of forbidding all future usages of piercing ref-
erences (i.e., requiring that they are not live when the invocation of the callee returns),
we need only to forbid “effective” future usages of this pointers, i.e., we need only to
forbid them from being dereferenced or compared with non-null values both in assume
statements and in assertions.

7.4 Arbitrary Cutpoints in Pure Procedures

An additional relaxation regarding the requirements of a procedure invocation to be
effectively cutpoint-free is possible when a procedure invocation is found to be pure. A
pure invocation does not modify the shared state. Thus, the abstract representation of
the heap at the call site can be reused at the return site. As a result, for reconstructing
the layout of the heap, the number of cutpoints is irrelevant, and piercing references do
not need to be blocked.

The above approach has one rather significant complication: In case the procedure’s
return value is a pointer to a heap-allocated object, figuring out which object in the call
state corresponds to the one returned by the procedure is not simple. (This complication
arises because the abstract semantics does not retain the identity of locations.)

One possible remedy is not to use this relaxation when the return value of the in-
voked procedure is a (non-null) reference. Another possible remedy is to apply a meet
operator between the call state and the exit state (after certain renaming operations,
similar to the ones used in [11]). We note that the framework of [25] provides an al-
gorithmic meet operator [1]. We also note that (some) information regarding cutpoints
can (potentially) make the results of the meet operator more precise.

8 Discussion and Related Work

In this section, we review closely related work.
Rinetzky and Sagiv [22] explicitly represent the runtime stack and abstract it as a

linked-list. In this approach, the entire heap, and the runtime stack are represented at
every program point. As a result, the abstraction may lose information about properties
of the heap for parts of the heap that cannot be affected by the procedure at all.

Jeannet et al. [11] consider procedures as transformers from the (entire) heap before
the call to the (entire) heap after the call. Irrelevant objects are summarized into a single
summary node. Relevant objects are summarized using a two-store vocabulary. One
vocabulary records the current properties of the object. The other vocabulary encodes

20

the properties that the object had when the procedurewas invoked. The latter vocabulary
allows to match objects at the call-site and at the exit-site. Note that this scheme never
summarizes together objects that were not summarized together when the procedure
was invoked. For cutpoint-free programs, this may lead to needlessly large summaries.
Consider for example a procedure that operates on several lists and nondeterministically
replaces elements between the list tails. The method of [11] will not summarize list
elements that originated from different input lists. Thus, it will generate exponentially
more mappings in the procedure summary than the ones produced by our method. On
the other hand, the method of [11] can establish properties of called procedures that
our method cannot establish (e.g., that a procedure to reverse a list actually reverses all
elements of the list).

Rinetzky et al. [20] present a procedure-local storeless concrete semantics and de-
scribe an abstract interpretation of their semantics that can be used for interprocedural
shape-analysis for programs manipulating singly linked lists. Their abstract interpreta-
tion algorithm explicitly records cutpoint objects in the local heap, and may become
imprecise when there is more than one cutpoint. Our algorithm can be seen as a special-
ization of [20] that provides a partial answer to this problem. In addition, because we
restricted our attention to effectively cutpoint-free programs, our semantics and analysis
are much simpler than the ones in [20].

In [23], the problem of abstracting cutpoint-induced sharing patterns is addressed
by forbidding cutpoints: We developed an interprocedural shape analysis for the class of
cutpoint-free programs, in which program invocations never generate cutpoints. In the
present paper, we extend the framework developed in [23] to a larger class of programs:
effectively cutpoint-free programs. One can see [23] as an eager form of enforcing ef-
fective cutpoint-freedom, while the present paper takes a more lazy approach.

Hackett and Rugina [9] develop a staged analysis to obtain a relatively scalable in-
terprocedural shape analysis. Their approach uses a scalable imprecise pointer-analysis
to decompose the heap into a collection of independent locations. The precision of this
approach might be limited because it relies on pointer-expressions that appear in the
program’s text. The analysis tabulates global heaps, potentially leading to a low reuse
of procedure summaries.

For the special case of singly-linked lists, another approach for modular shape anal-
ysis is presented by Chong and Rugina [4] without an implementation. The main idea
there is to record for every object both its current properties and the properties it had at
that time the procedure was invoked.

Gotsman et al. [8] describe a heap-modular interprocedural shape analysis for singly
linked lists that can handle a bounded numbers of cutpoints. The main idea is to treat
a bounded number of cutpoint-labels as, essentially, additional parameters: Every pro-
cedure can be seen as having k additional (hidden) formal parameters (where k is the
bound on the number of allowed cutpoints). When a procedure is invoked, their anal-
ysis (non-deterministically) binds these additional parameters with references to the
cutpoints. If the procedure has more than k cutpoint, they turn every piercing reference
to a dangling pointer, which, essentially, makes the reference inaccessible. Thus, their
analysis does not differentiate between dangling references and piercing references.

21

However, every program that it manages to analyze is a k-cutpoint-tolerant effectively
cutpoint-free program.

Yang et al. [28] present a heap-modular interprocedural shape analysis that, similar
to [8], is based on a domain of separation-logic formulae. Their experimental results in-
dicate that the use of local heaps provides a speedup of 2−3× in the analysis compared
to a global heap analysis. Furthermore, the use of an interprocedural analysis that passes
only the reachable portion of the heap was found to be one of the three key reasons for
the scalability of their analysis. (The other two key reasons being an efficient join op-
erator and the discard of intermediate states.) In this analysis, cutpoints are passed as
additional (hidden) parameters to called procedures, but their number is not bounded.
This is one of the possible reasons that their analysis may not terminate (although in
many interesting cases it does). In later work [2], the problem of cutpoint abstraction
is reduced because the compositional nature of the analysis allows to represent only a
subset of the reachable heap.

Marron et al. [14] present a context-sensitive shape analysis that is employed for au-
tomatic parallelization of sequential heap manipulating programs. The interprocedural
analysis is based on an abstraction of local heaps with cutpoints. The analysis employs
an abstraction of cutpoint-labels that uses two main ideas: (i) avoid summarizing cut-
points that are generated by the local variables of the immediate caller and (ii) abstract
all other cutpoints by recording the set of roots of access paths. The analysis also uses
liveness information to avoid recording as cutpoints objects that are only pointed to by
dead references.

Rubinstein [24] provides a preliminary study regarding the classification of cut-
points that occur in real-life Java programs. The study is conducted by monitoring pro-
gram executions. Algorithms for detecting usages of piercing references 12 are presented
but not implemented. While the experimental results are non-conclusive, they do indi-
cate that in several interesting cases the unbounded number of cutpoints occur when
the program manipulates shared immutable data structures. This can motivate special
treatment for pure (i.e., readonly) methods (see Sec. 7.4).

A local interprocedural may-alias analysis is given in [7]. The key observation there
is that a procedure operates uniformly on all aliasing relationships involving variables
of pending calls. This method applies to programs with cutpoints. However, the lack
of must-alias information may lead to a loss of precision in the analysis of destructive
updates. For more details on the relation between [7] and local heap shape analysis
see [19].

Local reasoning [10, 18] provides a way of proving properties of a procedure inde-
pendently of its calling contexts by using the “frame rule”. In some sense, the approach
used in this paper is in the spirit of local reasoning. The ECPF semantics resembles the
frame rule in the sense that the effect of a procedure call on a large heap can be obtained
from its effect on a subheap. Local reasoning allows for an arbitrary partitioning of the
heap based on user-supplied specifications. In contrast, in our work, the partitioning
of the heap is built into the concrete semantics, and abstract interpretation is used to
establish properties in the absence of user-supplied specifications.

12 The term a live cutpoint is used in [24] to refer to an object which gets dereferenced using a
piercing reference.

22

Another relevant body of work is that concerning encapsulation, also known as
confinement or ownership. (A review about different encapsulation models can be
found in [15]). These works allow modular reasoning about heap-manipulating (object-
oriented) programs. The common aspect of these works, as described in [15], is that
they all place various restrictions on the kind of sharing allowed in the heap, while
pointers from the stack are generally left unrestricted. In our work, the semantics al-
lows for arbitrary heap sharing within the same procedure, but restricts both the heap
sharing and the stack live sharing across procedure calls.

9 Conclusions and Future Work

In this paper, we presented an interprocedural shape analysis for effectively cutpoint-
free programs. The analysis is local in the heap and thus allows reusing the effect of
a procedure at different calling contexts. We presented the first non-trivial solution for
procedure calls with an unbounded number of cutpoints. The solution is limited because
it applies only to pure (read-only) procedures; however, we believe that it opens the
door for future work to address the important, and still open, problem of handling an
unbounded number of live cutpoints under abstraction.

In general, we believe that the distinction between live piercing references and dead
ones can benefit analyses that abstract an unbounded number of cutpoints by allowing
them to focus on only abstracting cutpoints that are pointed to by live piercing refer-
ences. We consider this issue to be future work.

References

1. G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Combining shape analyses by inter-
secting abstractions. In Verification, Model Checking, and Abstract Interpretation (VMCAI),
pages 33–48, 2006.

2. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis by means
of bi-abduction. In Symp. on Princ. of Prog. Lang. (POPL), pages 289–300. ACM, 2009.

3. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In Conf. on
Prog. Lang. Design and Impl. (PLDI), 1990.

4. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data structures. In
International Static Analysis Symposium (SAS), 2003.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixed points. In Symp. on Princ. of Prog.
Lang. (POPL), pages 238–252, New York, NY, 1977. ACM Press.

6. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.
In E.J. Neuhold, editor, Formal Descriptions of Programming Concepts, (IFIP WG 2.2, St.
Andrews, Canada, August 1977), pages 237–277. North-Holland, 1978.

7. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In Conf. on
Prog. Lang. Design and Impl. (PLDI), 1994.

8. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap
abstractions. In International Static Analysis Symposium (SAS), 2006.

9. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In Symp. on
Princ. of Prog. Lang. (POPL), 2005.

23

10. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In
Symp. on Princ. of Prog. Lang. (POPL), 2001.

11. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprocedural
shape analysis. In International Static Analysis Symposium (SAS), 2004.

12. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Int. Conf. on Comp.
Construct. (CC), 1992.

13. T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static analysis. In Interna-
tional Static Analysis Symposium (SAS), 2000. Available at http://www.math.tau.ac.il/∼ tvla.

14. M. Marron, M. Hermenegildo, D. Kapur, and D. Stefanovic. Efficient context-sensitive shape
analysis with graph based heap models. In Int. Conf. on Comp. Construct. (CC), pages 245–
259, 2008.

15. J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a model of encap-
sulation. In The First International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (IWACO), 2003.

16. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

17. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In Symp. on Princ. of Prog. Lang. (POPL), 1995.

18. J. Reynolds. Separation logic: a logic for shared mutable data structures. In Symp. on Logic
in Computer Science (LICS), 2002.

19. N. Rinetzky. Interprocedural and Modular Local Heap Shape Analysis. PhD thesis, Tel Aviv
University, June 2008.

20. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure local
heaps and its abstractions. In Symp. on Princ. of Prog. Lang. (POPL), 2005.

21. N. Rinetzky, A. Poetzsch-Heffter, G. Ramalingam, M. Sagiv, and E. Yahav. Modular shape
analysis for dynamically encapsulated programs. In 16th European Symposium on Program-
ming (ESOP), pages 220–236, 2007.

22. N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs. In Int.
Conf. on Comp. Construct. (CC), 2001.

23. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free pro-
grams. In International Static Analysis Symposium (SAS), 2005.

24. S. Rubinstein. On the utility of cutpoints for monitoring program execution. Master’s thesis,
Tel Aviv University, Tel Aviv, Israel, 2006.

25. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst. (TOPLAS), 24(3):217–298, 2002.

26. R. Shaham, E. Yahav, E.K. Kolodner, and M. Sagiv. Establishing local temporal heap safety
properties with applications to compile-time memory management. In International Static
Analysis Symposium (SAS), 2003.

27. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S.Much-
nick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

28. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn. Scalable
shape analysis for systems code. In Conf. on Computer Aided Verification (CAV), pages
385–398. Springer-Verlag, 2008.

A Formal Details Pertaining to the ECPF Semantics

In this section, we provide the technical details that were glanced over in Sec. 4.

24

A.1 Reachability

In this section, we give formal definitions for the notions of reachability. These def-
initions are based on the corresponding standard notions in 2-level stores. Intuitively,
location l2 is reachable from a location l1 in a memory state σ if there is a directed
path in the heap of σ from l1 to l2. A locations l is reachable in σ if it is reachable
from a location which is referenced by some variable. Note that the inaccessible value,
similarly to the null value, is not a location.

Definition 1 (Heap path). A sequence of locations ζ : {0, . . . , n | n ∈ N} → Loc is
a directed heap path in a heap h ∈ H, if for every 0≤ i < |ζ| − 1 there exists f i ∈ F
such that h(ζ(i), fi) = ζ(i + 1). A directed heap path ζ goes from l1, if ζ(0) = l1, it
goes to l2 if ζ(|ζ| − 1) = l2. A heap path ζ traverses through l if there exists i such that
0≤ i< |ζ| and l = ζ(i).

Definition 2 (Reachability). A location l2 is reachable from a location l1 in a memory
state σ = 〈ρ, L, h〉, if there is a directed heap path in h going from l1 to l2.

Definition 3 (Reachable locations). A locations l is reachable in σ if it is
reachable from a location which is referenced by some variable. We de-
note the set of reachable locations in σ ∈ Σ by R(σ), i.e., R(σ) =
{l ∈ L|x ∈ V and l is reachable in σ from ρ(x) ∈ Loc} .

A.2 Properties of the ECPF Semantics

In this section, we formally define the notions of observational soundness and of sim-
ulation between the ECPF semantics and the standard semantics. To be precise, when
referring to the standard semantics we refer to the standard store-based semantics GSB
defined in [19, 20]. In short, memory states in GSB are represented in the same way as
memory states in ECPF . The main difference between GSB and ECPF is that the op-
erational semantics never blocks references in GSB, and thus • is not a possible value.

Access paths We introduce access paths, which are the only means by which a program
can observe a state. Note that the program cannot observe location names.

Definition 4 (Field Paths). A field path δ ∈ ∆ = F ∗ is a (possibly empty) sequence of
field identifiers. The empty sequence is denoted by ε.

Definition 5 (Access path). An access path α = 〈x, δ〉 ∈ AccPath = V × ∆ is a pair
consisting of a local variable and a field path.

Definition 6 (Access path value in the ECPF semantics). The value of an access path
α = 〈x, δ〉 in state σ = 〈ρ, L, h〉 of the ECPF semantics, denoted by [[α]]ECPF (σ), is
defined to be ĥ(ρ(x), δ), where

ĥ : Val × ∆ ⇀ Val such that

ĥ(v, δ) =

v if δ = ε (note that v might be •)
ĥ(h(v, f), δ′) if δ = fδ′, v ∈ Loc
undefined otherwise (note that v might be •)

25

Note that an access to a field of the inaccessible value is not defined.

Definition 7 (Comparable values). A pair of values of the ECPF semantics v1, v2 ∈
Val are comparable, denoted by v1

?
!" v2, if v1 .= • and v2 .= •.

Definition 8 (Access path value in the GSB semantics). The value of an access path
α = 〈x, δ〉 in state σG = 〈ρ, L, h〉 of the GSB semantics, denoted by [[α]]GSB(σG), is
defined to be h(ρ(x), δ), where ValG = Val \ {•} and

h : ValG × ∆ ⇀ ValG such that

h(v, δ) =

v if δ = ε
h(h(v, f), δ′) if δ = fδ′, v ∈ Loc
undefined otherwise

Observational soundness We define the notion of observational soundness between
a ECPF memory state σ and a standard 2-level store σG of the GSB semantics as
the preservations in σG of all equalities and inequalities which hold in σ.7 Note that
the preservation in the other direction is not required. Also note that an equality resp.
inequality of values of access paths holds in σ only when the two access paths have
comparable values. For simplicity, we define [[null]]ECPF(σ) = [[null]]GSB(σ) = null.

Definition 9 (Observational soundness). The memory state σ ∈ Σ is observationally
sound with respect to memory state σG ∈ ΣG, denoted by σG " σ, if for every α,β ∈
AccPath ∪ {null} it holds that
if [[α]]ECPF (σ)

?
!" [[β]]ECPF (σ) then

[[α]]ECPF (σ)) = [[β]]ECPF (σ)⇔ [[α]]GSB(σG) = [[β]]GSB(σG)

We define the notion of observational soundness between two ECPF memory states
(resp. two standard memory states) in a similar manner.

Simulation Before we define the notion of simulation we briefly review some execution
traces accessing-functions (formally defined in [19]). Given an execution trace π, the
initial resp. final memory state of an execution trace π, denoted by in(π) resp. out(π),
is the current memory state in the first resp. last stack of program states. π(i) returns
the stack at the ith step of the execution and |π(i)| returns its height. path(π) is the se-
quence of program points which the execution traverses. i.e., path(π)(i) is the program
point in the ith step of the execution. (We assume that every statement is labeled by a
program point.)

The following theorem shows that ECPF simulates the standard semantics. In the
lemma, we denote by path(π) the sequence of intraprocedural statements andCall and
Return operations executed in π. We also use [π]k to denote the memory state of the
current procedure at π(k), the kth program state of π

Theorem 1 (Simulation). Let P be an effectively cutpoint-free program according to
the ECPF semantics. Let πS be a trace of a program P according to the standard
semantics. There exists a trace πE of P according to the ECPF semantics such that
the folowing holds (i) |πS | = |πE |, (ii) path(πS) = path(πE), and (iii) [πS]k " [πE]k
for every 0 ≤ k < |πS |.

26

Sketch of Proof: The proof is done by induction on the length of the execution. We look
at memory states as graphs. The graph nodes are the allocated objects and the graph
edges are the object fields. The graph nodes may be labeled by variables. The graph
edges are labeled by field names.

We prove that observational equivalence is preserved by showing a stronger prop-
erty: every memory state [πE]k produced by the ECPF can be seen as a subgraph of
[πS]k, the corresponding memory state of the GSB semantics. Furthermore, that two
graphs agree on the values of live references.

We maintain an injective and a surjective function 0 from the set of objects that are
reachable from the variables of the current procedure in a memory state of the GSB to
the set of objects in the corresponding memory state of the ECPF semantics. Clearly
when a program starts, and prior to the allocation of any object, the two memory states
are isomorphic. It is easy to verify that atomic statement preserves the isomorphism:
0 remains unchanged, except that object allocation maps the new location to the new
individual.

When a procedure is invoked, the mapping 0 is projected on the set of objects passed
to the invoked procedure. When a procedure returns, the mapping of locations that
were irrelevant for the invocation remains as in the call site. The mapping for locations
that were relevant for the invocation, as well as those that were allocated during the
invocation, are taken from the exit site. Note that the induction assumption ensures that
the above scheme is well defined.

To show that the return memory state produced by the ECPF semantics is a sub-
graph of the corresponding return memory state of the GSB semantics agrees with it
on the values of live references, we make the following argument: The computation of
return states in the ECPF semantics blocks piercing references. The computation of
the return states in the GSB semantics does not. Thus, it remains to show that all the
references that gets blocked by the ECPF semantics are not live in the GSB semantics.

The computation of return states in the ECPF semantics restores all references from
the caller’s local heap to parameter objects which, by the induction assumption, must be
in the 0 relation. It only blocks the value of piercing references (i.e., it changes the value
of every pointer field or variable pointing to a cutpoint). The execution π S never uses a
a field f of an object o such that the f -field in 0(o) at the corresponding ECPF points
to the inaccessible location. Otherwise, πE is a non effectively cutpoint-free execution
of P in ECPF which is a contradiction to the assumption that P is effectively cutpoint-
free. For similar reasons, the value of a variable which gets blocked by the ECPF
semantics does not get used by the GSB semantics.

Lemma 1. Let P be an effectively cutpoint-free program. The following holds:

[Invariants] An invariant concerning equality of values of access paths in the ECPF
semantics is an invariant in the standard semantics

[Cleanness] P does not dereferences null references in the standard semantics.

Lemma 2. Let P be an effectively cutpoint-free program. A reference, that at a given
program point always has the inaccessible value, is not live at that program point in the
standard semantics.

27

Definition 10 (Observational equivalence). The ECPF memory states σ1,σ2 ∈ Σ
are observationally equivalent, denoted by σ1 ≶ σ2, if σ1 " σ2 and σ2 " σ1.

The following lemma shows that ECPF is indifferent to location names.

Theorem 2 (Indifference to location names). Let π1,π2 be execution traces of a pro-
gram P according to the ECPF semantics. If |π1(1)| = |π2(1)| = 1, in(π1) ≶ in(π2)
and path(π1) = path(π2) then out(π1) ≶ out(π2).

B Update Formulae

In this section, we encode the abstract transformers using the notations of [25].

B.1 Intraprocedural Statements

The meaning of assignments is specified by defining the values of the predicates in
the outgoing structure using first-order logic formulae with transitive closure over the
incoming structure [25]. The inference rules for assignments are rather straightforward.
We encode conditional using assume() statements.

The operational semantics for assignments is specified by predicate-update formu-
lae: for every predicate p and for every statement st , the value of p in the 2-valued
structure which results by applying st to S, is defined in terms of a formula evaluated
over S.

The predicate-update formulae of the core-predicates for assignment is given in
Fig. 13. The table also specifies the side condition which enables that application of the
statement. These conditions check that null-dereference is not performed and that the
inaccessible value is not used. The value of every core-predicate p after the statement
executes, denoted by p′, is defined in terms of the core predicate values before the
statement executes (denoted without primes). Core predicates whose update formula is
not specified, are assumed to be unchanged, i.e., p ′(v1, . . .) = p(v1, . . .).

None of the assignments, except for object allocation, modifies the underlying uni-
verse. Object allocation is handled as in [25]: A new individual is added to the universe
to represent the allocated object; the auxiliary predicate new is set to hold only at that
individual; only then, the predicate-update formulae is evaluated.

The semantics transitions into the error state (σ•) under the same conditions as the
ECPF semantics, i.e., when an inaccessible-valued variable or field are accessed. (See
Fig. 7). The following side condition trigers such a transition when a variable x points
to an inaccessible location ∃v : x(v) ∧ ia(v2). Similarly, the following side condition
trigers such a transition when the f-field of the object pointed to by a variable x points
to an inaccessible location ∃v1, v2 : x(v1) ∧ f(v1, v2) ∧ ia(v2).

B.2 Interprocedural Statements

The treatment of procedure call and return could be briefly described as follows: (i) con-
structing the memory state at the callee’s entry site (Se) and (ii) the caller’s memory
state at the call site (Sc) and the callee’s memory state at the exit site (Sx) are used to

28

Statement Predicate-update formulae side− condition

y = null y′(v) = 0

y = x y′(v) = x(v) ∀v1 : ¬(x(v1) ∧ ia(v1))

y = x.f y′(v) = ∃v1 : x(v1) ∧ f(v1, v) ∃v1 : x(v1) ∧ ¬ia(v1) ∧
∀v2 : ¬(x(v1) ∧ f(v1, v2) ∧ ia(v2))

y.f = null f ′(v1, v2) = f(v1, v2) ∧ ¬y(v1) ∃v1 : y(v1) ∧ ¬ia(v1)
y.f = x f ′(v1, v2) = f(v1, v2) ∨ (y(v1) ∧ x(v2)) ∃v1 : y(v1) ∧ ¬ia(v1) ∧

∀v2 : ¬(x(v2) ∧ ia(v2))

y = alloc eq ′(v1, v2) = eq(v1, v2) ∨ new (v1) ∧ new(v2)

new ′(v) = 0

Fig. 13. The predicate-update formulae defining the operational semantics of assignments. Note
that we always assume that a reference variable is nullified before re-assigned.

construct the caller’s memory state at the return site (Sr). We now formally define and
explain these steps.

Fig. 14 specifies the procedure call rule for an arbitrary call statement y =
p(x1, . . . , xk) by an arbitrary function q. The rule is instantiated for each call state-
ment in the program.

Computing The Memory State at the Entry Site. Se, the memory state at the en-
try site to p, represents the local heap passed to p. It contains only these individuals
in Sc that represent objects that are relevant for the invocation. It also contains the in-
dividual representing the inaccessible value. The formal parameters are initialized by
updCally=p(x1,...,xk)

q , defined in Fig. 15(a). The latter, specifies the value of the predi-
cates in Se using a predicate-update formulae evaluated over S c. We use the convention
that the updated value of x is denoted by x ′. Predicates whose update formula is not
specified, are assumed to be unchanged, i.e., x ′(v1, . . .) = x(v1, . . .). Note that only
the predicates that represent variable values are modified. In particular, field values,
represented by binary predicates, remain in p’s local heap as in S c.

Computing The Memory State at the Return Site. The memory state at the return-
site (Sr) is constructed as a combination of the memory state in which p was in-
voked (Sc) and the memory state at p’s exit-site (Sx). Informally, Sc provides the in-
formation about the (unmodified) irrelevant objects and S x contributes the information
about the destructive updates and allocations made during the invocation.

The main challenge in computing the effect of a procedure is relating the objects at
the call-site to the corresponding objects at the return site. The fact that the invocation
is effectively cutpoint-free guarantees that the only live references into the local heap
are references to objects referenced by an actual parameter. This allows us to reflect the
effect of p into the local heap of q by: (i) replacing the relevant objects in S c with Sx,

29

Table 3. Formulae shorthands and their intended meaning.

Shorthand Formula Intended Meaning
F (v1, v2)

∨
f∈F f(v1, v2) v1 has a field that points to v2

ϕ∗(v1, v2) (eq(v1, v2) ∨ the reflexive transitive closure of ϕ
(TC w1, w2 : ϕ(w1, w2))(v1, v2))

R{x1,...,xk}(v) ¬ia(v) ∧ v is reachable from x1 or x2∨
x∈{x1,...,xk}

∃v1 : x(v1) ∧ F ∗(v1, v) or . . . or xk
isCPq,{x1,...,xk}(v) R{x1,...,xk}(v) ∧ v is a cutpoint

(¬x1(v) ∧ . . . ∧ ¬xk(v)) ∧
(
∨

y∈Vq
y(v) ∨

∃v1 : ¬R{x1,...,xk}(v1) ∧ F (v1, v))

Cally=p(x1,...,xk)(Sc) = Se Rety=p(x1,...,xk)(Sc, Sx) = Sr

where

Se = 〈Ue, ιe〉 where
Ue = {u ∈ USc | Sc |= R{x1,...,xk}(u) ∨ ia(v)}
ιe = updCally=p(x1,...,xk)

q (Sc)

Sr = 〈Ur, ιr〉 where
Let U ′ = {u.c | u ∈ Uc} ∪ {u.x | u ∈ Ux}

ι′ = λp ∈ P .

ιc[inUc '→ λv.1](p)(u1, . . . , um) : u1 = w1.c, . . . , um = wm.c
ιx[inUx '→ λv.1](p)(u1, . . . , um) : u1 = w1.x, . . . , um = wm.x
0 : otherwise

in Ur = {u ∈ U ′ | 〈U ′, ι′〉 |= inUx(u) ∨ (inUc(u) ∧ ¬ia(u) ∧ ¬R{x1,...,xk}(u))
ιr = updRety=p(x1,...,xk)

q (〈U ′, ι′〉)

Cally=p(x1,...,xk)(Sc) = σ• Sc |= ∃v : ia(v) ∧ (x1(v) ∨ · · · ∨ xk(v))

Rety=p(x1,...,xk)(Sc, Sx) = σ• Sx |= ∃v : ia(v) ∧ ret(v)

Fig. 14. The inference rule for a procedure call y = p(x1, . . . , xk) by a procedure q. The func-
tions updCally=p(x1,...,xk)

q and updRety=p(x1,...,xk)
q are defined in Fig. 15.

the local heap at the exit from p; (ii) redirecting all references to an object referenced
by an actual parameter to the object referenced by the corresponding formal parameter
in Sx; (iii) block every piercing reference.

Technically, Sc and Sx are combined into an intermediate structure 〈U ′, ι′〉. The
latter contains a copy of the memory states at the call site and at the exit site. To dis-
tinguish between the copies, the auxiliary predicates inUc and inUx are set to hold for
individuals that originate from Sc and Sx, respectively.

Pointer redirection is specified by means of predicate update formulae, as defined
in Fig. 15(b). The most interesting aspect of these update-formulae is the formula

30

a. Predicate update formulae for updCally=p(x1,...,xk)
q

z′(v) =

{
xi(v) : z = hi

0 : z ∈ V \ {h1, . . . , hk}

b. Predicate update formulae for updRety=p(x1,...,xk)
q

z′(v) =

retp(v) : z = y

inUc(v) ∧ z(v) ∧ ¬R{x1,...,xk}(v) ∨ : z ∈ Vq \ {y}
∃v1 : z(v1) ∧match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∨
∃v1 : z(v1) ∧ isCPq,{x1,...,xk}(v1) ∧ inUx(v) ∧ ia(v)

0 : z ∈ V \ Vq

f ′(v1, v2) = inUx(v1) ∧ inUx(v2) ∧ f(v1, v2) ∨
inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬ia(v2) ∧ ¬R{x1,...,xk}(v2) ∨
inUc(v1) ∧ inUx(v2) ∧ ∃vsep : f(v1, vsep) ∧match{〈h1,x1〉,...,〈hk,xk〉}(vsep , v2) ∨

inUc(v1) ∧ inUx(v2) ∧ ∃vsep : f(v1, vsep) ∧ isCPq,{x1,...,xk}(vsep) ∧ ia(v2)

inUc′(v) = inUx ′(v) = 0

Fig. 15. Predicate-update formulae for the core predicates used in the procedure call rule. We
assume that the p’s formal parameters are h1, . . . , hk. There is a separate update formula for
every local variable z ∈ V and for every field f ∈ F .

match{〈h1,x1〉,...,〈hk,xk〉}, defined below:

match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2)
def
=

inUc(v1) ∧ ia(v1) ∧ inUx(v2) ∧ ia(v2) ∨∨k
i=1 inUc(v1) ∧ xi(v1) ∧ inUx (v2) ∧ hi(v2)

This formula matches an individual that represents a (parameter) object which is ref-
erenced by an actual parameter at the call-site, with the individual that represents the
object which is referenced by the corresponding formal parameter at the exit-site. The
assumption that formal parameters are not modified allows us to match these two in-
dividuals as representing the same object. Once pointer redirection is complete, all in-
dividuals originating from Sc and representing relevant objects are removed, resulting
with the updated memory state of the caller. In addition, the formula matches the indi-
vidual representing the inaccessible value at the call site with the one representing the
inaccessible value at the return site, thus preserving the value of inaccessible references
from before the call.

We block piercing references using formula isCP q,{x1,...,xk}(v), defined in Tab. 3.
The formula holds when v is a cutpoint object. It is comprised of three conjuncts. The
first conjunct, requires that v be reachable from an actual parameter. The second con-
junct, requires that v not be pointed-to by an actual parameter. The third conjunct, re-
quires that v be an entry point into p’s local heap, i.e., is pointed-to by a local variable
of q (the caller procedure) or by a field of an object not passed to p.

Predicate update formulae for instrumentation predicates. Fig. 16 provides the up-
date formulae for instrumentation predicates used by the procedure call rule. We use

31

PTX(v) as a shorthand for
∨

x∈X x(v). The intended meaning of this formula is to
specify that v is pointed to by some variable from X ⊆ V . We use bypassX(v1, v2)
as a shorthand for (F (v1, v2) ∧ ¬RX(v1))∗. The intended meaning of this formula
is to specify that v2 is reachable from v1 by a path that does not traverse any ob-
ject which is reachable from any variable in X ⊆ V . Note that, again, formula
match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2) again plays a central role.

a. Predicate update formulae for updCally=p(x1,...,xk)
q

ils ′(v) = ils(v) ∧ ¬(PTx1,...,xk(v) ∨ isCPq,{x1,...,xk}(v))∨
∃v1, v2 : R{x1,...,xk}(v1) ∧R{x1,...,xk}(v2) ∧

F (v1, v) ∧ F (v2, v) ∧ ¬eq(v1, v2))

r′y(v) =

{
rxi (v) : y = hi

0 : y ∈ V \ {h1, . . . , hk}

b. Predicate update formulae for updRety=p(x1,...,xk)
q

ils′(v) = ils(v) ∧ (inUc(v) ∧ ¬R{x1,...,xk}(v) ∨ inUx(v)) ∨
PTx1,...,xk(v) ∧ ∃v1, v2, v3 : match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∧ ¬eq(v2, v3) ∧

inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∧ F (v2, v1) ∧
(inUc(v3) ∧ ¬R{x1,...,xk}(v3) ∧ F (v3, v1) ∨ inUx(v3) ∧ F (v3, v))

r′obj (v1, v2) = robj (v1, v2) ∧ inUx (v1) ∧ inUx (v2) ∨
robj (v1, v2) ∧ inUc(v1) ∧ inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∨
inUc(v1) ∧ inUx(v2) ∧ ∃va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf) ∧
bypass{x1,...,xk}(v1, va) ∧ robj (vf , v2)

r′x (v) = inUc(v) ∧ rx (v) ∧ ¬R{x1,...,xk}(v) ∨
inUx(v) ∧ ∃vx, va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf) ∧

x(vx) ∧ bypass{x1,...,xk}(vx, va) ∧ robj (vf , v)

Fig. 16. The predicate update formulae for the instrumentation predicates used in the procedure
call rule. We give the semantics for an arbitrary function call y = p(x1, . . . , xk) by an arbitrary
function q. We assume that the p’s formal parameters are h1, . . . , hk.

32

