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Abstract 

This paper presents an architecture and control methodology for obtaining transparency and 

stability robustness in a multivariable bilateral teleoperator system.  The work presented here 

extends a previously published single-input, single-output approach to accommodate 

multivariable systems.  The extension entails the use of impedance control techniques, which are 

introduced to render linear the otherwise nonlinear dynamics of the master and slave 

manipulators, in addition to a diagonalization multivariable loop shaping technique, used to 

render tractable the multivariable compensator design.  A multivariable measure of transparency 

is proposed based on the relative singular values of the environment and transmitted impedance 

matrices.  The approach is experimentally demonstrated on a three degree-of-freedom scaled 

telemanipulator pair with a highly coupled environment.  Using direct measurement of the power 

delivered to the operator to assess the system’s stability robustness, along with the proposed 

measure of multivariable transparency, the loop-shaping compensation is shown to improve the 

stability robustness by a factor of two and the transparency by more than a factor of five.   
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1 Introduction 

Bilateral teleoperation systems provide for human interaction with an environment while 

alleviating the necessity of direct contact between the two.  Using a pair of robot manipulators, 

such a system enables dexterous human manipulation in remote, hazardous, or otherwise 

inaccessible environments.  Bilateral telemanipulators can additionally incorporate power 

attenuation or amplification between the human operator and environment, allowing for human 

manipulation of microscopic objects (in the case of macro-micro bilateral telemanipulation) or 

large-scale objects (in the case of man-amplifiers).  The teleoperative performance can be 

characterized by the transparency, which is a measure of the extent to which the telemanipulation 

system presents the undistorted dynamics of the environment to the human operator.  A common 

goal in the control of bilateral telemanipulation is to provide transparent teleoperation while 

ensuring the robust stability of the human-telemanipulator-environment loop.   

 

2 Prior Work 

Several researchers have investigated aspects of transparency and stability in telemanipulation, 

primarily through the use of two-port network modeling techniques.  Hannaford [1], Yokokohji 

and Yoshikawa [2], and Lawrence [3] collectively proposed the use of two-port hybrid 

parameters to address teleoperative transparency and passivity concepts to ensure the system’s 

stability robustness.  Due to the nature of the hybrid parameter/passivity approach, no significant 

distinction exists between single-input single-output (SISO) and multivariable (MIMO) 

controller design.  Because of the limited availability of MIMO analysis tools, however, few 

publications on bilateral telemanipulation have explicitly treated multivariable or multi-degree-

of-freedom systems.  Some prior works that do treat such systems include those by Colgate [4], 
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Itoh et al. [5], and Hashtrudi-Zaad and Salcudean [6].  Specifically, Colgate utilized the 

structured singular value, a multivariable frequency-domain stability robustness tool proposed by 

Doyle [7], to assess the stability of a macro-micro bilateral telemanipulator interacting with a 

passive human operator and environment.  Though the telemanipulator itself was a single-

degree-of-freedom system, the human-teleoperator-environment interaction was formulated in a 

manner that required multivariable tools in order to assess stability robustness.  Colgate did not 

explicitly treat transparency, but instead utilized impedance shaping to intentionally alter the 

dynamics as perceived by the human operator through the telemanipulator.  Itoh et al. 

experimentally implemented a six degree-of-freedom telemanipulator using passivity theory to 

address stability robustness, but instead of providing transparency, the telemanipulator was 

controlled to exhibit a task-oriented dynamic behavior specified in order to facilitate a particular 

telemanipulation task.  Hashstrudi-Zaad and Salcudean theoretically assessed the performance 

and stability robustness of a three degree-of-freedom telemanipulator by incorporating a parallel 

force/position control to linearize and decouple the manipulators, and by assuming the human 

operator and environment to be decoupled, in which case the analysis reduces to that required for 

three decoupled single-degree-of-freedom systems.   

 

In contrast to the combined hybrid parameter/passivity based approach, the architecture 

proposed by Fite et al. [8] formulates the teleoperation system as a single feedback loop to which 

the tools of classical control theory can then be applied to address the performance and stability 

robustness.  In so doing, the stability robustness of the system is addressed in a non-conservative 

manner, and the transparency is addressed only in the bandwidth of interest.  This loop shaping 

approach was developed in a single input, single output context; since telemanipulation 
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applications generally involve systems with coupled multiple degrees of freedom, however, such 

a method is of limited utility without extension to the multivariable case.  As such, the work 

presented in this paper extends this previously published approach to the multivariable case of 

telemanipulation.  Specifically, the extension entails the use of impedance control techniques to 

render linear the otherwise nonlinear dynamics of the master and slave manipulators, and 

employs a diagonalization multivariable loop shaping technique used to render tractable the 

multivariable loop shaping compensator design.  A multivariable measure of transparency is 

additionally proposed based on the relative singular values of the environment and transmitted 

impedance matrices.   

 

3 Multivariable Telemanipulation Architecture 

Fig. 1 depicts the general notion of two-channel bilateral telemanipulation, in which a human 

operator interacts with a force-controlled master manipulator, which is in turn coupled to a 

position-controlled slave manipulator interacting with an environment.  The two subsystems are 

coupled through scaled motion and force communication channels, where C1 and C2 represent 

the motion and force scaling matrices, respectively.  The human motion vector from the 

master/human subsystem, Xh, is the combined effect of human voluntary motion and the 

“feedthrough” motion from the teleoperator loop.  The latter is a filtered version of the motion 

vector filtered by the dynamics of the loop.  Noting that motion at the master/human interface 

can result either from a human voluntary motion input vector (Xhv) or the teleoperation 

feedthrough force vector (Fh), the human arm dynamics can be written in transfer function 

matrix form as:  

 [ ] 







=

h

hv
h F

X
X mhv GG  (1) 
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where Xh is the motion of the human hand, Xhv is the voluntary input command of the human 

operator (e.g., a neural command), Fh is the force commanded to the master manipulator by the 

teleoperation loop, and the transfer function matrices Ghv and Gm describe the dynamic 

relationships between the voluntary input command vector and the master manipulator force 

vector, respectively, and the resulting motion at the master/human interface. 

  

 The dynamics of the slave/environment interaction are represented by the block diagrams 

of Figs. 2a and 2b.  In the figures, Ze, Ys, and Cs are transfer function matrices governing the 

multivariable environment impedance, the admittance of the slave manipulator, and the position 

controller of the slave manipulator, respectively, and sG~  represents the closed–loop slave 

transfer function matrix.  Note that the hollow arrowheads represent physical connections, while 

the solid arrowheads represent signal connections.  As depicted in the figures, the position-

controlled slave manipulator is dependent upon the dynamics of the environment.  In order to 

alleviate the closed-loop slave manipulator’s dependence upon the environment, the slave 

controller includes local feedback of the interaction force occurring at the environment interface, 

as shown in Fig. 2c.  The resulting closed-loop slave dynamics Gs are rendered independent of 

the environment impedance, as shown in Fig. 2d.  Hashtrudi-Zaad and Salcudean [9] modified 

the approach of Lawrence [3] by incorporating similar feedback to achieve theoretically 

transparent teleoperation with three rather than four communication channels.  Note that this 

force feedback is also required to render linear the nonlinear slave dynamics via impedance 

control, as subsequently described.   
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 Given the master/human and slave/environment dynamics as previously described, the 

loop shaping telemanipulation architecture is obtained by combining the master/human and 

slave/environment subsystems with the position and force scaling matrices, C1 and C2, 

respectively, as shown in Fig. 3.  The stability of the teleoperation loop is governed by the 

characteristics of the open-loop response given by: 

 12
~ CGZCGYG semh=  (2) 

The transparency of the multivariable teleoperation loop is determined by the relative distortion 

between the transmitted impedance (i.e., the impedance felt by the human operator) and the 

actual environment impedance.  The impedance transmitted to the human operator by the 

telemanipulation system is given by: 

 12
~ CGZCGZ semt =  (3) 

For perfect transparency, the transmitted impedance transfer function matrix of Eq. (3) should 

equal the actual environment impedance, Ze.  In practice, these matrices need only be similar 

within some frequency band of interest.  Thus, within this band of interest, perfect transparency 

requires the singular values of the transmitted impedance transfer function matrix to equal those 

of the actual environment impedance transfer function matrix.  As such, a measure of the desired 

multivariable performance can be given by the ratio of the respective singular values of the 

impedance transmitted to the human operator to those of the environment impedance: 

 ni
j
j

ei

ti
i ≤≤= 1  ,

)]ω([σ
)]ω(~[σ

Z
Zδ  (4) 

where nrank =)~( et Z,Z  and iδ  represents distortion in the teleoperative system.  A desired 

bandwidth of transparency can be prescribed by ensuring that the distortion iδ  in each singular 
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value is less than some allowable amount of distortion ∆  for a desired bandwidth of operation.  

For ∆= 3 dB, a prescription for good teleoperative performance can be written as: 

 ti Ω∈∀≤ ωδ dB 3,dB  (5) 

where tΩ  is a desired bandwidth of teleoperative transparency.   

 

The overall objective of the control architecture is to achieve the desired performance 

specified by Eq. (5) while ensuring the robust stability of the closed-loop system.  With the 

introduction of a loop shaping compensator in the motion communication channel, the 

uncompensated open loop transfer function matrix G~  and transmitted impedance tZ~  will both 

be linearly affected by the compensator transfer function matrix, and will thus be given 

respectively by: 

 cGCGZCGYG 12 semh=  (6) 

and  cGCGZCGZ 12 semt =  (7) 

Thus, if the loop-shaping compensator Gc is designed with sufficient flexibility, it can be utilized 

to modify the loop shape of Eq. (6) to provide sufficient stability robustness, and additionally can 

be utilized to modify the transmitted impedance (Eq. (7)) to address the performance 

specification described by Eq. (5).  

 

Though design methods for multivariable loop shaping are less common than those 

available for SISO systems, some techniques are available to render the multivariable loop 

shaping design process tractable.  Maciejowski [10] discusses several such techniques at length.  

In the case that the system can be sufficiently diagonalized with a coordinate transformation, a 
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useful technique is to pre and post multiply the system with appropriate coordinate 

transformations, then design an intermediate diagonal transfer function matrix compensator for 

each degree of freedom using SISO loop shaping techniques.  The intermediate compensator is 

subsequently pre and post multiplied by the coordinate transformations used to diagonalize the 

plant, thus providing the final multivariable compensator.  This technique is incorporated in the 

experimental implementation subsequently described. 

 

4 Experimental Setup 

4.1 Hardware 

The multivariable loop shaping approach was implemented on a three degree-of-freedom scaled 

telemanipulation system in which the power was amplified from the user to the environment.  

The master manipulator, shown in Fig. 4, is a three degree-of-freedom direct drive robot with a 

semi-parallel five-bar linkage configuration.  Kollmorgen Servodisc DC motors directly actuate 

each rotational degree of freedom, and Midori non-contact magnetoresistive rotary 

potentiometers provide position sensing for each motor.  The manipulator is equipped with an 

ATI six-axis force/torque sensor capable of measuring forces and torques applied at its endpoint.  

A three degree-of-freedom stylus, connected to the loadcell, provides an interface for interaction 

between the manipulator and a human operator.  The manipulator has an approximate endpoint 

cubic workspace measuring 0.2 m per side, and is capable of continuous endpoint forces of 

approximately 10 N (depending on endpoint location in the workspace).  Further detail regarding 

the design of the master manipulator can be found in Perry [11].  The slave manipulator is a 

Unimate PUMA 560, shown in Fig. 5.  The PUMA is a three degree-of-freedom harmonic-drive 

manipulator with a three degree-of-freedom wrist attached at its endpoint.  The PUMA is 
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equipped with encoders and potentiometers for joint angle measurements, in addition to an ATI 

six-axis force/torque sensor, attached at the wrist, to measure forces and torques applied at the 

robot endpoint.  The PUMA is a well-characterized industrial manipulator that has been utilized 

in numerous robotic research and industrial applications.  Due to the fact that the master 

manipulator is a three degree-of-freedom robot, the wrist on the PUMA was immobilized, so that 

both manipulators were characterized by three degree-of-freedom spatial motion.  Finally, the 

wrist of the PUMA was rigidly connected to a compliant structure, which provided for a three 

degree-of-freedom coupled environment stiffness, which was experimentally measured as: 

 ee XF















−

−
=

14842276
15521455

5615455
 (8) 

where the elements of the stiffness matrix are in units of Newtons per meter. 

 

4.2  Master and slave manipulator impedance control 

The techniques employed in the proposed loop shaping approach require linear system dynamics 

of each block depicted in Fig. 3.  Since robot manipulators are generally characterized by 

nonlinear dynamics, impedance control can be utilized on both manipulators to impose a desired 

linear dynamics on the endpoints of each.  The equations of motion for the master and slave 

manipulators can be expressed in the following general form: 

 mhm
T
mmmmmmmmm )()(G),V)(τ Fqqqqqqm JI ++(+= &&&  (9) 

   
 es

T
sssssssss )()(G),V)(τ Fqqqqqqs JI −+(+= &&&  (10) 

where the subscript m refers to the master, the subscript s refers to the slave, q is the vector of the 

three generalized joint coordinates, I(q) represents the inertia matrix, ),V( qq &  is a vector 
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comprising the torques due to Coriolis and centrifugal  accelerations, G(q) represents the vector 

of  torques due to the acceleration of gravity, τ is the vector of joint torques applied to the three 

rotational degrees of freedom, JT(q) is the transpose of the Jacobian matrix, Fmh is the vector of 

external forces exerted by the endpoint of the master on the human operator, and Fe is the vector 

of forces exerted by the external environment on the endpoint of the slave.  The matrix 

definitions and parameters for the master model (Eq. (9)) are given in [11].  The matrix 

definitions and parameters for the slave model (Eq. (10)) were obtained from Armstrong et al. 

[12], who derived the model of the dynamics of the PUMA 560 arm and measured the 

parameters necessary to implement model-based control.  The respective impedance controllers, 

derived using the methodology of Hogan [13], are given by: 

 [ ] mhm
T
mmmmmmmmmm

m
dhmmmmm Fqqqqqqq

dq
dXqq )()(G),(V)()()( ,

1 JJJI +++







−=τ − &&&&&  (11) 

   

 [ ] es
T
ssssss,

1 )()(G),V)()()(τ Fqqqqqqq
dq
dXqq ssss

s
dssssss JJJI −+(+








−= − &&&&&  (12) 

where dhX ,
&&  defines the desired endpoint force-control dynamics of the master manipulator and 

dsX ,
&&  determines the endpoint position-control dynamics of the PUMA.  The desired endpoint 

behaviors for the master and slave endpoints are specified by: 

 ( )mhhmdh FFX −= −1
, M&&  (13) 

   
 [ ]sssessds XXXX &&& BKM −−= − )(1

,  (14) 

where Mm is a diagonal matrix of masses, Fh is the vector of desired forces to be imposed by the 

master manipulator on the human operator, Fmh  is the vector of forces exerted by the master 

manipulator on the human operator, Ms is a diagonal matrix of masses, Ks is a diagonal stiffness 

matrix, Bs is a diagonal damping matrix, and Xe is the scaled position command from the human 
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operator.  The master manipulator behaves as a mass system in response to the summation of the 

forces imposed by the human operator with those commanded from the teleoperated 

slave/environment interaction.  Note that for the case where the desired vector of forces (Fh) is 

zero, the manipulator is controlled to behave as a pure inertia in response to forces arising from 

the interaction with the human operator (Fmh).  The imposed behavior of the endpoint of the 

PUMA is specified, in each degree of freedom, as a mass under proportional plus derivative 

control.  The matrices governing the endpoint behaviors of the master and slave are given 

numerically by: 

 

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






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N

s

400000
010000
001000

K   

Note that Mm, Ms, Bs, and Ks need not be diagonal, but there is no reason to specify them 

otherwise.   

 
 
4.3 Experimental measurement of transparency  

Characterization of the experimental transparency exhibited by the teleoperation loop, as 

described by Eq. (4), requires measurement of both the environment impedance and the 

transmitted impedance.  Since the transparency depends on the relative values of the transmitted 

and actual environment impedance, the multivariable transparency can be assessed by 

measurement of the dynamic stiffness (i.e., the dynamic relationship between force and 

displacement) rather than direct measurement of the impedance.  The former is preferable 
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because it provides matrix elements with nonzero DC gains, and thus most likely provides a 

more accurate measurement.  Thus, the transparency is assessed by experimental determination 

of the environment and transmitted dynamic stiffness matrices, which for the three degree-of-

freedom system are of the form: 
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333231
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 (16) 

where kij(ω) represent the nine components of the dynamic stiffness as a function of excitation 

frequency.  Identification of the environment transfer function matrix uses the positions (Xe) and 

corresponding forces (Fe) of the slave/environment interaction, while identification of the 

transmitted transfer function matrix uses the positions (Xh) and forces (Fmh) occurring at the 

master/human interface.  Colgate [14] experimentally measured a similar multivariable transfer 

function matrix, and an analogous methodology is used here to compute the transfer function 

matrices needed to assess the teleoperation loop’s transparency.  Specifically, the human 

operator provided voluntary excitation of the teleoperation loop at several frequencies.  For each 

excitation frequency, the operator commanded motion separately in each degree of freedom.  

The positions and interaction forces corresponding to the environment dynamic stiffness and 

transmitted dynamic stiffness were measured for each degree of freedom and excitation 

frequency.  The respective transfer function matrices were then computed from the measured 

data.   

 

 Consider the computation of the environment dynamic stiffness for human voluntary 

motion along the x-axis.  At each excitation frequency, the following auto- and cross-power 
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spectral densities are computed: )ω(
ss xxΦ , )ω(

ss yxΦ , )ω(
ss zxΦ , )ω(

,xesFxΦ , )ω(
, yesFxΦ , and 

)ω(
,zesFxΦ .   From these spectral densities, the following transfer functions are computed: 
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)ω(
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xeH

Φ

Φ
=  (21) 

where Ge,1x(ω), Ge,2x(ω), and Ge,3x(ω) are transfer functions relating the xs-axis excitation to the 

interaction forces in each degree of freedom (i.e., Fe,x, Fe,y, and Fe,z), and He,1x(ω) and He,2x(ω) 

are transfer functions relating the primary xs-axis excitation to those in the ys- and zs-axes.  

Analogous methods are used to compute the complementary sets of transfer functions governing 

the human excitations of the loop along the ys- and zs-axes.  From these transfer functions, the 

components of the environment dynamic stiffness matrix can be computed using: 
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The components of the transmitted dynamic stiffness matrix are obtained in a comparable 

manner, using the experimental position and force data associated with the teleoperative 

interaction between the human operator and master manipulator.  The singular values of the 

dynamic stiffness matrices can then be computed from these matrices.  The ratios of the singular 

values of the dynamic stiffness matrices are equal to the ratios of the singular values of the 

respective impedances.  Thus, the measure of transparency described by Eq. (4) is obtained.   

 

 

 5 Experimental Results 

5.1 Transparency and stability robustness of the uncompensated system 

The teleoperation control architecture with the environment force feedback shown in Fig. 2c and 

the impedance controllers described by Eqs. (11-15) was implemented, initially without a loop 

shaping compensator, with the real-time interface provided by MATLAB/Simulink (The 

Mathworks, Inc.) at a sampling rate of 1 kHz.  The position and force scaling matrices used in 

the experimental telemanipulator are given by: 
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where C1 is the matrix that scales the slave position commands, and C2 is the matrix governing 

the scaling of the master force commands.  As such, the telemanipulator was operated as a man-

amplifier (i.e., the power exerted by the slave was four times the power exerted by the human).  

To assess the transparency of the loop, the human provided periodic motion in each degree of 

freedom for five different frequencies: 0.25 Hz, 0.5 Hz, 1 Hz, 2 Hz, and 4 Hz.  Voluntary 

excitation of the system at frequencies above 4 Hz proved to lie beyond the bandwidth of human 

gross motor capability.  The temporal data of the voluntary excitation was used as visual 

feedback in order for the human to accurately command the desired frequency of excitation.  

Five successive trials were conducted for each data point (i.e., for each degree of freedom and 

excitation frequency), and the resulting singular values averaged across the five trials. 

 

Fig. 6 shows the transparency distortion, as defined by Eq. (4), averaged across the five 

trials, corresponding to each singular value in the transmitted impedance.  If the extent of 

allowable distortion is defined as ∆= 3 dB, then the transparency bandwidth can be defined as the 

lowest frequency at which the transparency distortion exceeds ±3 dB.  For the uncompensated 

system, the transparency bandwidth exhibited by the teleoperator loop is approximately 0.5 Hz, 

as determined by the minimum singular value in Fig. 6.   
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Stability robustness of the multivariable loop was initially assessed using the singular 

values computed from the open-loop transfer function matrix and the notions of multiplicative 

and divisive uncertainty, as respectively described by Doyle and Stein [15] and Lehtomaki et al. 

[16].  This approach, however, proved too sensitive to sensor noise and unmodeled dynamics to 

provide any useful insights.  Specifically, the approach indicated stability robustness when the 

corresponding closed loop was in fact quite unstable.  As such, a direct measure of the stability 

robustness was obtained by measuring the average power output to the human operator at various 

loop gains.  For these measurements, the human operator provided pseudo-random excitation 

simultaneously in all three degrees of freedom.  Instability in the teleoperation loop was 

indicated by positive average power output to the human operator, as well as uncontrollable 

oscillatory behavior of the system.  Fig. 7a shows the instantaneous power (solid line) and 

moving-average power (dashed line) for teleoperative interaction with the original environment 

impedance.  Note that the moving-average power at each time step was computed using a 

window two seconds in length.  The results of Fig. 7a show that teleoperative interaction with 

the original environment impedance is stable, with zero or negative average power output to the 

human.  Fig. 7b depicts the results for the teleoperation loop with an increase in the scaling gain 

by a factor of 1.1 in each channel.  This marginal increase in the loop gain caused the system to 

exhibit significant instability in the form of sustained uncontrollable oscillation in each degree of 

freedom, and additionally manifested as positive average power output in each degree of 

freedom.  As such, the data shown in Fig. 7b would indicate that the teleoperator loop becomes 

unstable at a gain of 1.1 in each channel, and thus has an effective gain margin of less than 0.8 

dB in each degree-of-freedom.  Thus, in summary, the teleoperation loop without loop-shaping 
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compensation exhibits a transparency bandwidth of approximately 0.5 Hertz and essentially no 

stability robustness.   

 

5.2 Transparency and stability robustness of the compensated system 

A multivariable loop shaping compensator was designed for this system by incorporating a 

coordinate transformation to approximately decouple the coupled teleoperation loop (which is 

coupled through the environment behavior as described by Eq. (8)).  Though not perfect in 

decoupling the telemanipulation loop, the coordinate transformation does reorient the reference 

frame for the compensator such that the transformed system exhibits diagonally dominant 

behavior.  Following the coordinate transformation, frequency-domain compensation was 

implemented in each approximately decoupled degree of freedom.  In particular, lead 

compensation implemented in each degree of freedom proved an effective means for obtaining 

improved stability robustness while also shaping the impedance transmitted to the human 

operator.  The complete multivariable loop shaping compensator was obtained by pre and post 

multiplying the diagonal loop-shaping matrix with the decoupling matrix and its inverse, 

respectively, such that 
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which yields the multivariable compensator: 

 
cD
c

c
NG =  (26) 

where 
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and 

 96001960103 23 +++= sssDc  (28) 

This loop shaping compensator was added to the previously uncompensated system.  Using the 

methodology previously described, the transparency distortion of the teleoperation loop with the 

compensator of Eqs. (26-28) was measured as shown in Fig. 8.  As indicated in the figure, the 

addition of the loop-shaping compensation increased the transparency bandwidth exhibited by 

the loop to approximately 2.7 Hz, which is more than a factor of five improvement relative to the 

uncompensated case.   

 

Fig. 9a shows the instantaneous (solid line) and moving-average (dashed line) power 

output in each degree of freedom for an increase in the loop gain by a factor of 1.9.  For this 

case, the compensated system exhibited stable behavior with zero or negative average power 

output in each degree of freedom, in addition to the absence of any sustained oscillations.  The 

plots of Fig. 9b show the power output of the telemanipulator system for a factor of two increase 

in the loop gain.  The system exhibited sustained oscillation and positive power output to the 

human operator for this case.  Thus the compensated loop can be characterized by a gain margin 

of approximately 6.0 dB in each degree-of-freedom.  Relative to the uncompensated system, the 

introduction of a loop shaping compensator increased the transparency bandwidth by more than a 

factor of five and increased the gain margin by a factor of approximately two (i.e., by 

approximately six decibels per channel).   
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6 Conclusions 

A previously proposed method of obtaining transparency and stability in bilateral teleoperation 

was extended here to accommodate multivariable systems.  The approach was experimentally 

demonstrated on a three degree-of-freedom scaled telemanipulator pair that incorporated 

nonlinear manipulators and a highly coupled environment.  Using direct measurement of the 

power delivered to the operator to assess the system’s stability robustness, along with the 

proposed measure of multivariable transparency, the loop-shaping compensation was shown to 

improve the stability robustness by a factor of two and the transparency by more than a factor of 

five.   
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Fig. 1.  General two-channel bilateral telemanipuation system. 
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Fig. 2. Multivariable slave/environment dynamics: (a) Schematic of closed-loop 

position-controlled slave manipulator interacting with environment impedance; 
(b) Restructuring of interaction to clearly show the closed-loop slave’s 
dependence on Ze; (c) Inclusion of local feedback to decouple Gs from Ze; and (d) 
Schematic of resulting dynamics. 
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Fig. 3.  Multivariable bilateral telemanipulation system. 

 
 
 

 

Fig. 4.  Three degree-of-freedom master manipulator. 
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Fig. 5.  Unimate PUMA 560 robot manipulator. 

 
 

 

Fig. 6. Transparency distortion corresponding to each singular value in the transmitted 
impedance for the uncompensated system.  The dashed lines indicate the ±3 dB 
desired performance specification. 
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(a) 

 
(b) 

 
Fig. 7.   Instantaneous power (solid line) and moving-average power (dashed line) output 

to the human: (a) uncompensated teleoperation with the original environment 
impedance; (b) uncompensated teleoperation with the environment impedance 
scaled by 1.1. 
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Fig. 8.   Transparency distortion corresponding to each singular value in the transmitted 

impedance for the compensated system.  The dashed lines indicate the ±3 dB 
desired performance specification. 
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(a) 

 
(b) 

 
Fig. 9.   Instantaneous power (solid line) and moving-average power (dashed line) output 

to the human: (a) compensated teleoperation with the environment impedance 
scaled by 1.9; (b) compensated teleoperation with the environment impedance 
scaled by 2. 

 


