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How ideas of PT-symmetric quantum mechanics can be applied to quantum graphs is analyzed, in particular to the star graph.
The class of rotationally symmetric vertex conditions is analyzed. It is shown that all such conditions can effectively be described by
circulant matrices: real in the case of odd number of edges and complex having particular block structure in the even case. Spectral
properties of the corresponding operators are discussed.

1. Introduction

Writing this paper we got inspiration from two rapidly
developing areas of modern mathematical physics: PT-
symmetric quantum mechanics and quantum graphs. Both
areas attract interest of both mathematicians and physicists
for the last two decades with numerous conferences orga-
nized and articles published. The first area grew up from the
simple observation that a quantum mechanical Hamiltonian
“often” has real spectrum even if it possesses combined parity
and time-reversal symmetry instead of self-adjointness [1–
6]. Considering such operators increases the set of physi-
cal phenomena that could be modeled and raises up new
interesting mathematical questions [7–10]. It appears that
spectral theory of suchPT-symmetric operators (see precise
definition below) can bewell-understood using framework of
self-adjoint operators in Krein spaces [11].

The theory of quantum graphs—differential operators on
metric graphs—can be used to model quantum or acoustic
systems where motion is confined to a neighborhood of a set
of (one-dimensional) intervals [12–14]. Until now quantum
graphs were mostly studied in the context of self-adjoint or
dissipative operators. Our key idea is to look at differential
operators on metric graphs under more general symmetry
assumptions reminding those in PT-symmetric theory.
Surprisingly spectral properties of operators on graphs with

symmetries have not been paid much attention. We mention
here just two papers [15, 16], where symmetries of graphs
were used to construct counterexamples showing that inverse
problems are not necessarily uniquely solvable.

In quantum graphs motion along the edges is described
by ordinary differential equations, which are coupled
together by certain vertex conditions connecting together
values of the functions at the end points of the intervals
building the underlined metric graph. The role of vertex
conditions is twofold: to describe how the waves are
penetrating through the vertices and to make the differential
operator self-adjoint. If the requirement of self-adjointness
is waved then such conditions should instead ensure that
the resolvent set is not empty; that is, the resolvent for the
corresponding differential operator exists for some 𝜆. The
later condition is not very precise and one of the goals of the
current paper is to understand it in the case of the simplest
merit graph with symmetries—the star graph. It can be
considered as a building block to define differential operators
on arbitrary metric graphs. To avoid discussing properties of
the differential operator we limit our studies to the Laplace
operator. Moreover the graph formed by semi-infinite edges
is considered in order to avoid influence from the peripheral
vertices. We just mention here that star graphs formed by
finite edges but with standard conditions (see (2)) at the
central vertex were considered recently in the framework of
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PT-symmetry [17–19]. Our focus will be precisely on the
vertex conditions at the central vertex. We are not interested
in generalizing formalism of quantum graphs for the sake of
generalization, but we look for new spectral phenomena that
can be observed.

Current paper grew up from the Master Thesis of Maria
Astudillo written in 2008 [20] and already attracted attention
of mathematical physics community (see references in [21]).
The current paper is just the first step to understand spectral
structure of differential operators on graphs with nonstan-
dard symmetries.

The paper is organized as follows: in the first two sections
we introduce basic notations and discuss how to generalize
the notion of PT-symmetry for the case of star graph. The
main difficulty is that the notion of PT-symmetry may be
generalized in two different ways and we decided to follow
the definition giving new spectral structure (Section 3). We
call corresponding operators RT-symmetric. All possible
Robin conditions leading to RT-symmetric Laplacians are
described in Section 4. It appears that the structure of
matrices 𝐴 in the Robin condition depends on whether the
number of edges is odd or even. In the first case the matrices
are real circulant, while in the second case they may be
complex but are block-circulant. Possibility to obtain non-
self-adjoint operators with𝑁 real eigenvalues is studied in the
last section.

2. Notations and Elementary Properties

Our goal is to generalize ideas that originated from PT-
symmetry for the case of the star graph. More precisely we
will confine our studies to the case of the Laplace operator
with the domain given by generalized Robin conditions at
the central vertex. Consider the star graph Γ

𝑁
formed by

𝑁 semi-infinite edges 𝐸
𝑛
= [0,∞) joined together at one

central vertex. The corresponding Hilbert space 𝐿
2
(Γ
𝑁
) can

be identified with the space of vector valued functions 𝑢 ≡

𝑢⃗(𝑥) on 𝑥 ∈ [0,∞) with the values in C𝑁: 𝐿
2
(Γ
𝑁
) =

𝐿
2
([0,∞),C𝑁).

Definition 1. The operator 𝐿
𝐴

= −𝑑
2
/𝑑𝑥
2 is defined on

the set of functions from the Sobolev space𝑊2
2
([0,∞);C𝑁)

satisfying generalized Robin conditions:

𝑢⃗
󸀠
(0) = 𝐴𝑢⃗ (0) , (1)

where 𝐴 is a certain𝑁 ×𝑁matrix.

The operator 𝐿
𝐴
can be seen as a certain point pertur-

bation of the self-adjoint standard Laplace operator defined
on the domain of functions from the same Sobolev space
satisfying standard vertex conditions:

𝑢
1 (0) = 𝑢2 (0) = ⋅ ⋅ ⋅ = 𝑢𝑁 (0) ,

𝑁

∑

𝑗=1

𝑢
󸀠

𝑗
(0) = 0.

(2)

In fact all such point perturbations are defined by vertex
conditions of a more general form (8), butTheorem 2 implies
that only conditions of form (1) are important for our goal.

The operator adjoint to 𝐿
𝐴
is again the Laplace operator

but is defined by vertex conditions (1) with the matrix 𝐴
substituted by the matrix 𝐴∗ that is the operator 𝐿

𝐴
∗ :

(𝐿
𝐴
)
∗
= 𝐿
𝐴
∗ . (3)

This can be proven by integration by parts for 𝑢⃗ ∈ Dom(𝐿
𝐴
),

V⃗ ∈ Dom(𝐿∗
𝐴
):

⟨𝐿
𝐴
𝑢⃗, V⃗⟩
𝐿
2
(Γ
𝑁
)
= ∫

∞

0

⟨−𝑢⃗
󸀠󸀠
(𝑥) , V⃗ (𝑥)⟩

C𝑁
𝑑𝑥

= ⟨𝑢⃗
󸀠
(0) , V⃗ (0)⟩

C𝑁
− ⟨𝑢⃗ (0) , V⃗󸀠 (0)⟩

C𝑁

+ ∫

∞

0

⟨𝑢⃗ (𝑥) , −V⃗󸀠󸀠 (𝑥)⟩
C𝑁
𝑑𝑥

= ⟨𝑢⃗ (0) , 𝐴
∗V⃗ (0) − V⃗󸀠 (0)⟩

C𝑁

+ ∫

∞

0

⟨𝑢⃗ (𝑥) , −V⃗󸀠󸀠 (𝑥)⟩
C𝑁
𝑑𝑥,

(4)

wherewe used the fact that 𝑢⃗ satisfies (1).This formula defines
a bounded functional with respect to 𝑢⃗ if and only if𝐴∗V⃗(0)−
V⃗󸀠(0) = 0 and V ∈ 𝑊2

2
([0,∞);C𝑁).

It follows that the operator 𝐿
𝐴
is self-adjoint if and only

if 𝐴 is a Hermitian matrix 𝐴∗ = 𝐴. In this paper we are not
interested in the case where 𝐿

𝐴
is self-adjoint.

The spectrum of the operator 𝐿
𝐴
may contain up to 𝑁

isolated eigenvalues. The corresponding eigenfunction is a
solution to the differential equation

−𝑢
󸀠󸀠
(𝑥) = 𝜆𝑢 (𝑥) (5)

satisfying Robin conditions (1). Any square integrable solu-
tion to the differential equation is given by

𝑢⃗ (𝑥) = ⃗𝑎 exp (𝑖𝑘𝑥) , 𝑘
2
= 𝜆, ⃗𝑎 ∈ C

𝑁 (6)

with Im 𝑘 > 0. This function satisfies Robin condition if and
only if

det (𝐴 − 𝑖𝑘) = 0. (7)

The last equation has at most 𝑁 distinct solutions (in the
correct half-plane). Observe that not all solutions lead to
eigenfunctions, since one needs to meet the condition Im 𝑘 >

0.
As the theory of PT-symmetric operators indicates the

most interesting case is when the spectrum of the operator is
pure real, the operator itself is not self-adjoint. We are going
to look closer at such operators. If the operator 𝐿

𝐴
has𝑁 real

eigenvalues, then the matrix 𝐴 has 𝑁 negative eigenvalues,
but it does not imply that it is Hermitian.

Note that possible vertex conditions are not limited to
those described by (1). More generally one may consider the
Laplace operator 𝐿

𝐵,𝐶
= −𝑑

2
/𝑑𝑥
2 defined on the domain
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of functions from 𝑊
2

2
([0,∞);C𝑁) satisfying the following

vertex conditions:

𝐵𝑢⃗
󸀠
(0) + 𝐶𝑢⃗ (0) = 0, (8)

where𝐵,𝐶 are certain𝑁×𝑁matrices, such that rank (𝐵, 𝐶) =
𝑁. Here we follow ideas from [22]. The following theorem
shows that a Laplace operator described by the vertex con-
ditions of the form (8) has 𝑁 real eigenvalues if either the
vertex conditions are of the form (1) or the spectrum covers
the whole complex plane.

Theorem 2. Consider the operator 𝐿
𝐵,𝐶

defined by vertex
condition (8). If 𝐿

𝐵,𝐶
has 𝑁 real eigenvalues (counting multi-

plicities), then either 𝐵 is invertible or the spectrum of 𝐿
𝐵,𝐶

is
the whole complex plane.

Proof. A function 𝑢 is an eigenfunction of 𝐿
𝐵,𝐶

if and only if it
satisfies the differential equation (5), which has solution (6).
Substituting in (8), we get that for a certain ⃗𝑎 ̸= 0⃗

(𝐶 + 𝑖𝑘𝐵) ⃗𝑎 = 0. (9)

Conversely, if this holds for some 𝑘 with Im 𝑘 > 0 then 𝑘2 is
an eigenvalue of 𝐿

𝐵,𝐶
.

The last equation has nontrivial solution if and only if

det (𝐶 + 𝑖𝑘𝐵) = 0. (10)

Let us now consider two invertible matrices 𝑆 and 𝑇. If (10) is
satisfied then also

det (𝑆𝐶𝑇 + 𝑖𝑘𝑆𝐵𝑇) = 0. (11)

Let us take 𝑆 and 𝑇 such that

(𝑆𝐵𝑇)𝑖,𝑘 =
{

{

{

1, 𝑖 = 𝑘 ≤ rank 𝐵,

0, otherwise.
(12)

Let us introduce the following function: 𝑞(𝑘) =: det(𝑆𝐶𝑇 +
𝑖𝑘𝑆𝐵𝑇). Because of (12), 𝑞 is a polynomial in 𝑘 of degree
at most rank 𝐵. If 𝑞 ≡ 0, then any 𝑘 with Im 𝑘 > 0

gives an eigenvalue 𝑘2 and as a result the spectrum is the
whole complex plane. Otherwise 𝑞 has at most rank 𝐵 zeros.
Suppose now that each eigenvalue has multiplicity 1, then if
rank 𝐵 ̸= 𝑁, the operator will have less than 𝑁 eigenvalues.
Therefore we must have the fact that 𝐵 is invertible. To
complete the proof, the case of multiple eigenvalues has to
be considered. Let us assume that 𝑘2

0
is an eigenvalue of

multiplicity𝑚. To see that 𝐵must be invertible if 𝐿
𝐵,𝐶

has𝑁
eigenvalues, it is enough to prove that 𝑞(𝑘) has a zero of order
at least𝑚 at 𝑘

0
. To prove this, we consider the eigenfunctions

𝑢⃗
1
= ⃗𝑎
1
𝑒
𝑖𝑘
0
𝑥
, . . . , 𝑢⃗

𝑚
= ⃗𝑎
𝑚
𝑒
𝑖𝑘
0
𝑥. Here, all constant vectors

⃗𝑎
𝑗, 𝑗 = 1, . . . , 𝑚 ≤ 𝑁 are linearly independent. Let us then

choose vectors ⃗𝑎
𝑚+1

, . . . , ⃗𝑎
𝑁 such that 𝐷 = [ ⃗𝑎

1
, ⃗𝑎
2
, . . . , ⃗𝑎

𝑁
]

has determinant equal to 1. It then follows that

det (𝐶 + 𝑖𝑘𝐵) = det ((𝐶 + 𝑖𝑘𝐵)𝐷) = det ([(𝐶 + 𝑖𝑘𝐵)

⋅ ⃗𝑎
1
, (𝐶 + 𝑖𝑘𝐵) ⃗𝑎

2
, . . . , (𝐶 + 𝑖𝑘𝐵) ⃗𝑎

𝑁
])

(13)

has a zero of order at least𝑚 at 𝑘 = 𝑘
0
.

Our method to obtain nontrivial operators with nonstan-
dard symmetries is a certain generalization of the method
of point interactions originally developed in the framework
of self-adjoint Hamiltonians [23, 24]. The phenomenon
described in Theorem 2 in connection with PT-symmetric
point interaction was first observed in [25], following [26].

This theorem implies that the class of operators 𝐿
𝐴

defined by Robin vertex conditions (1) is rather wide; there-
fore in what follows we focus our attention on this class only.

3. Pseudo-Hermitian and
Pseudoreal Operators

Our studies are inspired by recent papers devoted to inves-
tigation of the so-called PT-symmetric operators in one
dimension. An operator 𝐿 is called PT-symmetric if it
satisfies the following relation:

PT𝐿 = 𝐿PT, (14)

whereP is the spacial symmetry operator (parity symmetry),

(P𝑢) (𝑥) = 𝑢 (−𝑥) , (15)

and T is the antilinear operator of complex conjugation
(time-reversal symmetry),

(T𝑢) (𝑥) = 𝑢 (𝑥). (16)

PT-symmetry (like usual operator symmetry) is not enough
to guarantee that the corresponding operator is physically
relevant: it might happen that its spectrum is empty (take,
e.g., the second derivative operator on the interval [−𝑎, 𝑎]
with both Dirichlet and Neumann conditions imposed on
both end points of the interval). In conventional quantum
theory the notion of a self-adjoint operator substitutes simple
symmetry property (of course any self-adjoint operator is
symmetric, but not the other way around). Therefore it
appears natural to substitute relation (14) with the following
one:

𝐿
∗
= P𝐿P

−1
= P𝐿P

∗
, (17)

where we use the fact that P is unitary P−1 = P∗. In the
case of conventional PT-symmetric theory the operator P
is not only unitary, but also self-adjoint P∗ = P. It follows
that the operator satisfying (17) is pseudo-self-adjoint; that is,
it is self-adjoint not in the original Hilbert space but in the
Krein space with the sesquilinear form [⋅, ⋅] defined by P as
Gram operator:

[𝑓, 𝑔] = ⟨P𝑓, 𝑔⟩ , (18)

where ⟨⋅, ⋅⟩ denotes the standard scalar product in 𝐿
2
.

The goal of the current paper is to generalize PT-
symmetry for the case of operators on metric graphs, more
precisely for the star graph Γ

𝑁
. Operator on such a star graph

can be considered as a building block to define operators on
arbitrary graphs. We are going to substitute the operator of
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spacial symmetryP with the rotation operatorR defined as
follows:

R

(
(
(
(
(
(

(

𝑢
1 (𝑥)

𝑢
2 (𝑥)

𝑢
3 (𝑥)

.

.

.

𝑢
𝑁−1 (𝑥)

𝑢
𝑁 (𝑥)

)
)
)
)
)
)

)

=

(
(
(
(
(
(

(

𝑢
𝑁 (𝑥)

𝑢
1 (𝑥)

𝑢
2 (𝑥)

.

.

.

𝑢
𝑁−2 (𝑥)

𝑢
𝑁−1 (𝑥)

)
)
)
)
)
)

)

. (19)

We are not going to distinguish the rotation operators in
C𝑁 and in the space of vector-valued functions hoping that
this will not lead to any misunderstanding. Observe that the
operatorR is unitary but not self-adjoint (of course provided
𝑁 ̸= 2).

We would like to understand whether ideas from PT-
symmetric theory may lead to an interesting new class
of operators 𝐿

𝐴
, which are not self-adjoint and not PT-

symmetric with a suitably defined self-adjoint spacial sym-
metry operator P. For example, if 𝑁 is even then such a
spacial symmetry operator can be defined as

P =R
𝑁/2

. (20)

UsingPwemay introducePT-symmetric operators on Γ
𝑁
,

but this would be just a vector version of conventional one-
dimensional theory (see Lemma 4 below).

Formulas (14) and (17) suggest that we look closer at the
following two possible generalizations of the notion ofPT-
symmetry:

(i) pseudoreal operators

RT𝐿 = 𝐿RT, (21)

and
(ii) pseudo-Hermitian operators

𝐿
∗
=R𝐿R

−1
=R𝐿R

∗
. (22)

We are going to reserve the term pseudo-self-adjoint for
operators which are pseudo-Hermitian with respect to a self-
adjoint operatorP as in (17).

Surprisingly pseudo-Hermitian operators do not define
any new interesting class as follows from the two lemmas
below.

Lemma 3. Let 𝑁 be an odd number; then the operator 𝐿
𝐴
is

R-pseudo-Hermitian only if it is self-adjoint; that is, 𝐴 = 𝐴
∗.

Proof. Iterating formula (22) one gets the following set of
equations:

𝐿
∗

𝐴
=R
𝑚
𝐿
𝐴
R
−𝑚
, 𝑚 is odd;

𝐿
𝐴
=R
𝑚
𝐿
𝐴
R
−𝑚
, 𝑚 is even.

(23)

Taking into account thatR𝑁 is the identity operatorwe arrive
at the following relation for any odd𝑁:

𝐿
∗

𝐴
= 𝐿
𝐴 (24)

proving our statement.

Lemma 4. Let𝑁 be an even number.

(i) If in addition𝑁/2 is an odd number, then the operator
𝐿
𝐴
is R-pseudo-Hermitian only if it is pseudo-self-

adjoint with respect toP =R𝑁/2.
(ii) If in addition𝑁/2 is an even number, then the operator

𝐿
𝐴
is R-pseudo-Hermitian only if it commutes with

the self-adjoint rotation P = R𝑁/2 and therefore is
unitarily equivalent to an orthogonal sum of Laplace
operators on Γ

𝑁/2
with Robin conditions at the central

vertices.

Proof. We just apply formula (23) to get

𝐿
∗

𝐴
=R
𝑁/2

𝐿
𝐴
R
−𝑁/2

,
𝑁

2
is odd;

𝐿
𝐴
=R
𝑁/2

𝐿
𝐴
R
−𝑁/2

,
𝑁

2
is even.

(25)

In the first case the operator 𝐿
𝐴
is pseudo-self-adjoint with

respect toP =R𝑁/2.
In the second case (𝑁 = 4𝑛, 𝑛 ∈ N) the operator

𝐿
𝐴
commutes with the self-adjoint operator P = R𝑁/2.

Since P2 = R𝑁 = I is the identity operator, its
spectrum is ±1. The corresponding subspaces coincide with
the sets of functions satisfying 𝑢

𝑗+𝑁/2
(𝑥) = ±𝑢

𝑗
(𝑥). Each

of the eigensubspaces can be identified with the Hilbert
space 𝐿

2
([0,∞);C𝑁/2). Since 𝐿

𝐴
commutes withP it can be

written as an orthogonal sum of two Laplace operators 𝐿
±
=

−𝑑
2
/𝑑𝑥
2, each acting in 𝐿

2
([0,∞);C𝑁/2) simply because

𝐿
𝐴
P = P𝐿

𝐴
implies that 𝑢⃗ ∈ Dom(𝐿

𝐴
) ⇔ P𝑢⃗ ∈ Dom(𝐿

𝐴
).

The operators 𝐿
±
are then defined by Robin conditions of

form 𝑢⃗
󸀠

±
(0) = 𝐴

±
𝑢⃗
±
(0), where 𝑢⃗

±
∈ 𝑊

2

2
([0,∞);C𝑁/2).

Finally, the operators 𝐿
±
can be seen as Laplace operators on

start graphs Γ
𝑁/2

with𝑁/2 edges with Robin conditions at the
central vertices.

The operators 𝐿
±

appearing in the previous Lemma
satisfy symmetry properties similar to (22), but with the
“rotation” operators R

±
of lower size (𝑁/2 instead of 𝑁). If

R
+
is the standard rotation operator in the space C𝑁/2, the

operatorR
−
is a certain modified rotation operator:

R
−
= diag (1, 1, . . . , 1, −1)R+. (26)

It might be interesting to understand the symmetry of 𝐿
−

in more detail, but we may conclude already now that in
most cases the operator 𝐿

𝐴
is pseudo-Hermitian only if it is

also pseudo-self-adjoint (with respect to another symmetry
operator). Therefore in what follows we focus on the studies
of pseudo-real realisations of the Laplace operator on the
star graph Γ

𝑁
. Therefore we are going to use the following

definition.



Advances in Mathematical Physics 5

Definition 5. An operator 𝐿 in 𝐿
2
(Γ
𝑁
) is called RT-

symmetric if and only if it satisfies the following relation:

RT𝐿 = 𝐿RT, (27)

whereT is the antilinear operator of complex conjugation.

This definition guarantees that the spectrum of the oper-
ator is symmetric with respect to the real axis. Really if 𝜓(𝑥)
is an eigenfunction corresponding to the eigenvalue 𝜆, then
𝜑(𝑥) = RT𝜓 is also an eigenfunction but corresponding to
the eigenvalue 𝜆, provided (27) holds:

𝐿𝜑 = 𝐿RT𝜓 =RT𝐿𝜓 =RT𝜆𝜓 = 𝜆RT𝜓 = 𝜆𝜑. (28)

Hence with Definition 5 we always have spectrum which is
symmetric with respect to the real axis as in the classicalPT-
symmetric theory.

4. RT-Symmetry of Point Interactions

In the current sectionwe are going to describe the structure of
RT-symmetric operators. It appears that the corresponding
matrices𝐴 belong to the class of circulant matrices which we
describe now. A circulant matrix is a special case of a Toeplitz
matrix.

Definition 6. An 𝑁 × 𝑁 matrix 𝐴 = {𝑎
𝑖𝑘
} is called circulant

if the value of the entry 𝑎
𝑖𝑘
depends only on the difference

(𝑘 − 𝑖)mod𝑁; that is,

𝐴 =
(
(
(

(

𝑎
0

𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑁−1

𝑎
𝑁−1

𝑎
0

𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑁−2

𝑎
𝑁−2

𝑎
𝑁−1

𝑎
0
⋅ ⋅ ⋅ 𝑎
𝑁−3

.

.

.
.
.
.

.

.

. d
.
.
.

𝑎
1

𝑎
2

𝑎
3
⋅ ⋅ ⋅ 𝑎

0

)
)
)

)

=: circ (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁−1
) .

(29)

Definition 7. An𝑁×𝑁matrix𝐴 is called 𝑘×𝑘 block circulant
if 𝐴 = circ(𝐵

0
, 𝐵
1
, . . . , 𝐵

𝑘−1
), where 𝐵

𝑖
, 𝑖 = 0, . . . , 𝑘 − 1, are

block matrices of the same size 𝑛 × 𝑛,𝑁 = 𝑘𝑛.

The following theorem describes matrices 𝐴 leading to
RT-symmetric operators on Γ

𝑁
.

Theorem 8. Consider the operator 𝐿
𝐴

determined by
Definition 1.

If𝑁 is odd, then the operator 𝐿
𝐴
isRT-symmetric if and

only if 𝐴 is a real circulant matrix; that is,

𝐴 = circ (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁−1
) ,

𝑎
𝑗
∈ R, 𝑗 = 0, . . . , 𝑁 − 1.

(30)

If𝑁 is even, then the operator 𝐿
𝐴
isRT-symmetric if and

only if𝐴 is a complex𝑁/2×𝑁/2 block circulant matrix formed
by the following 2 × 2 blocks:

𝐴 =

(
(
(
(
(
(
(

(

𝑎
0

𝑎
1

𝑎
2

𝑎
3
⋅ ⋅ ⋅ 𝑎
𝑁−2

𝑎
𝑁−1

𝑎
𝑁−1

𝑎
0

𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑁−3

𝑎
𝑁−2

𝑎
𝑁−2

𝑎
𝑁−1

𝑎
0

𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑁−4

𝑎
𝑁−3

𝑎
𝑁−3

𝑎
𝑁−2

𝑎
𝑁−1

𝑎
0
⋅ ⋅ ⋅ 𝑎
𝑁−5

𝑎
𝑁−4

.

.

.
.
.
.

.

.

.
.
.
. d

.

.

.
.
.
.

𝑎
2

𝑎
3

𝑎
4

𝑎
5
⋅ ⋅ ⋅ 𝑎

0
𝑎
1

𝑎
1

𝑎
2

𝑎
3

𝑎
4
⋅ ⋅ ⋅ 𝑎
𝑁−1

𝑎
0

)
)
)
)
)
)
)

)

,

𝑎
𝑗
∈ C, 𝑗 = 0, . . . , 𝑁 − 1.

(31)

Proof. Let us consider the operators 𝐿
𝐴

as defined in
Definition 1. Suppose that the function 𝑢 ∈ Dom(𝐿

𝐴
) and

therefore satisfies the boundary condition (1). The boundary
condition for the functionRT𝑢 is given by

RT𝑢⃗
󸀠
(0) = 𝐴RT𝑢⃗ (0) 󳨐⇒

𝑢⃗
󸀠
(0) = TR𝐴RT𝑢⃗ (0) 󳨐⇒

𝑢⃗
󸀠
(0) =R

−1
𝐴R𝑢⃗ (0) .

(32)

This condition should be identical with (1) leading to

𝐴 =R
−1
𝐴R⇐⇒

𝐴 =R𝐴R
−1
,

(33)

where we used the fact that the rotation matrix R has real
entries.

Let us denote the entries of the matrix 𝐴 by 𝑎
𝑖,𝑘
; then the

last equality implies

𝑎
𝑖,𝑘
= 𝑎
𝑖−1 mod 𝑁,𝑘−1 mod 𝑁. (34)

The structure of the matrix 𝐴 is as follows: every next row in
thematrix is equal to the previous one shifted to the right one
step and conjugated. It is clear then that𝐴 is determined by𝑁
complex numbers, for example, those building the first row. If
there would be no complex conjugation or the entries would
be real, then 𝐴 would be circulant.

Now, we consider the cases when 𝑁 is odd and even
separately.

𝑁 Is Odd. We get the following chain of equalities:

𝑎
𝑖 mod 𝑁,𝑘 mod 𝑁 = 𝑎𝑖+1 mod 𝑁,𝑘+1 mod 𝑁

= 𝑎
𝑖+2 mod 𝑁,𝑘+2 mod 𝑁 = ⋅ ⋅ ⋅

= 𝑎
𝑖+𝑁mod 𝑁,𝑘+𝑁mod 𝑁

= 𝑎
𝑖 mod 𝑁,𝑘 mod 𝑁,

(35)

implying that

𝑎
𝑖,𝑘
= 𝑎
𝑖,𝑘
󳨐⇒ 𝑎
𝑖,𝑘
∈ R, 𝑖, 𝑘 = 0, . . . , 𝑁 − 1. (36)
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Therefore

𝑎
𝑖,𝑘
= 𝑎
𝑖−1 mod 𝑁,𝑘−1 mod 𝑁 (37)

and we see that the matrix 𝐴 is a real circulant matrix. It is
determined by𝑁 real parameters:

𝑎
𝑗
fl 𝑎
1,𝑗+1

,

𝐴 = circ (𝑎
0
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑁−1
) .

(38)

𝑁 Is Even. We again consider (34) to obtain the following:

𝑎
𝑖 mod 𝑁,𝑘 mod 𝑁 = 𝑎𝑖+1 mod 𝑁,𝑘+1 mod 𝑁

= 𝑎
𝑖+2 mod 𝑁,𝑘+2 mod 𝑁 = ⋅ ⋅ ⋅

= 𝑎
𝑖+𝑁mod 𝑁,𝑘+𝑁mod 𝑁.

(39)

We do not obtain any restriction on 𝑎
𝑖,𝑘
and hence the entries

of the first row can be chosen arbitrarily among complex
numbers. But we still have the following property, which
reminds us of circulant matrices:

𝑎
𝑖,𝑘
= 𝑎
𝑖
󸀠 ,
𝑘
󸀠 , (40)

provided 𝑖󸀠 = (𝑖 + 2𝑠)mod𝑁 and 𝑘󸀠 = (𝑘 + 2𝑠)mod𝑁, 𝑠 =
1, . . . , 𝑁/2.

Let us denote the first row in𝐴 by 𝑎
𝑗
, 𝑗 = 0, . . . , 𝑁−1; then

each row of the matrix 𝐴 is the conjugation of the previous
row shifted to the right; that is,

𝐴

=

(
(
(
(
(
(
(

(

𝑎
0

𝑎
1

𝑎
2

𝑎
3
⋅ ⋅ ⋅ 𝑎
𝑁−2

𝑎
𝑁−1

𝑎
𝑁−1

𝑎
0

𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑁−3

𝑎
𝑁−2

𝑎
𝑁−2

𝑎
𝑁−1

𝑎
0

𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑁−4

𝑎
𝑁−3

𝑎
𝑁−3

𝑎
𝑁−2

𝑎
𝑁−1

𝑎
0
⋅ ⋅ ⋅ 𝑎
𝑁−5

𝑎
𝑁−4

.

.

.
.
.
.

.

.

.
.
.
. d

.

.

.
.
.
.

𝑎
2

𝑎
3

𝑎
4

𝑎
5
⋅ ⋅ ⋅ 𝑎

0
𝑎
1

𝑎
1

𝑎
2

𝑎
3

𝑎
4
⋅ ⋅ ⋅ 𝑎
𝑁−1

𝑎
0

)
)
)
)
)
)
)

)

,

𝑎
𝑗
∈ C, 𝑗 = 0, . . . , 𝑁 − 1,

(41)

as claimed.We see that𝐴 is a 2×2 block circulant matrix.The
blocks forming𝐴 are not chosen arbitrarily but depend on𝑁
complex parameters.

5. On the Spectrum of
the RT-Symmetric Operators

We can now look at the discrete spectra of the constructed
RT-symmetric operators on the star graph Γ

𝑁
. We have

already observed that, as in the case of all PT-symmetric
operators, the nonreal eigenvalues of a RT-symmetric
operator always appear in conjugate pairs (28). That is, if
𝜆 is an eigenvalue of a RT-symmetric operator A, then
𝜆 is also an eigenvalue of the operator A. We noted that
the operator 𝐿

𝐴
may have at most 𝑁 distinct eigenvalues

(counting multiplicities). The most interesting case is when
the spectrum of the operator is real; also the operator itself is
not self-adjoint.

The eigenvalues of 𝐿
𝐴
are given by solutions of (7) with

Im 𝑘 > 0. Negative eigenvalues correspond to 𝑘 on the
upper part of the imaginary axis. In what follows we study
the case where the operator has precisely 𝑁 (negative) real
eigenvalues. Since the structures of the matrices are different
in the cases when the number of edges𝑁 is even or odd, these
cases will be studied separately.

5.1. An Odd Number of Edges. Before we study the discrete
spectrum of the operator 𝐿

𝐴
, we recall some known results

about the eigenvalues of a circulant matrix which can be
nicely calculated as follows [27].

Proposition 9. Let 𝐴 = circ(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁−1
) be a circulant

matrix; then its eigenvalues are given by

𝜇
𝑗
=

𝑁−1

∑

𝑗=0

𝑎
𝑗
𝑒
2𝜋𝑖/𝑁

, 𝑗 = 0, . . . , 𝑁 − 1. (42)

Proof. The key idea is to write arbitrary circulant matrix𝐴 as
a sumof powers of the rotationmatrixR.The rotationmatrix
R can be seen as an elementary circulant matrix:

R = circ (0, 1, 0, . . . , 0) . (43)

We have, similarly,

R
𝑗
= circ(0, 0, . . . , 1⏟⏟⏟⏟⏟⏟⏟

𝑗+1

, . . . , 0) , R
𝑁
= I. (44)

Hence any circulant 𝐴 possesses the representation

𝐴 = 𝑎
0
I +

𝑁−1

∑

𝑗=1

𝑎
𝑗
R
𝑗
. (45)

The eigenvalues of the rotation matrix R are 𝑒𝑗(2𝜋𝑖/𝑁), 𝑗 =

0, 1, . . . , 𝑁 − 1, with the eigenvectors

(1, 𝑒
𝑗(2𝜋𝑖/𝑁)

, 𝑒
2𝑗(2𝜋𝑖/𝑁)

, . . . , 𝑒
(𝑁−1)𝑗(2𝜋𝑖/𝑁)

) . (46)

It follows that (42) holds.

Theorem 10. Assume that𝑁 is odd; then anyRT-symmetric
operator 𝐿

𝐴
on the star-graph Γ

𝑁
has 𝑁 real eigenvalues only

if it is self-adjoint.

Proof. First, we note that 𝜆 < 0 is an eigenvalue of 𝐿
𝐴
if and

only if 𝜇 = −√−𝜆 is an eigenvalue of thematrix𝐴. If𝑁 is odd,
then in accordance with Theorem 8 𝐴 is a circulant matrix
with real entries. Then its eigenvalues are nothing else other
than a discrete Fourier transform of {𝑎

𝑛
}
𝑁−1

𝑛=0
:
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𝜇
𝑗
=

𝑁−1

∑

𝑛=0

𝑒
𝑛𝑗(2𝜋𝑖/𝑁)

𝑎
𝑛
, 𝑗 = 0, 1, . . . , 𝑁 − 1,

𝑎
𝑚
=
1

𝑁

𝑁−1

∑

𝑗=0

𝑒
−𝑚𝑗(2𝜋𝑖/𝑁)

𝜇
𝑗
, 𝑚 = 0, 1, . . . , 𝑁 − 1.

(47)

It follows that 𝑎
𝑛
= 𝑎
𝑁−𝑛

, indeed

𝑎
𝑛
=
1

𝑁

𝑁−1

∑

𝑗=0

𝜇
𝑗
𝑒
𝑛𝑗(2𝜋𝑖/𝑁)

=
1

𝑁

𝑁−1

∑

𝑗=0

𝜇
𝑗
𝑒
−(𝑁−𝑛)𝑗(2𝜋𝑖/𝑁)

= 𝑎
𝑁−𝑛

,

(48)

whereweused that𝜇
𝑗
are all real. Taking into account that𝐴 is

circulant we conclude that it is Hermitian; hence the operator
𝐿
𝐴
is self-adjoint.

Of course, if the number of real eigenvalues is less than𝑁
the operator 𝐿

𝐴
does not need to be self-adjoint. The proof

of the later theoremmay give an impression that whether the
size of 𝐴 is even or odd does not play any essential role. The
next subsection shows that the difference is tremendous.

5.2. An Even Number of Edges. We recall from Theorem 8
that in case the star graph Γ

𝑁
has even number of edges

the operator 𝐿
𝐴

is RT-symmetric if and only if 𝐴 =

circ(𝐵
0
, 𝐵
1
, . . . , 𝐵

𝐾
), where𝐾 = 𝑁/2, and

𝐵
𝑖
= (

𝑎
2𝑖

𝑎
(2𝑖+1) mod 𝑁

𝑎
(2𝑖−1) mod 𝑁 𝑎

2𝑖

) . (49)

A vector ⃗𝑑 ̸= 0 is an eigenvector of 𝐴 with eigenvalue 𝜇 if
and only if

𝐴 ⃗𝑑 = 𝜇 ⃗𝑑. (50)

Following the ideas in [28], we will look for eigenvectors of𝐴
of the following form (this is a natural suggestion given the
structure of the eigenvectors for the case when𝑁 is odd):

⃗𝑑 = ⃗𝑑 (𝜔, V) = (V, 𝜔V, 𝜔2V, . . . , 𝜔𝐾−1V) , (51)

where V is a nonzero two-dimensional vector and 𝜔 is a fixed
𝐾th root of the unity; that is,

𝜔 ∈ {𝑒
(2𝜋𝑖/𝐾)𝑗

} , 𝑗 = 0, . . . , 𝐾 − 1. (52)

One may prove that all eigenvectors of 𝐴 are of this form,
since 𝐴 is commuting withR2.

Extending (50) with 𝐴 = circ(𝐵
0
, 𝐵
1
, . . . , 𝐵

𝐾
), as

explained above, the following set of𝐾 equations is obtained:

(𝐵
0
+ 𝐵
1
𝜔 + 𝐵

2
𝜔
2
+ 𝐵
3
𝜔
3
+ ⋅ ⋅ ⋅ + 𝐵

𝐾−1
𝜔
𝐾−1

) V = 𝜇V,

(𝐵
𝐾−1

+ 𝐵
0
𝜔 + 𝐵

1
𝜔
2
+ 𝐵
2
𝜔
3
+ ⋅ ⋅ ⋅ + 𝐵

𝐾−2
𝜔
𝐾−1

) V

= 𝜔𝜇V,

.

.

.

(𝐵
1
+ 𝐵
2
𝜔 + 𝐵

3
𝜔
2
+ 𝐵
4
𝜔
3
+ ⋅ ⋅ ⋅ + 𝐵

0
𝜔
𝐾−1

) V

= 𝜔
𝐾−1

𝜇V.

(53)

Dividing the 𝑗th equation by 𝜔𝑗, 𝑗 = 1, . . . , 𝐾 − 1, it reduces
to the first one. Hence we have just one equation. Let us now
rewrite it as an eigenvector equation:

𝐻V = 𝜇V, (54)

where the square matrix𝐻 = 𝐻(𝑤) is

𝐻 = 𝐵
0
+ 𝐵
1
𝜔 + 𝐵

2
𝜔
2
+ 𝐵
3
𝜔
3
+ ⋅ ⋅ ⋅ + 𝐵

𝐾−1
𝜔
𝐾−1

= (
𝑎
0

𝑎
1

𝑎
𝑁−1

𝑎
0

) + (
𝑎
2
𝑎
3

𝑎
1
𝑎
2

)𝜔 + ⋅ ⋅ ⋅ + (
𝑎
𝑁−2

𝑎
𝑁−1

𝑎
𝑁−3

𝑎
𝑁−2

)𝜔
𝐾−1

= (
𝑎
0
+ 𝑎
2
𝜔 + ⋅ ⋅ ⋅ + 𝑎

𝑁−2
𝜔
𝐾−1

𝑎
1
+ 𝑎
3
𝜔 + ⋅ ⋅ ⋅ + 𝑎

𝑁−1
𝜔
𝐾−1

𝑎
𝑁−1

+ 𝑎
1
𝜔 + ⋅ ⋅ ⋅ + 𝑎

𝑁−3
𝜔
𝐾−1

𝑎
0
+ 𝑎
2
𝜔 + ⋅ ⋅ ⋅ + 𝑎

𝑁−2
𝜔
𝐾−1

) .

(55)

Each eigenvector V = V(𝜔) of 𝐻(𝜔) will generate an
eigenvector ⃗𝑑 of 𝐴 with the same eigenvalue. If for every 𝜔
the 2 × 2 matrix 𝐻(𝜔) has two negative eigenvalues, then
the matrix 𝐴 has precisely𝑁 negative eigenvalues and so the
operator 𝐿

𝐴
.

The following theorem is a counterpart ofTheorem 10 for
the case when𝑁 is even.

Theorem 11. Let the number 𝑁 of edges of the star-graph Γ
𝑁

be even. Then among RT-symmetric operators 𝐿
𝐴
(given by

Definition 1) there are some with 𝑁 real eigenvalues that are
not self-adjoint.

Proof. To prove the theorem it is enough to present an
example of such a matrix𝐴 for arbitrary even𝑁. It is enough
to find 𝐴 such that all 𝐻(𝜔) have two negative eigenvalues.
As by Theorem 8 if 𝑁 is even then 𝐿

𝐴
is RT-symmetric if

and only if𝐴 is block circulant. Consider such block circulant
matrix 𝐴 given by

𝑎
0
= −8𝐾 + 2 + 𝑖,

𝑎
1
= 𝑎
3
= ⋅ ⋅ ⋅ = 𝑎

𝑁−1
= 1 + 𝑖,

𝑎
2
= 𝑎
4
= ⋅ ⋅ ⋅ = 𝑎

𝑁−2
= 2 + 𝑖.

(56)
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Equivalently the matrix 𝐴 can be presented as

𝐴 = −4𝑁 + circ((
2 + 𝑖 1 + 𝑖

1 − 𝑖 2 − 𝑖
) , (

2 + 𝑖 1 + 𝑖

1 − 𝑖 2 − 𝑖
) , . . .)

=

(
(
(
(
(
(

(

−4𝑁 + 2 + 𝑖 1 + 𝑖 2 + 𝑖 ⋅ ⋅ ⋅ 2 + 𝑖 1 + 𝑖

1 − 𝑖 −4𝑁 + 2 − 𝑖 1 − 𝑖 ⋅ ⋅ ⋅ 1 − 𝑖 2 − 𝑖

2 + 𝑖 1 + 𝑖 −4𝑁 + 2 + 𝑖 ⋅ ⋅ ⋅ 2 + 𝑖 1 + 𝑖

.

.

.
.
.
.

.

.

. d
.
.
.

.

.

.

2 + 𝑖 1 + 𝑖 2 + 𝑖 ⋅ ⋅ ⋅ −4𝑁 + 2 + 𝑖 1 + 𝑖

1 − 𝑖 2 − 𝑖 1 − 𝑖 ⋅ ⋅ ⋅ 1 − 𝑖 −4𝑁 + 2 − 𝑖

)
)
)
)
)
)

)

.

(57)

Using entries in (56) the corresponding matrices 𝐻, which
appeared first in (55), are given by

𝐻(𝜔) =

{{{{{{

{{{{{{

{

𝑁(

−4 0

0 −4

) , 𝜔 ̸= 1,

𝑁

2
(

−6 + 𝑖 1 + 𝑖

1 − 𝑖 −6 − 𝑖

) , 𝜔 = 1.

(58)

Here we just used the fact that

1 + 𝜔 + 𝜔
2
+ ⋅ ⋅ ⋅ + 𝜔

𝑁/2−1
=

{{

{{

{

0, 𝜔 ̸= 1,

𝑁

2
, 𝜔 = 1.

(59)

Each of the matrices 𝐻(𝜔) given by (58) has two negative
eigenvalues implying that the corresponding 𝐴 as well as 𝐿

𝐴

has𝑁 negative eigenvalues.

The theorem implies that the class of RT-symmetric
operators is much richer in the case of even𝑁.

6. Conclusions

The main result of this paper is the description of all RT-
symmetric Laplace operators on a star graph with the most
general coupling condition at the central vertex. Essentially
the same result holds if the edges forming the graph are
compact and Dirichlet, Neumann, or any other identical
Hermitian conditions are introduced at the remote vertices. It
might be interesting to extend our studies assuming different
(not necessarily Hermitian) conditions at the remote vertices.

Our results on the discrete spectrum can be extended in
two ways:

(i) describing in the case 𝑁 is even the whole family of
RT-symmetric operators leading to𝑁 real eigenval-
ues (not only providing a counterexample as is done
here);

(ii) studying the case of compact star graphs (defined as
above).

The current paper opens a new direction in the studies of
quantum graphs, namely, investigation of differential opera-
tors onmetric graphs possessing generalised symmetries, not
necessarily self-adjoint ones.
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Interdisziplinäre Forschung, Bielefeld (Cooperation Group
Discrete and continuous models in the theory of networks).

References

[1] C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian
Hamiltonians having PT-symmetry,” Physical Review Letters,
vol. 80, no. 24, pp. 5243–5246, 1998.

[2] C. M. Bender, “Making sense of non-Hermitian Hamiltonians,”
Reports on Progress in Physics, vol. 70, no. 6, pp. 947–1018, 2007.

[3] C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric
quantum mechanics,” Journal of Mathematical Physics, vol. 40,
no. 5, article 2201, 1999.

[4] C. M. Bender, “Introduction to PT-symmetric quantum the-
ory,” Contemporary Physics, vol. 46, no. 4, pp. 277–292, 2005.

[5] A. Mostafazadeh, “PT-symmetric quantum mechanics: a pre-
cise and consistent formulation,” Czechoslovak Journal of
Physics, vol. 54, no. 10, pp. 1125–1132, 2004.

[6] M. Znojil, “Experiments in PT-symmetric quantum mechan-
ics,” Czechoslovak Journal of Physics, vol. 54, no. 1, pp. 151–156,
2004.

[7] T. Ya. Azizov and C. Trunk, “PT Symmetric, hermitian and
P-self-adjoint operators related to potentials inPT quantum



Advances in Mathematical Physics 9

mechanics,” Journal of Mathematical Physics, vol. 53, no. 1,
Article ID 012109, 18 pages, 2012.

[8] E. Caliceti, S. Graffi, M. Hitrik, and J. Sjöstrand, “Quadratic
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