
The Design and Implementation of the Open Ravenscar Kernel�

Juan A. de la Puente Juan Zamorano José Ruiz Ramón Fernández Rodrigo García

Department of Telematics Engineering
Technical University of Madrid, Spain

E-mail: jpuente@dit.upm.es

Abstract

This paper describes the design and implementation of
the Open Ravenscar Kernel (ORK), an open-source real-
time kernel of reduced size and complexity, for which users
can seek certification for mission-critical space applica-
tions. The kernel supports Ada 95 tasking on an ERC32
(SPARC v7) architecture in an efficient and compact way.
It is closely integrated with the GNAT runtime library and
other tools.

1. Introduction

The Open Ravenscar Real-Time Kernel (ORK) [10, 11]
is a tasking kernel for the Ada language [2] which provides
full conformance with the Ravenscar profile [6, 4, 7] on
ERC32-based computers. ERC32 is a radiation-hardened
implementation of the SPARC V7 architecture, which has
been adopted by the European Space Agency (ESA) as
the current standard processor for spacecraft on-board com-
puter systems [12].

ORK supports the restricted version of Ada tasking de-
fined by the Ravenscar profile, which includes static tasks
(with no entries) and protected objects (with at most one
entry), a real-time clock anddelay until statements, and pro-
tected interrupt handler procedures, as well as other tasking
features.

The kernel is fully integrated with the GNAT compila-
tion system. Debugging support for the ORK kernel, in-
cluding tasking, is based on an enhanced version of the
GDB debugger and the DDD graphic front-end. The dis-
tribution includes an adapted version of GNAT hosted on
GNU/Linux workstations and targeted to ERC32 bare com-
puters, the kernel itself, adapted version of GDB and DDD,
and some additional libraries and tools. It is freely available
as an open source product, with a GPL license1.

�This work has been funded by ESA/ESTEC contract no.
No.13863/99/NL/MV.

1ORK and its associated software can be downloaded fromhttp://

This paper describes the design and implementation of
ORK. The rest of the paper is organised as follows: Sec-
tion 2 describes how the Ravenscar profile can be imple-
mented in GNAT. Section 3 describes the ORK design and
section 4 deals with some implementation issues. Finally,
some conclusions and plans for the near future are included
in section 5.

2. Support for the Ravenscar profile in GNAT

2.1. Compile-time checking

Most of the Ada subset defined by the Ravenscar pro-
file can be checked at compile time by using an appropri-
ate set of restriction identifiers with the pragmaRestrictions
(ALRM, D.7, H.4). However, not all the Ravenscar restric-
tions can be enforced by standard identifiers, and thus a
number of additional restriction identifiers have been pro-
posed at the last IRTAW meetings in order to support the
profile [7].

The most recent versions of GNAT (from 3.12 on) have
included most of the non-standard Ravenscar restrictions
as implementation-specific pragmas. However, there are a
couple of restrictions that are not implemented in GNAT or
are implemented in a slightly different way than specified
by the profile:

� The Ravenscar restrictionSimple_Barrier_Variables is
replaced in GNAT by
Boolean_Entry_Barriers. The semantics of this restric-
tion is the same as the original one.

� The Ravenscar restrictionMax_Entry_Queue_Depth
=> N (with N = 1 for Ravenscar compliant programs)
is replaced in GNAT byNo_Entry_Queue. In this case,
the semantics is the same, but the restriction name is
somewhat misleading, as there may still be one task
waiting on an entry barrier to be opened (i.e. a queue
with just one task).

www.openravenscar.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357247493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Program 1 Sample configuration file for GNAT
-- file gnat.adc
pragma Ravenscar;

pragma Restrictions (Max_Tasks => ...);
-- N must be equal to the number

-- of application tasks

-- additional restrictions, if any

pragma Task_Dispatching_Policy
(FIFO_Within_Priorities);

pragma Locking_Policy (Ceiling_Locking);

The purpose of defining the Ravenscar set of restric-
tions was to enable a simpler, more efficient runtime to
be used. The approach taken in GNAT for this pur-
pose is not to use theRestrictions pragma instead to de-
fine a new pragmaRavenscar that enforces the full set of
profile restrictions, and selects a reduced version of the
GNAT run-time library (GNARL)2. However, the Raven-
scar restrictionMax_Tasks => N cannot be enforced by this
pragma and has still to be included in a pragmaRestric-
tions. In addition to this, the pragmaRavenscar enforces
two redundant restrictions (No_Terminate_Alternatives and
Max_Select_Alternatives => 0, and one restriction which is
not required by the Ravenscar profile,No_Dynamic_ Inter-
rupts.

The conclusion is that, although there are some dif-
ferences between the restrictions imposed by the pragma
Ravenscar and the IRTAW definition of the Ravenscar
profile, the pragma can be used in its present form, to-
gether with other configuration pragmas (see below), to
check Ravenscar compliance of Ada programs compiled
with GNAT. Program 1 shows a sample configuration file
for GNAT that can be used to check that a program is
Ravenscar-compliant at compile time (with the exception
of the restrictions that no task should terminate and no call
to an entry with an already queued entry should be made,
which can only be checked at run time).

2.2. The GNU Runtime Library

The GNU Ada Runtime Library (GNARL) [13] imple-
ments Ada tasking in a portable way. The GNARL com-
ponents which are dependent on a particular machine and
operating system are known as GNULL (GNU Low-level
Library), and their interface to the platform-independent
part of the GNARL is called GNULLI (GNULL Interface).
Most implementations of GNULL are built on top of an ex-

2Notice that the reduced runtime is not selected if the restrictions are
specified individually instead of including pragmaRavenscar.

isting set of POSIX thread functions [14], which in turn may
be implemented on top of an operating system.

Ada programs compiled with the pragmaRavenscar use
a restricted GNARL that takes advantage of the simplified
tasking model of the Ravenscar profile to reduce the size
and execution time overhead of the runtime [1]. The re-
stricted GNARL, however, is not fully compliant with the
Ravenscar profile in that it does not currently support pro-
tected interrupt handlers, which are explicitly allowed by
the profile.

The ORK distribution includes a patch for the
GNAT 3.13 front end, as well as some replacement GNARL
packages that have been implemented in order to prop-
erly support interrupt handlers in Ravenscar-restricted pro-
grams.

3. The design of the Open Ravenscar Kernel

3.1. Overall architecture

The general approach that has been followed in the de-
sign of the ORK architecture is to implement tasking with
a small, dedicated kernel, which does not have the unnec-
essary burden of a fullpthreads implementation [9]. ORK
provides an almost direct implementation of GNULLI, with
GNULL packages acting as a thin glue interface layer (fig-
ure 1), so that most of the GNULL operations are imple-
mented as simple inlined calls to kernel subprograms.

The kernel itself consists of a set of Ada packages, all
of them children of an empty root package calledKernel
(figure 2). This structure is similar to that of the JTK [9, 19]
and Top-Layer [16] kernels. Some of the packages have
additional children that extend their interfaces so that some
of their internal functionality is made visible to other kernel
packages.

Kernel primitives in ORK are always non-threaded (in-
terrupts are disabled while accessing the kernel), so that
kernel operations are only executed on behalf of a specific
user-level thread (to which the relevant overhead can thus
be charged). There are no hidden threads within the kernel.

3.2. Thread management

Thread management operations are implemented by the
packageKernel.Threads. Its main functions include thread
creation, thread identification, thread scheduling, and thread
synchronization with mutexes and condition variables.

Scheduling is performed according to theFIFO within pri-
orities policy (ALRM D.2.2). Mutexes are locked and un-
locked according to theceiling locking policy (ALRM D.3).

Mutex operations have been simplified with respect to
the GNULL definitions. In particular, GNULL defines two
different procedures to acquire a mutex (Read_Lock and



ORK

Ada Application C Application

C interface

C Interface layer

Hardware

GNULL

GNARL

GNARLI

Kernel interface

GNULLI

Figure 1. Architecture of GNAT-ORK and main
interfaces

Write_Lock), depending on the kind of access required, so
that multiple readers are allowed to acquire a mutex con-
currently. However, as ORK is designed for a monopro-
cessor architecture, having different operations for reading
and writing locks is an unnecessary overhead. Therefore,
ORK provides only oneLock operation, withWrite_Lock
semantics. The GNULLRead_Lock andRTS_Lock (which
is intended to protect GNARL internal data) operations are
mapped to the single kernelLock operation.

The kernel condition variables are used by GNARL only
to implement protected object entry call. Since the Raven-
scar profile restricts the use of protected entries, a simpli-
fication with respect to the POSIX definition of condition
variables is possible, so that the maximum number of wait-
ing threads is one, there are no timed-wait operations, and
wait operations cannot be cancelled.

3.3. Storage management

The Ravenscar profile does not explicitly disallow the
use of dynamic memory as this profile only covers task-
ing related issues, but it seems natural that a Ravenscar-
compliant program should not use dynamically allocated
memory, according to the recommendations of the Ada HIS
standard [15]. However, at least a limited form of dynamic
memory allocation is required by GNARL to allocate space
for task control blocks and stacks at system initialization. In
order to provide this functionality and still keep the advan-

tages of static memory allocation, ORK provides restricted
memory allocation with the following characteristics:

� Memory can be allocated only at system initialization
time.

� Memory cannot be freed.

In this way, a simple contiguous allocation scheme can
be implemented, which can be easily checked for certifica-
tion purposes.

The kernel provides stack protection for individual task
stacks, so thatStorage_Error is raised whenever a task tries
to move its stack pointer outside the bounds of its stack area.

3.4. Time management

The current GNARL implementation uses condition
variable operations to execute all kinds of delays. This
scheme allows timed calls to be signalled before the timer
expires. The use of condition variables to implement de-
lay operations in ORK would be unnecessarily expensive,
as the profile does not allow for any means of cancelling
a delay. Therefore, ORK provides a simpler way to read
the hardware clock and to share the timers among threads.
Threads will wait inside the queue until its expiration time,
and there will not be any other event to awake threads.

Delay statements are transformed by GNULL into direct
calls to the ORK timer module.

3.5. Interrupt handling

In the current GNARL implementation, interrupt han-
dlers are executed within the context of specially dedicated
server tasks, each one associated to an interrupt source.
This approach simplifies the scheduling of interrupt han-
dlers, and provides a simple way to achieve mutual exclu-
sion between handlers. However, this implementation uses
task rendez-vous, which is forbidden in the Ravenscar pro-
file and cannot thus be used with ORK.

The Ada interrupt handling model [2, 3, 5] implies that a
protected handler can only be preempted by a higher pri-
ority interrupt. ORK masks all interrupts with a lower
priority than the currently active priority, by making the
hardware priority equal to the active priority. Moreover,
the Ravenscar profile requires theceiling locking protocol,
which means that protected interrupt handlers cannot pre-
empt other operations on the same protected objects. As
a result, an interrupt handler can never be blocked wait-
ing for a protected object to be free, and protected han-
dlers can be directly invoked from the ISR. The package
Kernel.Interrupts provides operations to install and detach
interrupt handlers.



3.6. Other design issues

The kernel interface is a purely procedural one, as there
is no need for separate user and supervisor execution modes.
All the program runs in supervisor mode, as it is common
in embedded systems. Mutual exclusion in the kernel is
achieved by means of a monolithic monitor [17] protected
by disabling interrupts, so that interrupt delivery is post-
poned when a kernel function is executed [19, 18].

Mutex lock operations are implemented by simply rais-
ing the locking thread active priority to the ceiling priority
of the mutex. This is consistent with the implementation
proposed by the Ada Rationale [3] for protected objects.

4. Implementation issues

4.1. Language

The kernel is written in Ada 95, except for a small part
which is written in SPARC assembly language. A sequen-
tial subset of Ada has been defined based on the recom-
mendations of the Ada HIS standard [15]. The Ada features
which are not used in the subset are detailed elsewhere [22].

4.2. Thread scheduling and synchronization

The ready thread queue is implemented as a priority-
ordered double-linked list. Space for the maximum num-
ber of threads that can exist in the system is reserved at
initialization, thus avoiding the need for dynamic storage
management.

Delayed threads are put on a single queue, ordered by
delay expiration time. The queue is implemented as a linear
linked list. An “alarm clock” approach is used to signal
delay expiration and the subsequent thread activation.

Mutexes are implemented in an efficient way, by raising
the priority of the locking thread to the ceiling priority of
the mutex.

4.3. Fast context switch

The SPARC V7 has a total of 167 user-allocable registers
and 128 of these are used for the overlapping register win-
dows. The 128 window registers are grouped into eight sets
of 24 registers calledwindows. During a context switch, the
register windows of the current thread must be flushed onto
the thread stack before a window will be loaded with the top
frame of the new thread.

There are two different approaches to follow for the
flushing policy. The kernel can flush all register windows,
or just the windows currently in use [5]. The latter approach
gives better average context switch time [20], and is the one

used in ORK. However, the worst case value is approxi-
mately the same in both approaches.

Another issue to take into account is that not all the tasks
will use the floating point unit. Thus, the floating point con-
text should not be stored until necessary. For the sake of
simplicity, the current ORK implementation always saves
the floating point context.

The measured context switching time for a 10MHz
ERC32 ranges from 83 to 85µs. The interrupt latency is
between 285 and 295µs. These figures have been measured
on an ERC32 simulator, but we expect them to be close to
the real target.

4.4. Time management

The ERC32 hardware provides two timers (apart from
the specialWatchdogtimer) which can be programmed to
operate on either single-shot or periodical mode [21]. ORK
uses one of them (theReal Time Clock) as a timestamp
counter, and the other (calledGeneral Purpose Timer) as
a high-resolution timer. The first one provides the basis
for a high-resolution clock, while the second offers the re-
quired support for precise alarm handling. Both timers are
clocked by the internal system clock, and they use a two-
stage counter (figure 3).

TheReal Time Clockis programmed by ORK to interrupt
periodically, updating the most significant part of the clock.
The less significant part of the clock is held in the hardware
clock register. This periodic interrupt is necessary, because
of the maximum time space that can be represented using
the hardware counter and scaler. For a 10MHz ERC32, the
clock granularity is 100ns, and the maximum time interval
is about 136 years for a 1s interrupt period.

The General Purpose Timer Counteris reprogrammed
on demand every time an alarm is set, to signal the time
when the alarm expires. This mechanism is used to imple-
ment high-resolution (100ns) delays.

5. Conclusions and future work

The Open Ravenscar Kernel supports the full Ravenscar
profile with the GNAT compilation system. It has been thor-
oughfully tested with a Ravenscar profile compatible sub-
set of the ACVC suite, plus a set of additional tests that
have been specifically designed to check compliance with
the profile. Some problems have been found, partly due to
the GNAT implementation, but all of them can be solved
with compiler modifications. The validation process and its
results are described in theSoftware Validation and Veri-
fication Report, available at the Open Ravenscar web site
[8].

The kernel has a reduced size (8 KB plus 4 KB for the
vector table). However, the minimum size program is about



Kernel.ParametersE

Kernel.Peripherals

Kernel.CPU_Primitives

Kernel.Time

Kernel.Memory

Kernel.Threads

Kernel.Interrupts
{Time Keeping and Delays}

{Storage Allocation}

{Thread Management}

{Synchronization}

{Scheduling}

{Interrupt Handling}

Kernel

{Serial Output}

Kernel.Serial_Output

Figure 2. ORK packages.

Set Preload Set Preload

The Scaler The Counter

Control (Enable, Load, Reload, Hold, Stop at zero)

Zero indication InterruptSYSCLK

Figure 3. Timer design



95 KB, mainly due to the high amount of code linked into
the executable file as a result of references made by GNARL
and the GNAT compiler itself. Many of these references are
not used by Ravenscar-compliant programs, and thus the
code size should be reduced accordingly.

A conclusion is that more effort has to be devoted to
adapting GNAT and the upper layers of the run time library
to the Ravenscar profile. In spite of the presence of pragma
Ravenscar, there are still a number of issues that have to be
solved so that GNAT supports the profile in an efficient way.
Interrupt handling is one example of such issues, which in
this case has been solved by the ORK team.

The kernel has been tested on an ERC32 simulator only.
Plans for the near future include validating ORK on real
targets, as well as porting it to other platforms. We also
plan to perform accurate measurements in order to provide
the metrics required by ALRM annex D.

References

[1] Ada Core Technologies.GNAT Reference Manual. Version
3.13a, March 2000.

[2] Ada 95 Reference Manual: Language and Standard Li-
braries. International Standard ANSI/ISO/IEC-8652:1995,
1995. Available from Springer-Verlag, LNCS no. 1246.

[3] Ada 95 Rationale: Language and Standard Libraries., 1995.
Available from Springer-Verlag, LNCS no. 1247.

[4] L. Asplund, B. Johnson, and K. Lundqvist. Session sum-
mary: The Ravenscar profile and implementation issues.
Ada Letters, XIX(25):12–14, 1999. Proceedings of the 9th
International Real-Time Ada Workshop.

[5] T. Baker and O. Pazy. A unified priority-based kernel for
Ada. Technical report, ACM SIGAda, Ada Run-Time Envi-
ronment Working Group, March 1995.

[6] T. Baker and T. Vardanega. Session summary: Tasking pro-
files. Ada Letters, XVII(5):5–7, 1997. Proceedings of the
8th International Ada Real-Time Workshop.

[7] A. Burns. The Ravenscar profile.Ada Letters, XIX(4):49–
52, 1999.

[8] CASA Space Division.Open Ranvenscar Real-Time Kernel
— Software Validation and Verification Report, July 2000.
Available athttp://www.openravenscar.org .

[9] J. A. de la Puente, J. F. Ruiz, and J. M. González-Barahona.
Real-time programming with GNAT: Specialised kernels
versus POSIX threads.Ada Letters, XIX(2):73–77, 1999.
Proceedings of the 9th International Real-Time Ada Work-
shop.

[10] J. A. de la Puente, J. F. Ruiz, and J. Zamorano. An open
Ravenscar real-time kernel for GNAT. In H. B. Keller
and E. Ploedereder, editors,Reliable Software Technologies
— Ada-Europe 2000, number 1845 in LNCS, pages 5–15.
Springer-Verlag, 2000.

[11] J. A. de la Puente, J. F. Ruiz, J. Zamorano, R. García, and
R. Fernández-Marina. ORK: An open source real-time ker-
nel for on-board software systems. InDASIA 2000 - Data
Systems in Aerospace, Montreal, Canada, May 2000.

[12] ESA. 32 Bit Microprocessor and Computer System Devel-
opment, 1992. Report 9848/92/NL/FM.

[13] E. Giering and T. Baker. The GNU Ada Runtime Library
(GNARL): Design and implementation. InProceedings of
the Washington Ada Symposium, 1994.

[14] IEEE. Portable Operating System Interface (POSIX)
— Part 1: System Application Program Interface (API)
[C Language] (Incorporating IEEE Stds 1003.1-1990,
1003.1b-1993, 1003.1c-1995, and 1003.1i-1995), 1990.
ISO/IEC 9945-1:1996.

[15] ISO/IEC/JTC1/SC22/WG9.Guide for the use of the Ada
Programming Language in High Integrity Systems, 2000.
ISO/IEC TR 15942:2000.

[16] M. Kamrad and B. Spinney. An Ada runtime system im-
plementation of the Ravenscar profile for a high speed ap-
plication layer data switch. In M. González-Harbour and
J. A. de la Puente, editors,Reliable Software Technologies
— Ada-Europe’99, number 1622 in LNCS, pages 26–38.
Springer-Verlag, 1999.

[17] A. Mok. The design of real-time programming systems
based on process models. InIEEE Real-Time Systems Sym-
posium. IEEE Computer Society Press, 1984.

[18] F. Mueller. A library implementation of POSIX threads un-
der UNIX. InProceedings of the USENIX Conference, pages
29–41, January 1993.

[19] J. F. Ruiz and J. M. González-Barahona. Implementing a
new low-level tasking support for the GNAT runtime sys-
tem. In M. González-Harbour and J. A. de la Puente, editors,
Reliable Software Technologies — Ada-Europe’99, number
1622 in LNCS, pages 298–307. Springer-Verlag, 1999.

[20] J. Snyder, D. Whalley, and T. Baker. Fast context switches:
Compiler and architectural support for preemptive schedul-
ing. Microprocessors and Microsystems, 19(1):35–42,
February 1995.

[21] Temic/Matra Marconi Space.SPARC RT Memory Con-
troller (MEC) User’s Manual, April 1997.

[22] UPM. Open Ravenscar Kernel — Software Design Docu-
ment, May 2000. Revision 1.6.


