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Some fundamental structural characteristics of large-scale power systems are analyzed in the
paper. Firstly, the large-scale power system is decomposed into various hierarchical levels:
the main system, subsystems, sub-subsystems, down to its basic components. The proposed
decomposition method is suitable for arbitrary system topology, and the relations among various
decomposed hierarchical levels are explicitly expressed by introducing the interface concept. Then,
the structural models of various hierarchical levels are constructed in a bottom-up manner. The
constructed hierarchical model can reveal the self-similarity characteristic of large-scale power
systems.

1. Introduction

Analysis of the structure of power systems is a very important task for many problems, such
as the time-scale simulation, control strategy design, and so forth. There are some important
specialties that should be considered when analyzing the structure of power systems. For
example, (1) power system is a large-scale system; (2) the topology of power system is
very complex and power systems are normally with multilevel/hierarchical structures [1];
(3) various components of power systems are interconnected with each other via electrical
network (not interconnected directly), andwithout considering electromagnetic effect, power
systems’ networks follow basic principles of electrical networks.

Aiming at the specialties of power systems, a lot of work has been done to analyze
the structure of power systems. In the early time, when constructing the structure preserving
model (SPM) [2, 3] and component connection model (CCM) [4], the “planar” structural
characteristics or the interconnection relations between components (mainly generators and
loads) and AC grid are analyzed. However, there are seldom literatures discussing the
hierarchical structural characteristics of modern power systems. In [5], the relations among
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subsystems of power systems are investigated, but the results have not been extended to the
analysis of more hierarchical levels and are less flexible.

In recent years, in order to satisfy the demand of large-scale numerical simulations
(such as parallel computation, etc.), the analysis of the complex topology and hierarchical
structure of modern power systems has drawn more attention. For example, in [6], under
the platform of the AnyLogic Simulation Software, the hierarchical characteristics are
investigated; in [7], the concept of multilevel MATE (Multi-Area Thévénin Equivalent) is
proposed, and thus power system networks could be partitioned into multilevels; in [8], a
power system is decomposed and described by a component tree, which is valuable for the
computation parallelism and programming flexibility.

In the area of structural analysis of power systems, there is a prominent phenomenon,
which is that the analysis purpose is mainly for system’s analysis and simulations, and
little attention is paid to the needs of other issues (such as designing control strategy). For
example, when analyzing the interconnection relations between components and AC grid,
the current and voltage vectors are normally used to describe the relations. However, some
local measurable variables that are very meaningful for designing component controllers (as
feedback variables) are not used, such as the amplitude of terminal voltage and the active
and reactive powers. In the previous work of the authors [9], some immeasurable variables
of synchronous generator are transformed into the local measurable variables, but there is
still lack of systematic methods.

Moreover, until present there is still a lack of systematic hierarchical decomposition
and modeling method of large-scale power systems, and some internal structural character-
istics are still not revealed.

In the paper, firstly the large-scale power systems will be decomposed into various
hierarchical levels (such as main system, subsystems, sub-subsystems, and components)
from top to bottom. Secondly, the relations among various levels will be analyzed, described,
and classified by introducing the interface concepts. Thirdly, with a well-defined rule, the
structural models of various hierarchical levels will be constructed one by one in an order of
component, sub-subsystem, subsystem, and main system. On constructing the hierarchical
structural model, a natural characteristic of power systems, or the self-similar characteristic,
can be revealed. Finally, the application of the proposed structural model of power systems
in designing decentralized controller will be demonstrated briefly.

2. Hierarchical Decomposition of Large-Scale Power Systems

2.1. An Example of Hierarchical Decomposition

In this section, the large-scale power system will be decomposed into various hierarchical
levels (such as main system, subsystem, sub-subsystem, . . ., down to its components). In the
following, the IEEE 39-bus system will be chosen as an example to illustrate the hierarchical
decomposition.

Firstly, one may divide the whole IEEE 39-bus system (named main system) into three
subsystems (see Figure 1). In Figure 1, all of the three subsystems are interconnected with
each other via corresponding transmission lines. A main grid could then be used to explicitly
describe the relation among these three subsystems (see Figure 1). As seen from Figure 1, the
main grid only consists of some interconnection lines and would be called the “virtual” main
grid.
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Figure 1: Decomposition of the IEEE 39-bus system into three subsystems.
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Figure 2: Decomposition of the IEEE 39-bus system into four subsystems.

According to the different demands of real power engineering, the system can also
be decomposed in the other forms. For example, the above IEEE 39-bus system can also be
divided into four subsystems as shown in Figure 2.

Compared with the virtual main grid as shown in Figure 1, the main grid in
Figure 2 includes not only some transmission lines but also some buses (bus 5, 6, and 17).
Furthermore, some loads could also be included in the main grid, if they are considered as
the invariant impedances (static loads).

The subsystems can also be further divided into some sub-subsystems and one subgrid
(see Figure 2). It should be noted that when decomposing, some components can even be
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Figure 3: Four-level decomposition of large-scale power systems.

Table 1: Constituent elements of every hierarchical level.

Hierarchical level Constituent elements
Main system One main grid N subsystems
nth subsystem One subgrid (the nth subgrid) Jn sub-subsystems
njth sub-subsystem One sub-subgrid (the njth sub-subgrid) Inj components
njith component njith component

directly connected to the subgrid, or a single component can be chosen as an individual sub-
subsystem if necessary. For example, in Figure 2 synchronous generator sets 3, 4, and 5 are
directly connected to subgrid 3. Sometimes, some components can even be directly connected
to the main grid.

The sub-subsystem can also be further decomposed. For example, the sub-subsystem
3-1 in Figure 2 can be divided into sub-subgrid 3-1 and components 3-1-1 (generator set 6),
3-1-2 (generator set 7), and 3-1-3 (the load in bus 23).

2.2. General Expressions of Hierarchical Decomposition

As a whole, the above hierarchical decomposition method is in a top-downmanner (from top
to bottom) [10] and has the following characters.

(i) There are no special restrictions for the hierarchical decomposition, and thus the
proposed decomposition method is suitable for arbitrary power systems.

(ii) The hierarchical levels or “depth” to be decomposed can be arbitrarily chosen.

(iii) For a given hierarchical level, the decomposition form is arbitrary.

In the following of the paper, without loss of generality, the four-level decomposition
of large-scale power systems (see Figure 3) will be considered. For the four-level decom-
position shown in Figure 3, the constituent elements of every hierarchical level could be
sequentially defined (see Figure 3 and Table 1).

Totally there are Inj components in the njth sub-subsystem (j = 1, . . . , Jn); there are Jn
sub-subsystems and

∑Jn
j=1 Inj components in the nth subsystem (n = 1, . . . ,N), and so there
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Figure 4: The interface between the nth subsystem and the rest of system (relative to the nth subsystem).

are N subsystems,
∑N

n=1 Jn = J sub-subsystems, and
∑N

n=1(
∑Jn

j=1 Inj) = I components in the
main system.

3. The Relations among Various Hierarchical Levels

3.1. Interface Concepts

In this subsection, the interface concept will be introduced to explicitly describe the relations
among various hierarchical levels. Firstly, the interface among subsystems andmain grid will
be discussed.

The interconnection relations among N subsystems and main grid are shown in
Figure 4. With respect to the nth subsystem, all the other subsystems and the main grid could
be seen as “the rest of system (relative to the nth subsystem)”.

Definition 3.1. The interconnection line between the nth subsystem and the main grid is called
the interface between the nth subsystem and the rest of system, or the nth subsystem’s
interface for simplicity.

For example, in Figure 2 the three interconnection lines between subsystem 3 and the
main grid just constitute the interface of subsystem 3.

Similarly, the interface between the sub-subsystem and the rest of system and the
interface between the component and the rest of system can also be defined. The interface
between the component and the rest of system is as shown in Figure 5.
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Figure 5: The interface between the njith component and the rest of system (relative to the njith
component).

The interfaces or the numbers of the interconnection lines between different
components (or sub-subsystems, subsystems) and the rest of system may be different.
However, in Figures 3–5, this difference cannot be expressed explicitly, or, in these three
figures, all of the interfaces are expressed by a “single line.” In the following, the concept
of “port” will be introduced to describe this difference.

Firstly, components are chosen as an example. As is well known, if the influence of
asymmetry of three phases is not considered, the three-phase circuits are generally shown
by single line diagrams in which only one line is shown instead of all the three as shown in
Figure 1. Then, according to the number of the interconnection lines between the component
and the rest of system, components could be classified as follows.

Definition 3.2. If there is one interconnection line between the component and the rest of
system, it is called the one-port component.

Synchronous generator set, motor load, resistance load, and shunt FACTS apparatus
are all one-port components.

Definition 3.3. If there are two interconnection lines between the component and the rest of
system, it is called the two-port component.

Series FACTS apparatus (TCSC, SSSC, TSSC, etc.) and shunt-series FACTS apparatus
are two-port components.

Definition 3.4. If the number of interconnection lines between the component and the rest of
system is greater than or equal to three, the component is called the multiport component.

For example, unified series-series apparatus, unified apparatus for multiple lines,
multiport HVDC system, and so forth, [11] are multiport components.

Generally, assuming the number of the interconnection lines between the njith
component and the rest of system is I0nji (the subscript nji denotes the sequence of the
component and the superscript 0 denotes that it is a number), the njith component could
be classified as I0nji-port component (see Figure 6(a)).

Similarly, the njth sub-subsystem and the nth subsystem can be classified or named
as J0nj-port sub-subsystem (see Figure 6(b)) or N0

n-port subsystem. For example, in Figure 2
there are three interconnection lines between subsystem 3 and the rest of system, and thus
subsystem 3 is a three-port subsystem.
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Figure 6: I0nji-port component (a) and J0nj -port sub-subsystem (b).

3.2. Interface Variables

Based on the interface concept given above, the interface variables could then be defined to
describe the mathematical relations among various hierarchical levels.

If the AC grid of power systems adopts quasi-steady model, the mutual interface
relation between any component and the corresponding rest of system can be determined
by the current and voltage vectors. For example, the mutual relation between the njith
component and the rest of system (see Figure 6(a)) can be described by IFnji and UFnji. Here,

IFnji ∈ R2I0nji and UFnji ∈ R2I0nji are the current and voltage vectors, respectively.

Definition 3.5. (IFnji,UFnji) are called the basic interface variables of the njith component.

Apart from the basic interface variables, other sets of variables can also be used to
describe the interface relations.

Definition 3.6. vnji ∈ R4I0nji are called the interface variables of the njith component, if there
are the following equivalent relations between (IFnji,UFnji) and vnji:

vnji = Φnji

(
IFnji,UFnji

)
,

(
IFnji,UFnji

)T = Φ−1
nji

(
vnji
)
. (3.1)

In (3.1), Φ−1
nji(·) is the inverse of Φnji(·).

Apparently, the basic interface variables can be considered as a special group of
interface variables, and the selection of interface variables is more flexible than that of the
basic interface variables. Thus some locally measurable variables that are very commonly
used in real engineering, such as the amplitude of voltage and current V tnji, Itnji, the
active and reactive power Ptnji, Qtnji, and so forth, can be chosen as the interface variables.
Then, these interface variables could be chosen as the feedback variables of component-
decentralized controllers [9], and so the introduction of the interface concept and interface
variables is valuable for designing component decentralized controllers.

Choosing the synchronous generator set as an example, the basic interface variables
are [Ixnji, Iynji, Uxnji, Uynji], and [Vtnji, Itnji, Qtnji, θUnji] could be chosen as the interface
variables for the following reasons. Here, Ixnji and Iynji are the x- and y-axis components
of the terminal currents, respectively (pu); Uxnji and Uynji are the x- and y-axis components
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of the terminal voltages, respectively (pu); θUnji is the phasor between the terminal voltage
and an arbitrary reference (degree). Firstly, there are

Vtnji =
√
U2

xnji +U2
ynji,

Itnji =
√
I2xnji + I2ynji,

Qtnji = UynjiIxnji −UxnjiIynji,

θUnji = arcctg

(
Uxnji

Uynji

)

.

(3.2)

Equation (3.2) is the relation of vnji = Φnji(IFnji,UFnji). Defining (3.2) as Fnji(vnji, IFnji,
UFnji) = vnji −Φ(IFnji,UFnji) = 0, there is

det

⎛

⎝
∂
(
Fnji
(
vnji, IFnji,UFnji

))

∂
(
Ixnji, Iynji, Uxnji, Uynji

)T

⎞

⎠ = − Ptnji

VtnjiItnji
. (3.3)

In the normal operating area of generator, there is det(∂(Fnji(vnji, IFnji,UFnji))/
∂(Ixnji, Iynji, Uxnji, Uynji)

T ) = −Ptnji/VtnjiItnji /= 0. Thus according to the Theorem of Implicit
Function [12], theoretically there is

Ixnji = fIxnji
(
Vtnji, Itnji, Qtnji, θUnji

)
,

Iynji = fIynji
(
Vtnji, Itnji, Qtnji, θUnji

)
,

Uxnji = fUxnji

(
Vtnji, Itnji, Qtnji, θUnji

)
,

Uynji = fUynji

(
Vtnji, Itnji, Qtnji, θUnji

)
.

(3.4)

Equation (3.4) is just the relation of (IFnji,UFnji)
T = Φ−1(vnji), and thus

[Vtnji, Itnji, Qtnji, θUnji] can be chosen as the interface variables.
Similarly, the above concept of interface variables could also be extended to other

hierarchical levels. For the njth sub-subsystem, ξnj ∈ R4J0nj can be defined as its interface
variables. For the nth subsystem, ηn ∈ R4N0

n can be defined as its interface variables.
Other variables, including the input variables and state variables of all hierarchical

levels in Figure 3, can also be defined as follows.

unj =
[
unj1, . . . ,unji, . . . ,unjInj

]
,

xnj =
[
xnj , . . . , xnji, . . . , xnjInj

]
,

un =
[
un1, . . . ,unj , . . . ,unJn

]
,

xn =
[
xn1, . . . , xnj , . . . , xnJn

]
,

u = [u1, . . . ,un, . . . ,uN],

x = [x1, . . . , xn, . . . , xN].

(3.5)
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4. Hierarchical Structural Model and the Self-Similar Characteristic of
Large-Scale Power Systems

Based on the proposed hierarchical decomposition method, the hierarchical structural model
of large-scale power systems will be constructed in this section in a bottom-up manner (from
the components level up to the main system). Meanwhile, by constructing the hierarchical
structural model, some internal structural characteristics (such as the self-similarity) of large-
scale power systems can be revealed.

4.1. Component Structural Model

4.1.1. Structural Model of Synchronous Generator Set

The discussionwill begin with amodel of synchronous generator set [13]. When the 3rd order
one-axis generator model without ignoring the transient saliency is used and both excitation
and governor parts are represented by the 1st order models, the model of the synchronous
generator set (as the njith component of the njth sub-subsystem) includes the following two
kinds of equations.

(1) The nonlinear differential equations describing the dynamics of the synchronous
generator set:

δ̇nji = ωnji −ω0,

ω̇nji =

(
ω0

Hnji

)[

PHnji + CMLnjiPmnji0 −
Dnji

(
ωnji −ω0

)

ω0

]

−
(

ω0

Hnji

)
[
E′
qnji +

(
xqnji − x′

dnji

)
Idnji
]
Iqnji,

Ė′
qnji =

(
1

T ′
dnji0

)
[
Efdnji − E′

qnji −
(
xdnji − x′

dnji

)
Idnji
]
,

ṖHnji =

(
1

TH∑nji

)
(−PHnji + CHnjiPmnji0 + CHnjiUcnji

)
,

Ėfdnji =

(
1

TRnji

)
(−Efdnji +KAnjiEftnji

)
,

(4.1)

where δnji is the power angle of synchronous generator (degree); ωnji is the rotor speed
of synchronous generator (rad/s); ω0 is the synchronous speed (rad/s); Hnji is the inertia
constant of synchronous generator (s); PHnji is the mechanic power of HP (high pressure)
(pu); CMLnji is the distribution coefficient of IP (intermediate pressure) and LP (low
pressure); Pmnji0 is the initial static value of total mechanic power (pu); Dnji is the damping
constant of synchronous generator (pu); E′

qnji is the q axis transient electromagnetic fields
of synchronous generator (pu); xqnji and xdnji are the q and d axis synchronous reactances
of synchronous generator, respectively (pu); x′

dnji is the d axis transient reactances of
synchronous generator (pu); Idnji and Iqnji are the d and q axis stator circuit currents,
respectively (pu); T ′

dnji0 is the d axis transient open-circuit time constants of synchronous
generator (s); Efdnji is the excitation control input of synchronous generator (pu); TH∑nji is
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the time constant of the turbine (s); CHnji is the distribution coefficient of HP; Ucnji is the
valve control input of generator set (pu); TRnji is the time constant of the terminal voltage
transducer of exciter system (s); KAnji is the amplification of exciter (pu).

In (4.1), the inputs are unji = [Etnji, Ucnji]; the state variables are xnji = [δnji, ωnji, E
′
qnji,

PHnji, Efdnji]. As Idnji and Iqnji are neither inputs nor state variables, they are named as the
“affiliate variables” in this paper, orwnji = [Idnji, Iqnji].

(2) The nonlinear algebraic equations describing the interface relation between
the generator set and the rest of system, or between [Ixnji, Iynji, Uxnji, Uynji] and
[δnji, E′

qnji, Idnji, Iqnji].

This kind of equations include the stator voltage equations:

Udnji = xqnjiIqnji − ranjiIdnji,

Uqnji = E′
qnji − x′

dnjiIdnji − ranjiIqnji,
(4.2)

and the dq-xy transformation equations:

[
Uxnji

Uynji

]

=
[
cos δnji sin δnji
sin δnji − cos δnji

][
Uqnji

Udnji

]

,

[
Ixnji
Iynji

]

=
[
cos δnji sin δnji
sin δnji − cos δnji

][
Iqnji
Idnji

]

,

(4.3)

whereUdnji andUqnji are d and q axis components of the terminal voltages, respectively, (pu);
ranji is the resistance of the armature of synchronous generator (pu).

If we choose [Vtnji, Itnji, Qtnji, θUnji] as the interface variables vnji and substitute (4.2)
and (4.3) into (3.2) in order to eliminate the basic interface variables [Ixnji, Iynji, Uxnji, Uynji]
and Udnji,Uqnji, there are

Vtnji =

√
(
xqnjiIqnji − ranjiIdnji

)2 +
(
E′
qnji − x′

dnji
Idnji − ranjiIqnji

)2
,

Itnji =
√
I2dnji + I2qnji,

Qtnji = E′
qnjiIdnji − xqnjiI

2
qnji − x′

dnjiI
2
dnji,

θUnji = δnji − arctan
xqnjiIqnji − ranjiIdnji

E′
qnji − x′

dnjiIdnji − ranjiIqnji
.

(4.4)

Equations (4.4) are named as the “interface equations” between generator set and AC
grid in this paper.

Thus, the generator set could be described by the dynamic (differential) equations (or
(4.1)) and the algebraic (interface) equations (or (4.4)), and this kind of model is a class of
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vnji = [Vtnji, Itnji, Qtnji, θUnji]

Figure 7: The structural model of synchronous generator set.

nonlinear DAE (differential-algebraic equation)models and is named as “structural model” of
synchronous generator set in this paper (see Figure 7).

4.1.2. General Expression of Component Structural Model

Similar to the structural model of synchronous generator set as shown in Figure 7, the general
expression of the structural model of the njith (I0nji-port) component could be defined as
follows:

ẋnji = fwnji
(
xnji,wnji,unji

)
,

gwnji
(
xnji,wnji,vnji

)
= 0,

(4.5)

where unji ∈ RUnji are the input variables; vnji ∈ R4I0nji are the interface variables; xnji ∈
RXnji are the state variables; wnji ∈ RWnji are the affiliate variables; fwnji and gwnji are the
corresponding mappings.

In (4.5), there are two kinds of nonlinear equations:

(1) dynamic equations or differential equations ẋnji = fwnji(xnji,wnji,unji), which are
used to describe the internal complex dynamics of components,

(2) interface equations or algebraic equations gwnji(xnji,wnji,vnji) = 0, which are used to
describe the algebraic relations among xnji, wnji and vnji.

To sum up, in the structural model of the njith (I0nji-port) component, totally there are
Unji+Xnji+Wnji+4I0nji variables inXnji+Wnji+2I0nji equations. This means that the component
structural model is constrained by Unji input variables and 2I0nji interface variables (These
2I0nji interface variables could be considered as the disturbance variables from the rest of
system). When these Unji input variables and 2I0nji interface variables are known, the model
is solvable and all of variables could therefore be determined.
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Further, the interface equations gwnji(vnji,wnji, xnji) = 0 could be decomposed into two
parts (Note that such decomposition does exist for all of the present components to the best
of our knowledge.):

wnji = hnji

(
xnji,vnji

)
,

gnji
(
xnji,vnji

)
= 0.

(4.6)

By substitutingwnji = hnji(xnji,vnji) into ẋnji = fwnji(xnji,wnji,unji), the affiliate variables
wnji in (4.5) could be eliminated. Thus, the component structural model without affiliate
variables is

ẋnji = fνnji
(
xnji,vnji,unji

)
,

gnji
(
xnji,vnji

)
= 0.

(4.7)

The component structural model given in (4.5) or (4.7) is suitable for not only the
existing components of today’s power systems but also new components in the future.

4.2. Structural Model of Sub-Subsystem

The model of sub-subsystem could be obtained by combining the structural models of all of
the components in this sub-subsystem and the model of the sub-subgrid.

As shown in Figure 2, there may be some loads in the AC grid. When constructing
the model of the sub-subsystem, all of the loads in the sub-subgrid must be expressed by
invariant impedances. Thus, the model of the njth sub-subgrid can be expressed as

zbnj
(
IFnj1,UFnj1, . . . , IFnji,UFnji, . . . , IFnjInj ,UFnjInj , IFnj ,UFnj

)
= 0, (4.8)

where (IFnji,UFnji) (i = 1, 2, . . . , Inj) are the basic interface variables of the njith component;
(IFnj ,UFnj) are the basic interface variables of the njth sub-subsystem.

Meanwhile, the equivalent relation between (IFnji,UFnji) (i = 1, 2, . . . , Inj) and the
corresponding interface variables vnji (i = 1, 2, . . . , Inj) for each component could be set up
easily, and so do the equivalent relation between (IFnj ,UFnj) and ξnj . Or there are

(
IFnji,UFnji

)T = Φ−1
nji

(
vnji
) (

i = 1, 2, . . . , Inj
)
,

(
IFnj ,UFnj

)T = Φ−1
nj

(
ξnj
)
.

(4.9)

Substituting (4.9) into (4.8), the model of the njth sub-subgrid can be purely expressed
by the interface variables, or

znj
(
vnj1, . . . ,vnji, . . . ,vnjInj , ξnj

)
= 0. (4.10)
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Thus, combining the model of the njth sub-subgrid (4.10) with the component
structural model (4.5) or (4.7), the mathematical model of the njth sub-subsystem can be
derived as follow:

⎧
⎨

⎩

ẋnji = fwnji
(
xnji,wnji,unji

)

gwnji
(
xnji,wnji,vnji

)
= 0

(
i = 1, 2, . . . , Inj

)
,

znj
(
vnj1, . . . ,vnji, . . . ,vnjInj , ξnj

)
= 0,

(4.11)

⎧
⎨

⎩

ẋnji = fνnji
(
xnji,vnji,unji

)

gnji
(
xnji,vnji

)
= 0

(
i = 1, 2, . . . , Inj

)
,

znj
(
vnj1, . . . ,vnji, . . . ,vnjInj , ξnj

)
= 0.

(4.12)

Further, the algebraic equations in (4.12), or gnji(xnji,vnji) = 0 (i = 1, 2, . . . , Inj) and
znj(vnj1, . . . ,vnji, . . . ,vnjInj , ξnj) = 0, could be described as

gνnj
(
xnj ,vnj , ξnj

)
= 0. (4.13)

Meanwhile, the Xnj differential equations ẋnji = fνnji(xnji,vnji,unji) (i = 1, 2, . . . , Inj) in
(4.12) could be described as

ẋnj = fνnj
(
xnj ,vnj ,unj

)
, (4.14)

where xnj = [xnj1, . . . , xnji, . . . , xnjInj ], vnj = [vnj1, . . . ,vnji, . . . ,vnjInj ], and unj = [unj1, . . . ,
unji, . . . ,unjInj ].

Thus, the njth sub-subsystem could be expressed by dynamic equations and algebraic
equations, or a class of nonlinear DAE models, just like that of a single component, as shown
in (4.5)

ẋnj = fνnj
(
xnj ,vnj ,unj

)
,

gνnj
(
xnj ,vnj , ξnj

)
= 0.

(4.15)

This kind of model is named as the “structural model” of sub-subsystem in this paper.
It should be mentioned that the variables vnj = [vnj1, . . . ,vnji, . . . ,vnjInj ] in (4.15) act as

the sub-subsystem’s affiliate variables like wnji in component structural model, although they
are the component’s interface variables between components and the sub-subgrid. Similarly,
the affiliate variables of other hierarchical levels can also be defined.

The total number of vnj is 4I0nj . If choosing 4I0nj of appropriate equations from the
4I0nj + 2J0nj interface equations in (4.15), one could derive

vTnj =
[
vnj1, . . . ,vnji, . . . ,vnjInj

]T
= βnj

(
ξnj , xnj1, . . . , xnji, . . . , xnjInj

)
. (4.16)



14 Mathematical Problems in Engineering

Decomposing expressions
M

ai
n 

sy
st

em
Su

b 
sy

st
em

Equations of the main grid

Su
b-

su
bs

ys
te

m
C

om
po

ne
nt

Dynamic equations

Interface equations

Zoom in

Dynamic equations

Dynamic equations

Dynamic equations

Interface equations

Interface equations

Interface equations

Zoom in

Zoom in

Decomposing

Decomposing

Equations of the nth subgrid

Equations of the njth sub-subgrid

1st sub-
system

nth sub-
system

Nth sub-
system

n1st sub-
subsystem

njth sub-
subsystem

nJnth sub-
subsystem

nj1st
component

njith
component

njInj th
component

Intergal expressions

· · · · · ·

· · ·· · ·

· · ·· · ·

˙ = η( ,η, )

η( ,η, 0) = 0

˙ n = ξ
n ( n, ξn, n)

ξ
n
( n, ξn,ηn) = 0

˙ nj =
ν
nj ( nj , nj , nj)

ν
nj( nj , nj ,ηnj) = 0

˙ nji = w
nji( nji, nji, nji)

w
nji( nji, nji, nji) = 0

ηn ηn

ηn
η1 ηN

ξnj ξnj

ξnjξn1 ξnJn

nji

njinj1 njInj

(η1, · · · ,ηn, · · · ,ηN) = 0

n(ξn1, · · · , ξnj , · · · , ξnJn ,ηn) = 0

nj( nj1, · · · , nji, · · · , njInj , ξnj) = 0x

x

x

xx

x

xx

xx

x

x

f

f

f

f

u

u

u

u

g

g

g

g

vvv

v v v
v

v

v

v

w

w

z

z

z

Figure 8: Two kinds of expressions of hierarchical structural models and their relations.

And by substituting (4.16) into both the dynamic equations and interface equations of (4.15)
to eliminate the affiliate variables vnj , one can get another kind of model of sub-subsystem as
follows (just like that of component shown in (4.7)):

ẋnj = fξnj
(
xnj , ξnj ,unj

)
,

gnj
(
xnj , ξnj

)
= 0.

(4.17)

Apparently, there are two kinds of structural models of sub-subsystem. In the paper,
the model having the same form as in (4.11) is named as the “decomposing expressions” of the
sub-subsystem’s structural model and the model in a form like (4.15) is named as its “integral
expressions” (see Figure 8). From this viewpoint, the component’s structural model (4.5) can
also be considered as the integral expression (see Figure 8). From (4.11) and Figure 8, it can
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be clearly seen that the integral expression of component structural model is just a part of the
decomposing expression of sub-subsystem’s model.

In the same way, the structural model of subsystem and main system can also be
constructed as shown in the following.

4.3. Structural Model of Subsystem

The “decomposing expressions” of the nth subsystem’s structural model are

⎧
⎨

⎩

ẋnj = fνnj
(
xnj ,vnj ,unj

)

gvnj
(
xnj ,vnj , ξnj

)
= 0

(
j = 1, . . . , Jn

)
,

zn
(
ξn1, . . . , ξnj , . . . , ξnJn ,ηn

)
= 0.

(4.18)

The “integral expressions” of the nth subsystem’s structural model are

ẋn = fξn(xn, ξn,un),

gξn
(
xn, ξn,ηn

)
= 0.

(4.19)

Here, ξn act as the subsystem’s affiliate variables.

4.4. Structural Model of Main System

The “decomposing expressions” of the main system’s structural model are

{
ẋn = fξn(xn, ξn,un)
gξn
(
xn, ξn,ηn

)
= 0

(n = 1, . . . ,N),

z
(
η1, . . . ,ηn, . . . ,ηN

)
= 0.

(4.20)

The “integral expressions” of the main system’s structural model are

ẋ = fη(x,η,u),

gη(x,η, 0) = 0.
(4.21)

Here, ηn(n = 1, . . . ,N) are the main system’s affiliate variables, and 0 would be considered
as the main system’s interface variables (In fact, the main system is an isolated system, not a
subsystem.).

Furthermore, by eliminating η, the algebraic equations of (4.21) would be identical,
and then the main system’s model of (4.21) would be simplified as follows:

ẋ = f0(x,u). (4.22)

This is not a DAE system but a traditional ODE (ordinary differential equation) system.
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Figure 9: The structural self-similarity of hierarchical power systems.

4.5. The Self-Similar Characteristic of Hierarchical Power Systems

The logical relations among various hierarchical levels (main system, subsystem, sub-
subsystem, down to components) can be more explicitly shown in Figure 9. Apart from the
components, each hierarchical level of power systems can be divided into several lower levels
and a corresponding AC grid. From this point of view, there is an obvious structural self-
similarity of hierarchical power systems.

Furthermore, there is also a high self-similarity among the structural models of
hierarchical power systems. Comparing (4.5), (4.15), (4.19), and (4.21), one can find out that
there is a surprising similarity among the integral expression models of hierarchical power
systems. Meanwhile, with reference to (4.11), (4.18), and (4.20), there is also a surprising
similarity among the decomposing expression models of hierarchical power systems.

5. Application of Structural Model in Decentralized Control

As an application example, the value of the proposed structural model in decentralized
control of power systems will be viewed in this section. Here, it should be noted that in
this section only the brief ideas are given, and the detailed discussion about this issue will be
given in our next paper.

5.1. The Standard DAE Expression of Component Structural Model

As mentioned above, the component structural model of (4.5) is a class of nonlinear DAE
(differential-algebraic equation) model. In control theory, the DAE systems are also called
singular systems [14, 15]. Yet, from the viewpoint of the DAE theory, the component
structural model of (4.5) is still not the standard DAE model (the number of variables vi, wi

is large than the number of algebraic equations), and so it would be convenient to translate it
into the standard DAE at first. As the variable’s subscript (or nji) in (4.5) is very complex, it
will be simplified as i below for the concision of the form.

The interface variables vi in (4.5) can be decomposed into two parts, or vi =
(vouti ,vini )

T with the following characteristics:
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(i) vini could “fully” describe the influence of the rest of power systems to the
component, or vini are the interconnection inputs (disturbances) of the component;

(ii) vouti could “fully” describe the influence of the component to the rest of power
systems.

Under this decomposition, (4.5)would be

ẋi = fwi (xi,wi,ui),

gwi
(
xi,wi,vouti ,vini

)
= 0

(5.1)

Defining zi = (wi,vouti )T , (5.1)would be

ẋi = fzi (xi, zi,ui),

gzi
(
xi, zi,vini

)
= 0,

(5.2)

where zi ∈ R2mi+Wi are the algebraic variables [14] of the DAE systems; vini ∈ R2mi are the
interconnection inputs.

When discussing the control problem, the output equations should also be defined.
The general expression of the output equation of component would be

yi = hz
i

(
xi, zi,vini

)
. (5.3)

Here, it should be noted that the interconnections of (5.2), or vini , are local measurable.
This characteristic of (5.2) will be very helpful for designing decentralized controller of
component.

5.2. Design of Decentralized Nonlinear Controller of Components

For the control problem of DAE model, one general approach is transforming the DAE
to traditional ODE (ordinary differential equation) [14]. In this subsection, the method of
transforming the nonlinear DAE as shown in (5.2) to nonlinear ODE will be discussed firstly.

“Index” is an important and basic concept in the theory of DAE. For a DAE, index is
the minimum derivative times of the algebraic equations that need to get the differential
equation of the algebraic variables [14]. For a DAE system, if its index is higher than 1,
the control problem will be very complex. Fortunately, for power systems, the component
structural model of (5.2) is just a DAE with index 1. Then, it is relatively easy to transform
the nonlinear DAE as shown in (5.2) to nonlinear ODE.

The interface equations in (5.2) can be decomposed into two parts:

gz1i
(
xi,wi,vouti ,vini

)
= wi − hi

(
xi,vouti ,vini

)
= 0,

gz2i
(
xi,vouti ,vini

)
= gi
(
xi,vouti ,vini

)
= 0.

(5.4)
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For the first group of (5.4) or the first wi equations of (5.4), there is
rank(∂gz1i (xi,wi,vouti ,vini )/∂wi) = Wi. As there is no wi in the second group of (5.4) and
zi = (wi,vouti )T , there must exist rank(∂gi(xi,vouti ,vini )/∂v

out
i ) = 2mi. Therefore, according

to the implicit function theorem [12], the interface equations of (5.4) can be theoretically
expressed as

wi = hi

(
xi,vouti ,vini

)
,

vouti = gouti

(
xi,vini

)
.

(5.5)

Furthermore, substituting the second equation of (5.5) into the first equation of (5.5),
and considering the definition of zi = (wi,vouti )T , there theoretically exist

zi = pi

(
xi,vini

)
. (5.6)

Substituting (5.6) into (5.2) and (5.3), there is

ẋi = fpi
(
xi,pi

(
xi,vini

)
,ui

)
= fvi
(
xi,vini ,ui

)
,

yi = hp

i

(
xi,pi

(
xi,vini

)
,vini
)
= hv

i

(
xi,vini

)
.

(5.7)

Apparently, (5.7) is a standard nonlinear ODE model.
It should be noted that only when the analytic expressions of pi(xi,vini ) in (5.6) exist

can one get the analytic expression of (5.7). Fortunately, for most kinds of components in
power systems, we can all get the analytical expressions of (5.6). However, in some special
circumstances, the interface equations gzi (xi, zi,v

in
i ) = 0 may be very complex, and thus

there may be very difficult or impossible to acquire the analytic expressions of pi(xi,vini ).
For example, when the generator adopts the 3rd order one-axis model without ignoring the
transient saliency, it is very difficult to acquire the analytic expression of pi(xi,vini ). In this
case, based on the characteristic of index 1, the nonlinear DAE as shown in (5.2) and (5.3)
could be transformed to

ẋi = fzi (xi, zi,ui),

żi = −
(
∂gzi
∂zi

)−1(∂gzi
∂xi

)

fzi (xi, zi, ui) −
(
∂gzi
∂zi

)−1( ∂gzi
∂vini

)

v̇ini ,

gzi
(
xi, zi,vini

)
= 0,

yi = hz
i

(
xi, zi,vini

)
.

(5.8)

In (5.8), the state variables have been expanded to (xi, zi)
T , and xi and zi are cons-

trainedwith each other by the algebraic equation gzi (xi, zi,v
in
i ) = 0. Thus, themodel as shown

in (5.8) is a constrained nonlinear ODE, or it is not the minimum state space realization of the
original nonlinear DAE.
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Figure 10: Diagram of component nonlinear decentralized controller.

For the decentralized control of the constrained nonlinear ODE model with
measurable interconnection variables as shown in (5.7) or (5.8), traditional nonlinear control
methods (e.g., differential geometric theory, direct feedback linearization (DFL) method,
inversion control method, etc.) which are suitable for normal nonlinear ODE could be
developed and expanded to be suitable. The detailed discussion about these will be also given
in our following paper.

The general decentralized control diagram is shown in Figure 10. In Figure 10, there
are three kinds of feedback or state feedback, output feedback and interface feedback in,
which interface feedback is not a traditional feedback kind. Here, one important reason that
makes the interface feedback possible is that the interconnections (interface variables) of the
component’s structural model are local measurable. By feed-backing interface variables, the
component controller can “apperceive” the interconnections between the component and the
rest of power systems.

6. Conclusions

The structural characteristics of large-scale power systems are analyzed in the paper.
Corresponding results would be valuable for some problems of power systems, such as the
time-scale simulation, the control strategy design, and so forth. Compared with the methods
in previous literatures [7, 8], there are the following features of the proposed methods and
results.

(1) The proposed analysis method is structural. Wholly, the hierarchical levels of power
systems are decomposed in a manner of top-down, and the structural models of
each hierarchical level are constructed in a manner of bottom-up (from bottom to
top).

(2) Some internal structural characteristics of power systems are revealed, including
the interface characteristic and the self-similar characteristic.

(3) The proposed models are structural. Or the equations, variables, and number
of equations and variables of the models of various hierarchical levels can be
defined and derived in a standard manner. Thus, the proposed model is named
as “hierarchical structural model” of power systems.
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