
The Design and Implementation of the Open Ravenscar Kernel*

Juan A. de la Puente Juan Zamorano Jos6 Ruiz Ram6n Pem~tdez

Department of Telematics Engineering
Technical University of Madrid, Spain

E-mail: jpuente@dit, u p m . es

Rodrigo Garcfa

Abstract

This paper describes the design and implementation of
the Open Ravenscar Kernel (ORK), an open-source real-
time kernel of reduced size and complexity, for which users
can seek certification for mission-critical space applica-
tions. The kernel supports Ada 95 tasking on an ERC32
(BPARC vT) architecture in an efficient and compact way.
It is closely integrated with the GNAT runtime library and
other tools.

1. Introduction

The Open Ravenscar Real-Time Kernel (ORK) [10, 1 l]
is a tasking kernel for the Ada language [2] which provides
full conformance with the Ravenscar profile [6, 4, 7] on
ERC32-based computers. ERC32 is a radiation-hardened
implementation of the SPARC V7 architecture, which has
been adopted by the European Space Agency (ESA) as
the current standard processor for spacecraft on-board com-
puter systems [12].

ORK supports the resWicted version of Ada tasking de-
fined by the Ravenscar profile, which includes static tasks
(with no entries) and protected objects (with at most one
entry), a real-time clock and delay until statements, and pro-
tected interrupt handler procedures, as well as other tasking
features.

The kernel is fully integrated with the GNAT compila-
tion system. Debugging support for the ORK kernel, in-
cluding tasking, is based on an enhanced version of the
GDB debugger and the D D D graphic front-end. The dis-
tribution includes an adapted version of GNAT hosted on
GNU/Linux workstations and targeted to ERC32 bare com-
puters, the kernel itself, adapted version of GDB and DDD,
and some additional libraries and tools. It is freely available
as an open source product, with a GPL license I.

*This work has been funded by ESA/ESTEC contra~ no.
No. 13863/99/NI.,/MV.

tORK and its asso~aWd software can be downloaded from h t tp : / /

This paper describes the design and implementation of
ORK. The rest o f the paper is organised as follows: Sec-
tion 2 describes how the Ravenscar profile can be imple-
mented in GNAT. Section 3 describes the ORK design and
section 4 deals with some implementation issues. Finally,
some conclusions and plans for the near future are included
in section 5.

2. Support for the Ravenscar profile in GNAT

2.1. Compile-time checking

Most of the Ada subset defined by the Ravenscar pro-
file can be checked at compile time by using an appropri-
ate set o f restriction identifiers with the pragma Restdvtions
(ALRM, D.7, H.4). However, not all the Ravenscar reslric-
tions can be enforced by standard identifiers, and thus a
number of additional restriction identifiers have been pro-
posed at the last IRTAW meetings in order to support the
profile [7].

The most recent versions o f GNAT (from 3.12 on) have
included most o f the non-standard Ravenscar restrictions
as implementation-specific pragmas. However, there are a
couple o f restrictions that axe not implemented in GNAT or
are implemented in a slightly different way than specified
by the profile:

• The Ravenscar restriction Simple_Barrier_Variables is
replaced in GNAT by
Boolean_Entw_Barriers. The semantics of this restric-
tion is the same as the original one.

• The Raveng;ar restriction Max_Entry_Queue_Depth
=> N (with N = 1 for Ravensuar compliant programs)
is replaced in GNAT by No_Entry_Queue. In this case,
the semantics is the same, but the reslriction name is
somewhat misleading, as there may still be one task
waiting on an entry barrier to be opened (i.e. a queue
with just one task).

, o p e l ' i r a ~ l ' l B c t £ , C O r n

Ada letters, March 2001 Page 85 Volume XXI, Number I

P r o g r a m I Sample configuration file for GNAT
-- file gnat.adc

pragma Ravenscar;

pragma Restrictions (Max_Tasks => ...) ;
-- N must be equal to the number

-- of application tasks

-- additional restrictions, if any

pra~ua Task_Dispatching_Policy
|?IFO Wi~hin_Priorities);

pragma Locking Poliey (Ceiling_Locking);

The purpose of defining the Ravenscar set o f restric-
lions was to enable a simpler, more efficient runtime to
be used. The approach taken in GNAT for this pur-
pose is not to use the Restrictions pragma instead to de-
fine a new pragma Ravenscar that enforces the full set o f
profile restrictions, and selects a reduced version o f the
GNAT run-time library (GNARL) 2, However, the Raven-
scar restriction Max_Tasks => N cannot be enforced by this
pragma and has still to be included in a pragma Restric-
tions. In addition to this, the pragma Ravenscar enforces
two redundant reslrictions (No._Terminate_Aiternatives and
Max_Select_Alternatives => 0, and one restriction which is
not required by the Ravenscar profile, No_Dynamic_ Inter-
rupts_

The conclusion is that, although there are some dif-
ferences between the restrictions imposed by the pragma
Ravenscar and the IRTAW definition of the Ravenscar
profile, the pragma can be used in its present form, to-
gerber with other configuration pragmas (see below), to
check Ravenscar compliance o f Ada programs compiled
with GNAT. Program 1 shows a sample configuration file
for GNAT that can be used to check that a program is
Ravenscar-compliant at compile t ime (with the exception
of the restrictions that no task should terminate and no call
to an entry with an already queued enu-y should be made,
which can only be checked at run time).

2.2. T h e G N U R u n t i m e L i b r a r y

The GNU Ada Runtime Library (GNARL) [13] imple-
ments Ada tasking in a portable way. The GNARL com-
ponents which are dependent on a particular machine and
operating sys tem are known as G N U L L (GNU Low-level
Library), and their interface to the platform-independent
part of the GNARL is called G N U L L I (GNULL Interface).
Most implementations of G N U L L are built on top o f an ex-

2Noli¢¢ that thc reduced rlmli / iz is not selecled i f the reslfictions am
specified individually instead of including pragma Rmmnscar.

isting set of POSIX thread functions [14], which in turn may
be implemented on top of an operating system.

Ada programs compiled with the pragma Ravenscar use
a restricted GNARL that takes advantage o f the simplified
tasking model o f the Ravenscar profile to reduce the size
and execution time overhead of the runtime [1]. The re-
stricted GNARL, however, is not fully compliant with the
Ravenscar profile in that it does not currently support pro-
tected interrupt handlers, which are explicitly allowed by
the profile.

The ORK distribution includes a patch for the
GNAT 3.13 front end, as well as some replacement GNARL
packages that have been implemented in order to prop-
erly support interrupt handlers in Ravenscar-reslricted pro-
grams.

3. T h e d e s i g n o f t h e O p e n R a v e n s c a r K e r n e l

3.1. O v e r a l l a r c h i t e c t u r e

The general approach that has been followed in the de-
sign of the O R K architecture is to implement tasking with
a small, dedicated kernel, which does not have the unnec-
essary burden of a full pthreads implementat ion [9]. O R K
provides an almost direct implementat ion o f GNULLI , with
G N I H . L packages acting as a thin glue interface layer (fig-
urc 1), so that most o f the G N U L L operations are imple-
mented as simple inlined calls to kernel subprograms.

The kernel itself consists o f a set o f Ada packages, all
o f them children o f an empty root package called Kernel
(figure, 2). This structure is similar to that o f the JTK [9, 19]
and Top-Layer [16] kernels. Some o f the packages have
additional children that extend their interfaces so that some
of their internal functionality is made visible to other kernel
packages.

Kernel primitives in O R K are always non-threaded (in-
terrupts are disabled while accessing the kernel), so that
kernel operations are only executed on behalf o f a specific
user-level thread (to which the relevant overhead can thus
be charged). There are no hidden threads within the kernel.

3.2. T h r e a d m a n a g e m e n t

Thread management operations are implemented by the
package Kernel.Threads. Its main functions include thread
creation, thread identification, thread scheduling, and thread
synchronization with mutexes and condition variables.

Scheduling is performed according to the FIFO within pri-
orities policy (ALRM D.2.2). Mutexes are locked and un-
locked according to the ceiling locking policy (~ D.3).

Mutex operations have been simplified with respect to
the G N U L L definitions. In particular, G N U L L de fnes two
different procedures to acquire a mutex (Read_Lock and

Ada Letters, March 2001 Page 86 Volume X.XI, Number l

I Ada Application I

............ GNARLI

C Applicalion

GNARL -C interface

. o N u , , i , ,

.......................... Kernel interface

I Hardware I

Figure 1. Architecture of GNAT-ORKand main
Interfaces

Write_Lock), depending on the kind of access required, so
that multiple readers are allowed to acquire a mutex con-
currently. However, as ORK is designed for a monopro-
cessor architecture, having different operations for reading
and writing locks is an unnecessary overhead. Therefore,
ORK provides only one Lock operation, with Write_Lock
semantics. The GNULL Read_Lock and RTS_Lock (which
is intended to protect GNARL internal data) operations are
mapped to the single kernel Lock operation.

The kernel condition variables are used by GNARL only
to implement protected object entry call. Since the Raven-
scar profile restricts the use of protected enu-ies, a simpli-
fication with respect to the POSIX definition of condition
variables is possible, so that the maximum number o f wait-
ing threads is one, there are no timed-wait operations, and
wait operations cannot be cancelled.

3.3. Storage nmnagement

The Ravenscar profile does not explicitly disallow the
use of dynamic memory as this profile only covers task-
ing related issues, but it seems natural that a Ravenscar-
compliant program should not use dynamically allocated
memory, according to the recommendations of the Ada I-HS
standard [15]. However, at least a limited form of dynamic
memory allocation is required by GNARL to allocate space
for task conn'ol blocks and stacks at system initialization. In
order to provide this functionality and still keep the advan-

rages of static memory allocation, ORK provides reslricted
memory allocation with the following characteristics:

• Memory can be allocated only at system initialization
time.

• Memory cannot be freed.

In this way, a simple contiguous allocation scheme can
be implemented, which can be easily checked for certifica-
tion purposes.

The kernel provides stack protection for individual task
stacks, so that Storage_Error is raised whenever a task tries
to move its stack pointer outside the bounds o f its stack area.

3.4. T i m e n m n a g e m e n t

The current GNARL implementation uses condition
variable operations to execute all kinds of delays. This
scheme allows timed calls to be signalled before the timer
expires. The use o f condition variables to implement de-
lay operations in ORK would be unnecessarily expensive,
as the profile does not allow for any means of cancelling
a delay. Therefore, ORK provides a simpler way to read
the hardware clock and to share the timers among threads.
Threads will wait inside the queue until its expiration time,
and there will not be any other event to awake threads.

Delay statements are transformed by GNULL into direct
calls to the ORK timer module.

3.S. I n t e r r u p t h a n d l i n g

In the current GNARL implementation, interrupt han-
dlers are executed within the context of specially dedicated
server tasks, each one associated to an interrupt source.
This approach simplifies the scheduling of interrupt han-
dlers, and provides a simple way to achieve mutual exclu-
sion between handlers. However, this implementation uses
task rendez-vous, which is forbidden in the Ravenscar pro-
file and cannot thus be used with ORK.

The Ada interrupt handling model [2, 3, 5] implies that a
protected handler can only be preempte~ by a higher pri-
ority interrupt. ORK masks all interrupts with a lower
priority than the currently active priority, by making the
hardware priority equal to the active priority. Moreover,
the Ravensear profile requires the ceiling locking protocol,
which means that protected interrupt handlers cannot pre-
empt other operations on the same protected objects. As
a result, an interrupt handler can never be blocked wait-
ing for a protected object to be free, and protected han-
dlers can be directly invoked from the ISR. The package
Kernel.Interrupts provides operations to install and detach
interrupt handlers.

Ada Letters, March 2001 Page 87 Volume XXI, Number 1

3.6. O t h e r d e s i g n i s s ue s

The kernel interface is a purely procedural one, as there
is no need for separate user and supervisor execution modes.
All the program runs in supervisor mode, as it is common
in embedded systems. Mutual exclusion in the kernel is
achieved by means of a monolithic monitor [17] protected
by disabling interrupts, so that interrupt delivery is post-
poned when a kernel function is executed [19, 18].

Mutex lock operations are implemented by simply rais-
ing the locking thread active priority to the ceiling priority
o f the mutex. This is consistent with the implementation
proposed by the Ada Rationale [3] for protected objects.

4 . I m p l e m e n t a t i o n i s s u e s

4.1. L a n g u a g e

The kernel is written in Ada 95, except for a small part
which is written in SPARC assembly language. A sequen-
tial subset o f Ads has been defined based on the recom-
mendations o f the Ada HIS standard [15]. The Ada features
which are not used in the subset are detailed elsewhere [22].

4.2. T h r e a d s c h e d n l i n g a n d s y n c h r o n i z a t i o n

The ready thread queue is implemented as a priority-
ordered double-linked list. Space for the m ax i m u m num-
ber of threads that can exist in the system is reserved at
initialization, thus avoiding the need for dynamic storage
management.

Delayed threads are put on a single queue, ordered by
delay expiration time. The queue is implemented as a linear
linked list. An "alarm clock" approach is used to signal
delay expiration and the subsequent thread activation.

Mutexes are implemented in an efficient way, by raising
the priority o f the locking thread to the ceiling priority of
the mutex.

4_3. F a s t c o n t e x t s w i t c h

The SPARC V7 has a total o f 167 user-allocable registers
and 128 of these are used for the overlapping register win-
dows. The 128 window registers are grouped into eight sets
o f 24 registers called w/ndows. During a context switch, the
register windows of the current thread must be flushed onto
the thread stack before a window will be loaded with the top
f rame of the new thread.

There are two different approaches to follow for the
flushing policy. The kernel can flush all register windows,
or jus t the windows currently in use [5]. The latter approach
gives better average context switch t ime [20], and is the one

used in ORK. However, the worst case value is approxi-
mately the same in both approaches.

Another issue to take into account is that not all the tasks
will use the floating point unit. Thus, the floating point con-
text should not be stored until necessary. For the sake o f
simplicity, the current O R K implementation always saves
the floating point context.

The measured context switching time for a 10MHz
ERC32 ranges f rom 83 to 85ps. The interrupt latency is
between 285 and 295ps. These figures have been measured
on an ERC32 simulator, but we expect them to be close to
the real target.

4.4. T i m e m a n a g e m e n t

The ERC32 hardware provides two timers (apart f rom
the special Watchdog t imer) which can be programmed to
operate on either single-shot or periodical mode [21]. O R K
uses one o f them (the Real 71me Clock) as a t imestamp
counter, and the other (called General Purpose T~mer) as
a high-resolution timer. The first one provides the basis
for a high-resolution clock, while the second offers the re-
quired support for precise a larm handling. Both timers are
clocked by the internal sys tem clock, and they use a two-
stage counter (figure 3).

The Real Tune Clock ig pmgranmted by O R K to interrupt
periodically, updating the mos t significant part o f the clock.
The less significant part o f the clock is held in the hardware
clock register. This periodic interrupt is necessary, because
o f the max imum time space that can be represented using
the hardware counter and scaler. For a 10MHz ERC32, the
clock granularity is 100ns, and the max imum time interval
is about 136 years for a ls interrupt period.

The General Purpose 7"muir Counter is reprogrannned
on demand every t ime an alarm is set, to signal the t ime
when the alarm expires. This mechanism is used to imple-
ment high-resolution (lOOns) delays.

5. C o n c l u s i o n s a n d f u t u r e w o r k

The Open Ravenscar Kernel supports the full Ravenscar
profile with the GNAT compilat ion system. I t has been thor-
oughfully tested with a Ravenscar profile compatible sub-
set of the ACVC suite, plus a set of additional tests that
have been specifically designed to check compliance with
the profile. Some problems have been found, partly due to
the GNAT implementation, but all o f them can be solved
with compiler modifications. The validation process and its
results are described in the Software Validation and Veri-
fication Report, available at the Open Ravenscar web site
IS].

The kernel has a reduced size (8 KB plus 4 KB for the
vector table). However, the min imum size program is about

Ada Letters, March 2001 Page 88 Volume XXI, Number 1

[Storage Alloc~ion]
[Thn~ad ManaBement)

[Synchrtmizalioa]
ISchedulingl

[lntm~Upl l-]mxlllna}
[Time Keeping and Delays]

ISg~ial Ou~utl - - -

Kernel "~

=,, : ~ , i Kgmel.lntenupts ~_~

~ m~LCPU_~midvu
+ I

t

Figure 2. ORK packages.

~LKr, nwI.Pm~nelm's]

SYSCLK _I
-I

Set Preload

The Scaler

i I Set Preload

L
I Zero indication _ I

-1 The Counter I

Control (Enable, Load, Reload, Hold, Stop at zero)

Figure 3. Timer design

Interrupt ~m

Ada Letters, March 2001 Page 89 Volume XXI, Number 1

95 KB, m a i n l y due to the h igh a m o u n t o f code l inked into
the execu tab le f i le as a r e su l t o f r e fe rences m a d e b y G N A R L
and the G N A T c o m p i l e r i tself . M a n y o f these r e fe rences are
no t used b y R a v e n s c a r - c o m p l i a n t p r o g r a m s , and thus the
code s ize shou ld be r e d u c e d accord ing ly .

A conc lus ion is that m o r e e f for t has to b e devo ted to
adap t ing G N A T and the u p p e r l aye r s o f the run t ime l ib ra ry
to the R a v e n s c a r prof i le . In sp i te o f the p re sence o f p r a g m a
Ravonsca r , there are st i l l a n u m b e r o f i s sues that have to be
so lved so that G N A T suppor t s the prof i le in an ef f ic ient way.
In te r rup t hand l ing is one e x a m p l e o f such issues, w h i c h in
this case has been s o l v e d b y the O R K team.

T h e kerne l has b e e n t e s ted on an E R C 3 2 s imula to r only.
P lans fo r the nea r fu tu re i nc lude va l ida t ing O R K on rea l
targets , as we l l as po r t i ng i t to o the r p la t fo rms . W e also
p l an to p e r f o r m accura te m e a s u r e m e n t s in o rde r to p rov ide
the met r ics r e q u i r e d b y ~ annex D_

References

[1] Ads Core Technologies. GNAT Reference Manual. Version
3.13a, March 2000.

[2] Ads 95 Reference Manual: Language and Standard Li-
braries. International Standard ANSl/ISO/IEC-8652:I995,
1995. Available from Springer-Verlag, LNCS no. 1246.

[3] Ado 95 Rationale: Language and Standard Libraries., 1995.
Available from Springer-Verlag, LNCS no. 1247.

[4] L. Asplund, B. Johnson. and K. Lundqvist. Session sum-
mary: The Ravenscar profile and implementation issues.
Ado Letters, XIX(25):12-14, 1999. Proceedings of the 9th
International Real-Time Ada Workshop.

[5] T. Baker and O. Pazy. A unified priority-based kernel for
Ads. Technical report, ACM SIGAda, Ada Run-Time Envi-
ronment Working Group, March 1995.

[6] T. Baker and T. Vardanega. Session summary: Tasking pro-
files. Ads Letters, XVII(5):5-7, 1997. Proceedings of the
8th International Ada Real-Time Workshop.

[7] A. Burns. The Ravenscar profile. Ads Letterx, XIX(4):49-
52, 1999.

[8] CASA Space Division. Open Ranvertscar Real-Time Kernel
Software Validation and Verification Report, July 2000.

Available at h t t p ://w'ww. o p e n r a v e n s c a r , org-
[9] J. A. de la Puente, J. F. Ruiz, and J. M. GonzAlez-Barahona.

Real-time programming with GNAT: Specialised kernels
versus POSIX threads. Ads Letters, XIX(2):73-77, 1999.
Proceedings of the 9th International Real-Tune Ada Work-
shop.

[10] J. A. de ia Puente, J. F. Ruiz, and J. Zamorano. An open
Revenscar real-time kernel for GNAT. In H. B. Keller
and E. Ploedereder, editors, Reliable Software Technologies

Ads-Europe 2000, number 1845 in LNCS, pages 5--15.
Spriager-Verlag, 2000.

[11] J. A. de la Puente, J. E Rniz, J. Zamorano, R. Garcfa, and
R. Ferntndez-Mafina. ORK: An open source real-time ker-
nel for on-board software systems. In DASIA 2000 - Data
Systems in Aerospace, Montreal, Canada, May 2000.

[12] ESA. 32 Bit Microprocessor and Computer System Devel-
opment, 1992. Report 9848/92/NI.,/FM.

[13] E. Giering and T. Baker. The GNU Ada Runtime Library
(GNARL): Design and implementation. In Proceedings of
the Washington Ads Symposium, 1994.

[14] IEEE. Portable Operating System Interface (POSIX)
Part 1: System Application Program Interface (API)

[C Language] (Incorporating IEEE Std.v 1003.1-1990,
1003.1b-1993, 1003.1c-1995, and 1003.1i-1995), 1990.
ISO/IEC 9945-1:1996.

[15] ISOiIEC/JTC11SC22/WG9. Guide for the use of the Ads
Programming Language in High Integrity Systems, 2000.
ISG/IEC TR 15942:2000.

[16] M. Kamrad and B. Spinney. An Ada runtime sysl~m im-
plen'~ntation of the Ravenscar profile for a high spe~d ap-
plication layer data switch. In M. Gonz~le~z-Harbour and
J. A. de la Puent~, editors, Reliable Software Technotogies

Ado-Europe'99, nornber 1622 in LNCS, pages 26--38.
S pringex-Verlag, 1999.

[17] A. Mok. The design of real- t in~ programming systems
based on process models. In IEEE Real-Time Systems Sym-
posium. IEEE Computer Society Press, 1984.

[I 8] F. Mueller. A library implementation of POSIX threads un-
der UNIX. In Proceedings of the USENIX Conference, pages
29--41, January 1993.

[19] J. F. Rniz and J. M. Gonz[floz-Barahona. Impi©mcnting a
new low-]evel tasking support for the GNAT runtime sys-
tem. In M. Gonz~lez-Harbour and J. A. de la Puente, editors,
Reliable Software Technologies ~ Ads-Europe'99, number
1622 in LNCS, pages 298--307. Springer-Verlag, 1999.

[20]]. Snyder, D. Whalley, and T. Baker. Fast context switches:
Compiler and architectural support for preemptive schedul-
ing. Microprocessors and Microaystems, 19(1):35--42,
February 1995.

[21] Telnic/Malra Marconi Space. SPARC RT Memory Con-
troller (MEC) User's Mamzal, April 1997.

[22] UPM. Open Ravensear Kernel ~ Software Design Docu-
ment, May 2000. Revision 1.6.

A d a Letters, March 2001 Page 90 Volume X'XI, Number 1

